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We demonstrate the existence of standing wave solutions of the discrete coupled nonlinear Schrödinger equations with unbounded
potentials by using the Nehari manifold approach and the compact embedding theorem. Sufficient conditions are established to
show that the standing wave solutions have both of the components not identically zero.

1. Introduction

Consider the coupled discrete Schrödinger system
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where 𝑎
𝑖
> 0, {𝑏

𝑗𝑛
} are real valued sequences, 𝑖 =

1, 2, 3, and 𝑗 = 1, 2. A is the discrete Laplacian operator
defined as (A𝑢)

𝑛
= 𝑢
𝑛+1
+ 𝑢
𝑛−1
− 2𝑢
𝑛
.

The system (1) could be viewed as the discretization of the
two-component system of time-dependent nonlinear Gross-
Pitaevskii system (see [1] for detail)
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In this paper, we will study the standing wave solutions of
(1), that is, solutions of the form

𝑢
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, 𝑛 ∈ Z, (3)

where the amplitude 𝜙
𝑛
and 𝜓

𝑛
are supposed to be real.

Inserting the ansatz of the standing wave solutions (3) into
(1), we obtain the following equivalent algebraic equations:
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Since Bose-Einstein condensation for a mixture of dif-
ferent interaction atomic species with the same mass was
realized in 1997 (see [2]), this stimulated various analytical
and numerical results on the standing wave solutions of the
system (2). The discrete nonlinear Schrödinger equations
(DNLS) have a crucial role in the modeling of a great variety
of phenomena, ranging from solid-state and condensed-
matter physics to biology. During the last years, there has
been a growing interest in approaches to the existence
problem for standing waves. We refer to the continuation
methods in [3, 4], which have been proved powerful for
both theoretical considerations and numerical computations
(see [5]), to [6], which exploits spatial dynamics and centre
manifold reduction, and to the variational methods in [7–11],
which rely on critical point techniques (linking theorems and
Nehari manifold).

We noticed that most works on the existence of
standing waves solutions are for single discrete nonlinear
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Schrödinger equation, and less is known for discrete nonlin-
ear Schrödinger system. In the recent paper [12], the authors
considered the standing wave solutions of the following
system:
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which is more general than the system (1). However, they
make a mistake to obtain the equivalent algebraic equations
because 𝜔

1
may be different from 𝜔

2
. Hence, there are two

ways to correct this mistake. The first method is to study the
special standingwave solutions (3) of the system (5)with𝜔
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2
.The secondmethod is to study the standingwave solutions

(3) of the system (5) with 𝑐
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≡ 0 and 𝑐

2𝑛
≡ 0, 𝑛 ∈ Z. In this

paper, we consider the second method. By the way, the proof
of the main results in [12] is also not fully corrected.

The paper is organized as follows. In Section 2, we
introduce some preliminaries and a discrete version of com-
pact embedding theorem. Some key lemmas on the Nehari
manifold are proved in Section 3. In Section 4, the main
results are stated and proved.

2. Preliminaries

In this section we describe the functional setting needed for
the treatment of the infinite nonlinear system (4). We first
introduce a compact embedding theorem.

Consider the real sequence spaces
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Between 𝑙𝑝 spaces the following elementary embedding
relation holds:
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The following lemma can be found in [9].
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Now we can define the action functional
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and the Nehari manifold
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To prove the main results, we need some lemmas on the
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point at 𝑡 = 1.
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Proof. First we show that𝑁 ̸= 0.
From (15) and (16), we rewrite
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This shows that 𝑡 = 1 is a unique maximum point. The proof
is completed.
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The proof is completed.

4. Main Results

Now we state our main results in this paper as follows.

Theorem 4. Assume that 𝜔
1
< 𝜆
1
, 𝜔
2
< 𝜆
2
, and (10) holds.
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From the standard variational method, the proof of
Theorem 4 is changed into finding a solution to the
minimization problem (27). Now we are ready to prove
Theorem 4.
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Proof. Let 𝑑 be given by (27). By Lemma 2, 𝑁 is nonempty
and there exists a sequence {(𝜙(𝑘), 𝜓(𝑘))} ⊂ 𝑁 such that
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− 𝜔
1


𝜙
(𝑘)


2

𝑙
2
) +
1

2
(

𝜓
(𝑘)


2

𝐸2

− 𝜔
2


𝜓
(𝑘)


2

𝑙
2
)

−
1

4
∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)
4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)
4

+ 2𝑎
3
(𝜙
(𝑘)

𝑛
)
2

(𝜓
(𝑘)

𝑛
)
2

)

=
1

4
∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)
4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)
4

+ 2𝑎
3
(𝜙
(𝑘)

𝑛
)
2

(𝜓
(𝑘)

𝑛
)
2

) .

(31)

First, we claim that

lim
𝑘→∞

∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)
4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)
4

+ 2𝑎
3
(𝜙
(𝑘)

𝑛
)
2

(𝜓
(𝑘)

𝑛
)
2

)

= ∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) .

(32)

According to (30), it suffices to show that

lim
𝑘→∞

∑

𝑛∈Z

(𝜙
(𝑘)

𝑛
)
2

(𝜓
(𝑘)

𝑛
)
2

= ∑

𝑛∈Z

(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

. (33)

In fact,


∑

𝑛∈Z

(𝜙
(𝑘)

𝑛
)
2

(𝜓
(𝑘)

𝑛
)
2

− ∑

𝑛∈Z

(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2



≤ ∑

𝑛∈Z


𝜙
(𝑘)

𝑛
− 𝜙
∗

𝑛




𝜙
(𝑘)

𝑛
+ 𝜙
∗

𝑛


(𝜓
(𝑘)

𝑛
)
2

+ ∑

𝑛∈Z


𝜓
(𝑘)

𝑛
− 𝜓
∗

𝑛




𝜓
(𝑘)

𝑛
+ 𝜓
∗

𝑛


(𝜙
∗

𝑛
)
2

.

(34)

Thus Hölder inequality and (30) imply the (33) holds.

Next, we show that (𝜙∗, 𝜓∗) ∈ 𝑁 and 𝐽(𝜙∗, 𝜓∗) = 𝑑.
Since 𝐸

1
and 𝐸

2
are Hilbert spaces, by (32) we have

𝜙
∗

2

𝐸1

+
𝜓
∗

2

𝐸2

=


weak − lim

𝑘→∞

𝜙
(𝑘)



2

𝐸1

+


weak − lim

𝑘→∞

𝜓
(𝑘)



2

𝐸2

≤ lim inf
𝑘→∞


𝜙
(𝑘)


2

𝐸1

+ lim inf
𝑘→∞


𝜓
(𝑘)


2

𝐸2

≤ lim inf
𝑘→∞

(

𝜙
(𝑘)


2

𝐸1

+

𝜓
(𝑘)


2

𝐸2

)

= lim inf
𝑘→∞

(∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)
4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)
4

+2𝑎
3
(𝜙
(𝑘)

𝑛
)
2

(𝜓
(𝑘)

𝑛
)
2

)

+𝜔
1


𝜙
(𝑘)


2

𝑙2

+ 𝜔
2


𝜓
(𝑘)


2

𝑙2

)

= ∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

)

+ 𝜔
1

𝜙
∗

2

𝑙2

+ 𝜔
2

𝜓
∗

2

𝑙2

,

(35)

which implies 𝐼(𝜙∗, 𝜓∗) = ‖𝜙∗‖2
𝐸1
− 𝜔
1
‖𝜙
∗

‖
2

𝑙2
+ ‖𝜓
∗

‖
2

𝐸2
−

𝜔
2
‖𝜓
∗

‖
2

𝑙2
− ∑
𝑛∈Z(𝑎1(𝜙

∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) ≤ 0.
Through a similar argument to the proof of Lemma 2, we
know that 𝐼(𝑡𝜙∗, 𝑡𝜓∗) is positive as 𝑡 is small enough. There-
fore there exists 𝑡∗ ∈ (0, 1] such that 𝐼(𝑡∗𝜙∗, 𝑡∗𝜓∗) = 0 which
implies (𝑡∗𝜙∗, 𝑡∗𝜓∗) ∈ 𝑁. Thus we have 𝐽(𝑡∗𝜙∗, 𝑡∗𝜓∗) =
(1/4)𝑊(𝑡

∗

) and by (32),𝑊(1) = 4𝑑, where

𝑊(𝑡) = 𝑡
4

∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) . (36)

Clearly,𝑊(𝑡) is strictly increasing on 0 < 𝑡 < ∞. Therefore
by (27),

𝑑 ≤ 𝐽 (𝑡
∗

𝜙
∗

, 𝑡
∗

𝜓
∗

) =
1

4
𝑊 (𝑡
∗

) ≤
1

4
𝑊 (1) = 𝑑. (37)

This implies that 𝑡∗ = 1 and 𝐽(𝜙∗, 𝜓∗) = 𝑑.
Finally, we will prove (𝜙∗, 𝜓∗) is a nontrivial solution to

system (13).
Since (𝜙∗, 𝜓∗) is an energyminimizer onNeharimanifold

𝑁, there exists a Lagrange multiplier Λ such that

(𝐽


(𝜙
∗

, 𝜓
∗

) + Λ𝐼


(𝜙
∗

, 𝜓
∗

) , (𝜙, 𝜓)) = 0, (38)

for any (𝜙, 𝜓) ∈ 𝐸
1
× 𝐸
2
. Let (𝜙, 𝜓) = (𝜙∗, 𝜓∗) in (38).

(𝐽


(𝜙
∗

, 𝜓
∗

), (𝜙
∗

, 𝜓
∗

)) = 𝐼(𝜙
∗

, 𝜓
∗

) = 0 implies that

Λ(𝐼


(𝜙
∗

, 𝜓
∗

) , (𝜙
∗

, 𝜓
∗

)) = 0, (39)
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but

(𝐼


(𝜙
∗

, 𝜓
∗

) , (𝜙
∗

, 𝜓
∗

))

= 2 ((𝐿
1
− 𝜔
1
) 𝜙
∗

, 𝜙
∗

) + 2 ((𝐿
2
− 𝜔
2
) 𝜓
∗

, 𝜓
∗

)

− 4∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

)

= −2∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) < 0.

(40)

Thus, Λ = 0 and

(𝐽


(𝜙
∗

, 𝜓
∗

) , (𝜙, 𝜓)) = 0, (41)

for any (𝜙, 𝜓) ∈ 𝐸
1
× 𝐸
2
. Take (𝜙, 𝜓) = (𝑒(𝑘), 0) and (𝜙, 𝜓) =

(0, 𝑒
(𝑘)

) in (41) for 𝑘 ∈ Z, where

𝑒
(𝑘)

𝑛
= {
1, 𝑛 = 𝑘,

0, 𝑛 ̸= 𝑘.
(42)

We see that 𝐽(𝜙∗, 𝜓∗) = 0. Thus, (𝜙∗, 𝜓∗) is a nontrivial
solution to system (13). The proof is completed.

By Theorem 4, the system (1) has a nontrivial solution.
However, it is uncertain if two components of this solution are
nonzero. Therefore, we want to find solutions of the system
(1) which have both of the components not identically zero.
In order to achieve this goal, we consider the system (1) with
𝑏
1𝑛
= 𝑏
2𝑛
, 𝑛 ∈ Z; that is,

𝑖
𝑑𝑢
𝑛

𝑑𝑡
= −(A𝑢)

𝑛
+ 𝑏
1𝑛
𝑢
𝑛
− 𝑎
1

𝑢𝑛


2

𝑢
𝑛
− 𝑎
3

V𝑛


2

𝑢
𝑛
,

𝑖
𝑑V
𝑛

𝑑𝑡
= −(AV)

𝑛
+ 𝑏
1𝑛
V
𝑛
− 𝑎
2

V𝑛


2

V
𝑛
− 𝑎
3

𝑢𝑛


2

V
𝑛
.

(43)

In system (43), we know that 𝐿
1
= 𝐿
2
, where 𝐿

𝑖
, 𝑖 = 1, 2,

is given by (11). By the definition of 𝐸
𝑖
, 𝑖 = 1, 2, in Section 2

of this paper, we obtain that 𝐸
1
= 𝐸
2
. Hence, 𝜆

1
= 𝜆
2
. For

the sake of simplicity, we let 𝐿
1
= 𝐿
2
= 𝐿, 𝐸

1
= 𝐸
2
= 𝐸,

and 𝜆
1
= 𝜆
2
= 𝜆. The notations in Section 2, such as

𝐽(𝜙, 𝜓), 𝐼(𝜙, 𝜓), and 𝑁 are the same.
Now, we give the second result of this paper as follows.

Theorem 5. Assume that 𝜔
1
< 𝜆, 𝜔

2
< 𝜆, 𝑎

3
>

max {𝑎
1
, 𝑎
2
, ((𝜆 − 𝜔

2
)/(𝜆 − 𝜔

1
))𝑎
1
, ((𝜆 − 𝜔

1
)/(𝜆 − 𝜔

2
))𝑎
2
}, and

(10) holds. Then system (43) has a nontrivial standing wave
solution (�̃�, �̃�) in 𝐸 × 𝐸 with �̃� ̸= 0 and �̃� ̸= 0.

Proof. By Theorem 4, we know that system (43) has a non-
trivial standing wave solution (�̃�, �̃�) in 𝐸 × 𝐸.

Now we will prove that �̃� ̸= 0 and �̃� ̸= 0.
Since (�̃�, �̃�) ∈ 𝑁, we know that (�̃�, �̃�) ̸= (0, 0). If one of

the components (�̃�, �̃�), say �̃� = 0, then �̃� ̸= 0. For 𝜖 small
enough, we consider (�̃�, 𝜖�̃�) ∈ (𝐸−{0})×(𝐸−{0}); by a similar
argument to the proof of Lemma 2, we know that there exists
𝑡
∗ such that 𝐼(𝑡∗�̃�, 𝑡∗𝜖�̃�) = 0; that is, (𝑡∗�̃�, 𝑡∗𝜖�̃�) ∈ 𝑁.

By (20) and 𝐼(𝑡∗�̃�, 𝑡∗𝜖�̃�) = 0, we have (𝑡∗)2 =

(𝐻
1
(�̃�, 𝜖�̃�))/(𝐻

2
(�̃�, 𝜖�̃�)), where

𝐻
1
(𝜙, 𝜓) =

𝜙


2

𝐸
− 𝜔
1

𝜙


2

𝑙
2 +
𝜓


2

𝐸
− 𝜔
2

𝜓


2

𝑙
2 ,

𝐻
2
(𝜙, 𝜓) = ∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) ,

(44)

and 𝐽(𝑡∗�̃�, 𝑡∗𝜖�̃�) = (𝐻2
1
(�̃�, 𝜖�̃�))/(4𝐻

2
(�̃�, 𝜖�̃�)).

We noticed that 𝐽(�̃�, 0) = (𝑎
1
/4)∑
𝑛∈Z �̃�
4

=

inf
(𝜙,𝜓)∈𝑁

𝐽(𝜙, 𝜓) and

𝐻
2
(�̃�, 0) = 𝐻

1
(�̃�, 0) =


�̃�


2

𝐸

− 𝜔
1


�̃�


2

𝑙
2

≥ (𝜆 − 𝜔
1
)

�̃�


2

𝑙
2
.

(45)

For the sake of simplicity, we let

𝐵 = ∑

𝑛∈Z

�̃�
4

𝑛
, 𝐷 =


�̃�


2

𝐸

− 𝜔
2


�̃�


2

𝑙
2
. (46)

If 𝜔
1
≤ 𝜔
2
< 𝜆, then

𝐷 =

�̃�


2

𝐸

− 𝜔
2


�̃�


2

𝑙
2

=

�̃�


2

𝐸

− 𝜔
1


�̃�


2

𝑙
2
+ (𝜔
1
− 𝜔
2
)

�̃�


2

𝑙
2

= 𝑎
1
𝐵 + (𝜔

1
− 𝜔
2
)

�̃�


2

𝑙
2
≤ 𝑎
1
𝐵.

(47)

Thus, 𝑎
3
> 𝑎
1
and (47) yields 𝑎

1
𝐵𝐷 < 𝑎

1
𝑎
3
𝐵
2.

If 𝜔
2
< 𝜔
1
< 𝜆, then by (45),

𝐷 =

�̃�


2

𝐸

− 𝜔
2


�̃�


2

𝑙
2

=

�̃�


2

𝐸

− 𝜔
1


�̃�


2

𝑙
2
+ (𝜔
1
− 𝜔
2
)

�̃�


2

𝑙
2

= 𝑎
1
𝐵 + (𝜔

1
− 𝜔
2
)

�̃�


2

𝑙
2

≤ 𝑎
1
𝐵 +
𝜔
1
− 𝜔
2

𝜆 − 𝜔
1

𝑎
1
𝐵 =
𝜆 − 𝜔
2

𝜆 − 𝜔
1

𝑎
1
𝐵.

(48)

Thus, 𝑎
3
> ((𝜆 − 𝜔

2
)/(𝜆 − 𝜔

1
))𝑎
1
and (48) yields 𝑎

1
𝐵𝐷 <

𝑎
1
𝑎
3
𝐵
2.

From the above arguments, if 𝑎
3
> max {𝑎

1
, ((𝜆−𝜔

2
)/(𝜆−

𝜔
1
))𝑎
1
}, then 𝑎

1
𝐵𝐷 < 𝑎

1
𝑎
3
𝐵
2.

For 𝜖 small enough, we have

𝐻
2

1
(�̃�, 𝜖�̃�)

= (

�̃�


2

𝐸

− 𝜔
1


�̃�


2

𝑙
2
+

𝜖�̃�


2

𝐸

− 𝜔
2


𝜖�̃�


2

𝑙
2
)

2

= (𝑎
1
𝐵 + 𝜖
2

𝐷)
2

= 𝑎
2

1
𝐵
2

+ 2𝑎
1
𝐵𝐷𝜖
2

+ 𝐷
2

𝜖
4

< 𝑎
2

1
𝐵
2

+ 2𝑎
1
𝑎
3
𝐵
2

𝜖
2

+ 𝑎
1
𝑎
2
𝐵
2

𝜖
4

= 𝑎
1
𝐵 (𝑎
1
𝐵 + 𝑎
2
𝐵𝜖
4

+ 2𝑎
3
𝐵𝜖
2

)

= 𝐻
2
(�̃�, 0)𝐻

2
(�̃�, 𝜖�̃�) .

(49)
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Hence, by (49), we have

𝐽 (𝑡
∗

�̃�, 𝑡
∗

𝜖�̃�) =

𝐻
2

1
(�̃�, 𝜖�̃�)

4𝐻
2
(�̃�, 𝜖�̃�)

<
1

4
𝐻
2
(�̃�, 0)

= 𝐽 (�̃�, 0) = inf
(𝜙,𝜓)∈𝑁

𝐽 (𝜙, 𝜓) .

(50)

This is a contradiction. So, �̃� ̸= 0.
Similarly, if �̃� ̸= 0 and 𝑎

3
> max {𝑎

2
, ((𝜆−𝜔

1
)/(𝜆−𝜔

2
))𝑎
2
},

then �̃� ̸= 0. The proof is completed.
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