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This paper concerns Razumikhin-type theorems on exponential stability of stochastic differential delay equations with Markovian
switching, where the modulating Markov chain involves small parameters. The smaller the parameter is, the rapider switching
the system will experience. In order to reduce the complexity, we will “replace” the original systems by limit systems with a simple
structure. Under Razumikhin-type conditions, we establish theorems that if the limit systems are 𝑝th-moment exponentially stable;
then, the original systems are 𝑝th-moment exponentially stable in an appropriate sense.

1. Introduction

The stability of time delay systems is a field of intense research
[1, 2]. In [2], the global uniformexponential stability indepen-
dent of time delay linear and time invariant systems subjected
to point and distributed delays was studied. Moreover, noise
and time delay are often the sources of instability, and they
may destabilize the systems if they exceed their limits [3].

Hybrid delay systems driven by continuous-timeMarkov
chains have been used to model many practical systems
in which abrupt changes may be experienced in the struc-
ture and parameters caused by phenomena such as com-
ponent failures or repairs. An area of particular interest
has been the automatic control of the underlying systems,
with consequent emphasis on the analysis of stability of the
stochastic models. For systems with time delay, there are
two approaches to proving stability that correspond to the
conventional Lyapunov stability theory. The first is based on
Lyapunov-Krasovski functionals, the second on Lyapunov-
Razumikhin functions. The latter one originated with Razu-
mikhin [4] for the ordinary differential delay equation which
is called Razumikhin-type theorem and was developed by
several people [5]. In his paper, Mao [6] was the first
who established a Razumikhin-type theorem for stochastic
functional differential equations (SFDEs). Roughly speaking,

a Razumikhin-type theorem states that if the derivative of
a Lyapunov function along trajectories is negative whenever
the current value of the function dominates other values
over the interval of time delay; then, the Lyapunov function
along trajectories will converge to zero. The Razumikhin
methods have been widely used in the study of stability for
functional and differential-delay systems. In this work, we
shall investigate stochastic differential delay equations with
Markovian switching (SDDEwMSs). The switching we shall
use will be a finite-state Markov chain, which incorporates
various considerations into the models and often results in
the underlying Markov chain having a large state space. To
overcome the difficulties and to reduce the computational
complexity, much effort has been devoted to the modeling
and analysis of such systems, in which one of the main ideas
is to split a large-scale system into several classes and lumping
the states in each class into one state; see [7–9]. Starting from
the work [10], by introducing a small parameter 𝜀 > 0, a
number of asymptotic properties of the Markov chain 𝑟

𝜀

(⋅)

have been established. One of the main results in [9] is that
a complicated system can be replaced by the corresponding
limit system having a much simpler structure. In [11, 12],
long-term behavior of SDEwMSs and SDDEwMSs was inves-
tigated, respectively, while in [13, 14] the stability of random
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delay system with two-time-scale Markovian switching was
studied. Using the stability of the limit system as a bridge,
the desired asymptotic properties of the original system is
obtained using perturbed Lyapunov function methods. In
this work, we shall establish a Razumikhin-type theorem for
SDDEwMSs.

The remainder of this work is organised as follows: in the
next section, we shall begin with the formulation of the prob-
lem. Section 3 investigates the Razumikhin-type theorem for
SDDEs driven by Brownianmotion.The exponential stability
for SDDEs driven by pure jumps is discussed in Section 4.

2. Preliminaries

Let (Ω,F, {F
𝑡
}
𝑡≥0

,P) be a complete probability space with
a filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e. it is
increasing and right continuous, and F

0
contains all P-null

sets). Throughout the paper, we let 𝐵(𝑡) = (𝐵
1
(𝑡), . . . , 𝐵

𝑚
(𝑡))

𝑇

be an 𝑚-dimensional Brownian motion defined on the
probability space (Ω,F, {F

𝑡
}
𝑡≥0

,P). If𝐴 is a vector ormatrix,
its transpose is denoted by 𝐴𝑇. Let | ⋅ | denote the Euclidean
norm in R𝑛 as well as the trace norm of a matrix. For 𝜏 >

0, 𝐶([−𝜏, 0];R𝑛

) denotes the family of continuous functions
from [−𝜏, 0] to R𝑛 with the norm ‖𝜑‖ = sup

−𝜏≤𝜃≤0
|𝜑(𝜃)|.

Denote by 𝐶
𝑏

F([−𝜏, 0];R
𝑛

) the family of all F measurable
and bounded𝐶([−𝜏, 0];R𝑛

)-valued random variable. We will
denote the indicator function of a set 𝐺 by 𝐼

𝐺
.

Let 𝑟(𝑡) (𝑡 ≥ 0) be a right-continuous Markov chain on
(Ω,F, {F

𝑡
}
𝑡≥0

,P) taking values in a finite state space S =

{1, 2, . . . , 𝑁} with the generator Γ = (𝛾
𝑖𝑗
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖}

= {
𝛾
𝑖𝑗
𝛿 + ∘ (𝛿) , if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
𝛿 + ∘ (𝛿) , if 𝑖 = 𝑗,

(1)

where 𝛿 > 0 and 𝛾
𝑖𝑗
is the transition rate from 𝑖 to 𝑗 sati-

sfying 𝛾
𝑖𝑗
> 0 if 𝑖 ̸= 𝑗 and 𝛾

𝑖𝑖
= −∑

𝑖 ̸= 𝑗
𝛾
𝑖𝑗
. We assume the

Markov 𝑟(⋅) is independent of the Brownian motion 𝐵(⋅). It
is well known that almost every sample path 𝑟(⋅) is a right-
continuous step function with finite number of simple jumps
in any finite subinterval of R

+
:= [0,∞). As a standing

hypothesis, we assume that the Markov chain is irreducible.
This is equivalent to the condition that for any 𝑖, 𝑗 ∈ S, we can
find 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ S such that

𝛾
𝑖,𝑖
1

𝛾
𝑖
1
,𝑖
2

. . . 𝛾
𝑖
𝑘
,𝑗
> 0. (2)

Thus, Γ always has an eigenvalue 0. The algebraic inter-
pretation of irreducibility is rank(Γ) = 𝑁 − 1. Under
this condition, the Markov chain has a unique stationary
(probability) distribution 𝜋Γ = 0, subject to ∑𝑁

𝑗=1
𝜋
𝑗
= 1 and

𝜋
𝑗
> 0 for all 𝑗 ∈ S. For a real valued function 𝜎(⋅) defined on

S, we define
Γ𝜎 (⋅) (𝜅) := ∑

ℓ∈S

𝛾
𝜅ℓ
𝜎 (ℓ)

= ∑

ℓ ̸= 𝜅

𝛾
𝜅ℓ
(𝜎 (ℓ) − 𝜎 (𝜅)) ,

(3)

for each 𝜅 ∈ S.

Consider the following stochastic delay system with
Markovian swtching:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝐵 (𝑡) ,

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(4)

where 𝑓 : R𝑛

×R𝑛

×S → R𝑛 and 𝑔 : R𝑛

×R𝑛

×S → R𝑛×𝑚.
To highlight the fast and slow motions, we introduce a

parameter 𝜀 > 0 and rewrite the Markov chain 𝑟(𝑡) as 𝑟𝜀(𝑡)
and the generator Γ as Γ𝜀. Γ𝜀 is given by

Γ
𝜀

=
1

𝜀
Γ̃ + Γ̂, (5)

where Γ̃/𝜀 represents the fast varying motions, and Γ̂ repre-
sents the slowly changing dynamics.Wedenote Γ𝜀 = (𝛾

𝜀

𝑖𝑗
)
𝑁×𝑁

,
Γ̃ = (𝛾

𝑖𝑗
)
𝑁×𝑁

, and Γ̂ = (𝛾
𝑖𝑗
)
𝑁×𝑁

. To the reduction of complex-
ity, Γ̃ needs to have a certain structure. Suppose that

S = S
1

∪ S
2

∪ ⋅ ⋅ ⋅ ∪ S
𝑙 (6)

with S𝑖

= {𝑠
𝑖1
, . . . , 𝑠

𝑖𝑁
𝑖

} and𝑁 = 𝑁
1
+𝑁

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑙
, and that

Γ̃ = diag (Γ̃1, . . . , Γ̃𝑙) , (7)

where for each 𝑘 ∈ {1, . . . , 𝑙} and Γ̃
𝑘 is a generator of a

Markov chain taking values in S𝑘. We impose the following
hypothesis:

(H1) For each 𝑘 ∈ {1, . . . , 𝑙}, Γ̃𝑘 is irreducible.
To highlight the effect of the fast switching, we rewrite the

system (4) as

𝑑𝑥
𝜀

(𝑡) = 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑡

+ 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑤 (𝑡) ,

𝑥
𝜀

0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟
𝜀

= 𝑟
0
.

(8)

To assure the existence and uniqueness of the solution, we
give the following standard assumptions.

(H2) For any integer 𝑅, there is a constant ℎ
𝑅
> 0, such

that
𝑓 (𝑥, 𝑦, 𝜅) − 𝑓 (𝑥

1
, 𝑦

1
, 𝜅)

 ∨
𝑔 (𝑥, 𝑦, 𝜅) − 𝑔 (𝑥

1
, 𝑦

1
, 𝜅)



≤ ℎ
𝑅
(
𝑥 − 𝑥

1

 +
𝑦 − 𝑦

1

)

(9)

for all 𝜅 ∈ S and those 𝑥, 𝑥
1
, 𝑦, 𝑦

1
∈ R𝑛 with |𝑥| ∨ |𝑥

1
| ∨ |𝑦| ∨

|𝑦
1
| ≤ 𝑅.
(H3)There is an ℎ > 0, such that for any 𝑥, 𝑦 ∈ R𝑛

, 𝜅 ∈ S,
𝑓 (𝑥, 𝑦, 𝜅)

 ∨
𝑔 (𝑥, 𝑦, 𝜅)

 ≤ ℎ (1 + |𝑥| +
𝑦
) ,

𝑓 (0, 0, 𝜅) ≡ 0, 𝑔 (0, 0, 𝜅) ≡ 0.
(10)

Under the assumptions (H2) and (H3), system (8) has a
unique solution denoted by 𝑥

𝜀,𝜉,ℓ

(𝑡) on 𝑡 ≥ −𝜏, where the
notation 𝑥𝜀,𝜉,ℓ emphasizes the dependence on the initial data
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(𝜉, ℓ). Moreover, for every 𝑝 > 0 and any compact subset 𝐾
of 𝐶([−𝜏, 0];R𝑛

), there exists a positive constant 𝐻 which is
independent of 𝜀 such that

sup
(𝜉,ℓ)∈𝐾×S

𝐸[ sup
−𝜏≤𝑠≤𝑡


𝑥
𝜀,𝜉,ℓ

(𝑠)


𝑝

] ≤ 𝐻, on 𝑡 ≥ 0. (11)

We will consider the stability of system (8), but the state
space of the Markov chain is large, and it is difficult to handle
(8) directly. So we will consider the average system of (8). To
proceed, lump the states in each S𝑘 into a single state and
define an aggregated process 𝑟𝜀(⋅) as

𝑟
𝜀

(𝑡) = 𝑘, if 𝑟𝜀 (𝑡) ∈ S
𝑘

. (12)

Denote the state space of 𝑟𝜀(𝑡) byS = {1, . . . , 𝑙}, the stationary
distribution Γ̃

𝑘 by 𝜇
𝑘

= (𝜇
𝑘

1
, . . . , 𝜇

𝑘

𝑁
𝑘

) ∈ R1×𝑁
𝑘 and 𝜇 =

diag(𝜇1, . . . , 𝜇𝑙) ∈ R𝑙×𝑁. Define

Γ = (𝛾
𝑖𝑗
)
𝑙×𝑙

= 𝜇Γ̂1 (13)

with 1 = diag (1
𝑁
1

, . . . , 1
𝑁
𝑙

) and 1
𝑁
𝑘

= (1, . . . , 1)
𝑇

∈ R𝑁
𝑘
×1,

𝑘 = 1, . . . , 𝑙. It has been known that 𝑟𝜀(⋅) converges weakly to
𝑟(⋅) as 𝜀 → 0, where 𝑟(⋅) is a continuous-time Markov chain
with generator Γ and state space S (cf. [9]).

Define

𝑓 (𝑥, 𝑦, 𝑖) =

𝑁
𝑖

∑

𝑗=1

𝜇
𝑖

𝑗
𝑓 (𝑥, 𝑦, 𝑠

𝑖𝑗
) , (14)

𝑔 (𝑥, 𝑦, 𝑖) 𝑔
𝑇

(𝑥, 𝑦, 𝑖) =

𝑁
𝑖

∑

𝑗=1

𝜇
𝑖

𝑗
𝑔 (𝑥, 𝑦, 𝑠

𝑖𝑗
) 𝑔

𝑇

(𝑥, 𝑦, 𝑠
𝑖𝑗
) (15)

for each 𝑠
𝑖𝑗
∈ S𝑖 with 𝑖 ∈ {1, . . . , 𝑙} and 𝑗 ∈ {1, . . . , 𝑁

𝑖
}. It is

easily seen that 𝑓(𝑥, 𝑦, 𝑖) and 𝑔(𝑥, 𝑦, 𝑖) are the averages with
respect to the stationary distribution of the Markov chain.
Note that for any (𝑥, 𝑦) ̸= (0, 0), 𝑔(𝑥, 𝑦, 𝑠

𝑖𝑗
)𝑔

𝑇

(𝑥, 𝑦, 𝑠
𝑖𝑗
) are

nonnegative definite matrices, so we find its “square root” of
(15), which is denoted by 𝑔(𝑥, 𝑦, 𝑖). For degenerate diffusions,
we can see the argument in [15].

The averaged system of (8) is defined as follows:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

𝑥
0
= 𝜉, 𝑟 = 𝑟

0
.

(16)

3. Moment Exponential Stability

In this section, we shall establish the Razumikhin-type
theorem on the exponential stability for (8).

Let𝐶𝑝

(R𝑛

×S;R
+
) be the class of nonnegative real-valued

functions defined on R𝑛

× S that are 𝑝-times continuously
differentiable with respect to 𝑥. We give the following
assumption about 𝑉(𝑥, 𝑖) ∈ 𝐶

𝑝

(R𝑛

× S;R
+
) for some 𝑝 ≥ 4.

(H4) For each 𝑖 ∈ S, 𝑉(𝑥, 𝑖) → ∞ as |𝑥| → ∞.
Moreover, 𝜕𝑝𝑉(𝑥, 𝑖) = 𝑂(1), 𝜕

ℓ

𝑉(𝑥, 𝑖)(|𝑥|
ℓ

+ |𝑦|
ℓ

) ≤ 𝐾(|𝑥|
𝑝

+

|𝑦|
𝑝

+ 1) for 1 ≤ ℓ ≤ 𝑝 − 1, where 𝜕ℓ𝑉(𝑥, 𝑖) denotes the ℓth
derivative of 𝑉(𝑥, 𝑖) with respect to 𝑥 and 𝑂(𝑦) denotes the
function of 𝑦 satisfying sup

𝑦
|𝑂(𝑦)|/𝑦 < ∞.

Theorem 1. Let (H1)–(H3) hold; there is a function 𝑉(𝑥, 𝑖) ∈

𝐶
𝑝

(R𝑛

×S;R
+
) satisfying (H4), and there are positive constants

𝜆, 𝑐
1
, 𝑐
2
, and 𝑞 > 1 such that

(i) 𝑐
1
|𝑥|

𝑝

≤ 𝑉(𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝,
(ii) E[max

𝑖∈SL𝑉(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑖)] ≤ −𝜆E[max
𝑖∈S𝑉(𝑥(𝑡),

𝑖)] provided E[min
𝑖∈S𝑉(𝑥(𝑡 + 𝜃), 𝑖)] < 𝑞E[max

𝑖∈S

𝑉(𝑥(𝑡), 𝑖)], −𝜏 ≤ 𝜃 ≤ 0,

where

L𝑉 (𝑥, 𝑦, 𝑖) = 𝑉
𝑥
(𝑥, 𝑖) 𝑓 (𝑥, 𝑦, 𝑖)

+
1

2
trace [𝑉

𝑥𝑥
(𝑥, 𝑖) 𝑔 (𝑥, 𝑦, 𝑖) 𝑔

𝑇

(𝑥, 𝑦, 𝑖)]

+

𝑙

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝑥, 𝑗) .

(17)

Then, for all 𝜉 ∈ 𝐶([−𝜏, 0];R𝑛

),

lim sup
𝜀→0

E
𝑥

𝜀

(𝑡)

𝑝

≤ ]
2
𝑒
−]
1
𝑡

, (18)

where

]
1
= min{𝜆,

log 𝑞

𝜏
} ;

]
2
𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

]
2
=
𝑐
2

𝑐
1

sup
−𝜏≤𝜃≤0

E
𝜉

𝑝

.

(19)

Remark 2. Note that the conditions of Theorem 1 are suffi-
cient conditions for the average system (16) 𝑥(𝑡) (or the limit
process 𝑥(𝑡)). However the conclusion of Theorem 1 is about
the process𝑥𝜀(𝑡). Since the structure of the the average system
(16) is much simpler than that of 𝑥𝜀(𝑡), this theorem has
reduced the computational complexity for the system (8).

Remark 3. lim sup
𝜀→0

E|𝑥𝜀(𝑡)|𝑝 does exist by (11).

Proof of Theorem 1. Define

𝑉 (𝑥, 𝜁) =

𝑙

∑

𝑖=1

𝑉 (𝑥, 𝑖) 𝐼
{𝜁∈S𝑖} = 𝑉 (𝑥, 𝑖) , if 𝜁 ∈ S

𝑖

. (20)

Note that

𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) = 𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) ,

𝑁

∑

𝜅=1

𝛾
𝑙𝜅
𝑉 (𝑥, 𝜅) =

𝑁

∑

𝜅=1

𝛾
𝑙𝜅

𝑙

∑

𝑖=1

𝑉 (𝑥, 𝑖) 𝐼
{𝜅∈S𝑖} = 0.

(21)
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We extend 𝑟(𝑡) to [−𝜏, 0] by setting 𝑟(𝑡) = 𝑟(0); then,
E𝑉(𝑥𝜀(𝑡), 𝑟𝜀(𝑡)) is right continuous on 𝑡 ≥ −𝜏.

Let ] ∈ (0, ]
1
) be arbitrary, and define

𝑈 (𝑡) := 𝑒
]𝑡lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

= 𝑒
]𝑡lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) .

(22)

If we can show that 𝑈(𝑡) ≤ 𝑐
1
]
2
, then the proof is completed.

If 𝑡 ∈ [−𝜏, 0], by condition (i),

𝑈 (𝑡) ≤ lim
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) = E𝑉 (𝜉, 0) ≤ 𝑐
2
E
𝜉 (0)


𝑝

≤ 𝑐
2
sup

−𝜏≤𝜃≤0

E
𝜉 (𝜃)


𝑝

= 𝑐
1
]
2
.

(23)

If 𝑡 ≥ 0, we will prove that 𝑈(𝑡) ≤ 𝑐
1
]
2
. Otherwise, there

exists the smallest 𝜌 ∈ (0,∞) such that all 𝑡 ∈ [−𝜏, 𝜌), 𝑈(𝑡) ≤

𝑐
1
]
2
and 𝑈(𝜌) ≥ 𝑐

1
]
2
as well as 𝑈(𝜌 + 𝛿) > 𝑈(𝜌) for all

suffieciently small 𝛿.
For 𝑡 ∈ [𝜌 − 𝜏, 𝜌),

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

= 𝑒
−]𝑡
𝑈 (𝑡)

≤ 𝑒
−]𝑡
𝑈 (𝜌) = 𝑒

−]𝑡
𝑒
]𝜌lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌))

≤ 𝑒
]𝜏lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌)) .

(24)

If lim sup
𝜀→0

E𝑉(𝑥𝜀(𝜌), 𝑟𝜀(𝜌)) = 0, then
lim sup

𝜀→0
E𝑉(𝑥𝜀(𝑡), 𝑟𝜀(𝑡)) = 0, 𝑡 ∈ [𝜌 − 𝜏, 𝜌).

Since (𝑥
𝜀

(𝑡), 𝑟
𝜀

(𝑡)) converges to (𝑥(𝑡), 𝑟(𝑡)) with proba-
bility one (see Lemma 2.3 in [12]), by condition (i), we can
derive

𝑥 (𝑡) = 0, 𝑡 ∈ [𝜌 − 𝜏, 𝜌) . (25)

Recalling the fact 𝑓(0, 0, 𝑖) ≡ 0, 𝑔(0, 0, 𝑖) ≡ 0 and using the
uniqueness of the equation, we then have 𝑥(𝑡) = 0, a.e. 𝑡 > 0.
Therefore we have

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) = 0, 𝑡 > 0. (26)

Then 𝑈(𝜌) = 0, which is a contradiction. Hence we see that
lim

𝜀→0
E𝑉(𝑥𝜀(𝜌), 𝑟𝜀(𝜌)) ̸= 0. For 𝑡 ∈ [𝜌 − 𝜏, 𝜌), there exists a

𝑞 > 1 such that

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

≤ 𝑞lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌)) , ] <
log 𝑞

𝜏
.

(27)

Consequently, there exists a sufficiently small 𝜀
0
> 0, such

that, for any 𝜀 ∈ (0, 𝜀
0
),

E [min
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌 + 𝜃) , 𝑖)]

≤ 𝑞E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌) , 𝑖)] , 𝜃 ∈ [−𝜏, 0] .

(28)

By condition (ii),

E [max
𝑖∈S

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑖)] ≤−𝜆E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝑡) , 𝑖)] ;

(29)

then,

E [L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] ≤ −𝜆E [𝑉 (𝑥
𝜀

(𝑡) , 𝑟 (𝑡))] .

(30)

Noting that ] < ] ≤ 𝜆, we have

E [L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] ≤ −]E [𝑉 (𝑥
𝜀

(𝑡) , 𝑟 (𝑡))] .

(31)

We now consider

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

[𝑒
](𝜌+𝛿)

E [𝑉 (𝑥
𝜀

(𝜌 + 𝛿) , 𝑟
𝜀

(𝜌 + 𝛿))]

−𝑒
]𝜌
E [𝑉 (𝑥

𝜀

(𝜌) , 𝑟
𝜀

(𝜌))]]

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) ] 𝑑𝑡.

(32)

By the definition of operatorL, we have

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+
1

2
trace [𝑉

𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))
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× 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))]

+

𝑁

∑

𝜅=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+
1

2
trace [𝑉

𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) ]

+

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+
1

2
trace [𝑉

𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))]

+

𝑙

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

+ 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))]

+
1

2
trace [𝑉

𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)))]

+

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

= L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏 (𝑡)) ,

𝑟
𝜀

(𝑡))−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏 (𝑡)) , 𝑟
𝜀

(𝑡))]

+
1

2
trace [𝑉

𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)))]

+

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) .

(33)

So

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) ,

𝑟
𝜀

(𝑡)) + ]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+
1

2
lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡 trace

× [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏 (𝑡)) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(

𝑁

∑

𝜅=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗))𝑑𝑡

=: 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(34)



6 Abstract and Applied Analysis

By the definition of 𝑓,

𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) − 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

=

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
− 𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] .

(35)

This, together with assumption (H2), implies

lim
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

≤ lim
𝜀→0

[E



∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡



2

]

]

1/2

= lim
𝜀→0

[

[

E



∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

×

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
− 𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝑑𝑡



2

]

]

1/2

≤ lim
𝜀→0

[

[

E



∫

𝜌+𝛿

𝜌

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

𝑒
]𝑡
ℎ (1 +

𝑥
𝜀

(𝑡)

𝑝

+
𝑥

𝜀

(𝑡 − 𝜏)

𝑝

)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
−𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝑑𝑡



2

]

]

1/2

.

(36)

By the argument of Lemma 7.14 in [9], the right side of above
inequality is equivalent to to 0; that is, 𝐼

2
= 0. Similarly, we

can show

𝐼
3
=
1

2
lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

trace × [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡)))] 𝑑𝑡=0.

(37)

By the definition of Γ̂ and Γ, we have

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅) = Γ̂𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡)) ,

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) = Γ𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡)) ,

(38)

hence

𝐼
4
= lim sup

𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(

𝑁

∑

𝜅=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗))𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(Γ̂𝑉 (𝑥

𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡))

−Γ𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡))) 𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

Γ̂𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
−𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝑑𝑡

≤ lim sup
𝜀→0

[

[

E



∫

𝜌+𝛿

𝜌

𝑒
]𝑡

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

Γ̂𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
−𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]



2

]

]

1/2

.

(39)

By assumption (H4) and the argument of Lemma 7.14 in [9],
we have the right side of above inequality is equivalent to
0, that is, 𝐼

4
= 0.

Therefore by the condition (ii)

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡 ≤ 0;

(40)

this is

𝑈(𝜌 + 𝛿) ≤ 𝑈 (𝜌) . (41)
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This contradicts the definition of 𝜌. The proof is now
completed.

Example 4. Let 𝑟𝜀(⋅) be aMarkov chain generated by Γ𝜀 given
in (5) with

Γ̃ = (

−2 2 0 0 0

2 −2 0 0 0

0 0 −3 0 3

0 0 1 −1 0

0 0 1 0 −1

),

Γ̂ = (

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

0 1 0 −1 0

1 0 0 0 −1

).

(42)

The generator Γ̃ consists of two irreducible blocks. The sta-
tionary distributions are 𝜇1 = (0.5, 0.5), 𝜇2 = (1/7, 2/7, 4/7),
and

Γ = (

−1 1

6

7
−
6

7

) . (43)

Consider a one-dimensional equation
𝑑𝑥

𝜀

(𝑡) = 𝑓 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑑𝑡 + 𝑔 (𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑤 (𝑡)

(44)

with

𝑓 (𝑥, 𝑠
11
) =

𝑥

8
, 𝑓 (𝑥, 𝑠

12
) =

𝑥

8
,

𝑔 (𝑥, 𝑠
11
) =

𝑥 cos𝑥
8√2

, 𝑔 (𝑥, 𝑠
12
) =

𝑥 sin𝑥
8√2

,

𝑓 (𝑥, 𝑠
21
) = −28 (𝑥 + sin𝑥) ,

𝑓 (𝑥, 𝑠
22
) = 7𝑥 + 14 sin𝑥, 𝑓 (𝑥, 𝑠

23
) = −

7

4
𝑥,

𝑔 (𝑥, 𝑠
21
) =

√7

4
𝑥 sin𝑥,

𝑔 (𝑥, 𝑠
22
) = −

√7

4
𝑥 cos𝑥, 𝑔 (𝑥, 𝑠

23
) =

√7

8
𝑥.

(45)

Then the limit equation is
𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) , (46)

where 𝑟 is the Markov chain generated by Γ and

𝑓 (𝑥, 1) =
𝑥

8
, 𝑓 (𝑥, 2) = −3𝑥,

𝑔 (𝑥, 1) =
𝑥

16
, 𝑔 (𝑥, 2) =

𝑥

4
.

(47)

Let 𝑉(𝑥, 1) = 2𝑥
2

, 𝑉(𝑥, 2) = 𝑥
2; then,

L𝑉 (𝑥, 𝑦, 1) ≤ −
1

2
|𝑥|

2

+

𝑦

2

128
,

L𝑉 (𝑥, 𝑦, 2) ≤ −
36

7
|𝑥|

2

+

𝑦

2

16
,

(48)

Consequently

max
𝑖=1,2

L𝑉 (𝑥, 𝑦, 𝑖) ≤ −
1

2
|𝑥|

2

+
1

16

𝑦

2 (49)

= −
1

4
[max
𝑖=1,2

𝑉 (𝑥, 𝑖)] +
1

16
[min
𝑖=1,2

𝑉 (𝑦, 𝑖)] .

(50)

It is easy to see that we can find a 𝑞 > 1 such that (1/4) −
(𝑞/16) > 0. Therefore, for any 𝜙 ∈ 𝐿

2

F
𝑡

([−𝜏, 0];R𝑛

) satisfying
E[min

𝑖∈S𝜙(𝜃)] ≤ 𝑞E[max
𝑖∈S𝜙(0)] on −𝜏 ≤ 𝜃 ≤ 0, (49) yields

E [max
𝑖∈S

L𝑉 (𝑥, 𝑦, 𝑖)] ≤ − (
1

4
−

𝑞

16
)E [max

𝑖=1,2

𝑉 (𝑥, 𝑖)] . (51)

Hence, byTheorem 1, the solution 𝑥𝜀(𝑡) is mean square stable
when 𝜀 is sufficient small.

4. Stochastic Delay System with Pure Jumps

In this section we discuss the stability of the following
stochastic delay system with pure jumps:

𝑑𝑥
𝜀

(𝑡)

= 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑡

+ ∫
R𝑚

𝑏 (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧) �̃� (𝑑𝑡, 𝑑𝑧) ,

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(52)

where𝑥𝜀(𝑡−) = lim
𝑠↑𝑡
𝑥
𝜀

(𝑠), 𝑏 : R𝑛

×R𝑛

×S×R𝑚

→ R𝑛×𝑚.We
assume that the each column 𝑏(𝑙) of the 𝑛 ×𝑚matrix 𝑏 = [𝑏

𝑖𝑗
]

depends on 𝑧 only through the lth coordinate 𝑧
𝑙
; that is,

𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧) = 𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
) ;

𝑧 = (𝑧
1
, . . . , 𝑧

𝑚
) ∈ R

𝑚

, 𝜅 ∈ S.
(53)

𝑁(𝑡, 𝑧) is a𝑚-dimensional Poisson process, and the compen-
sated Poisson, process is defined by

�̃� (𝑑𝑡, 𝑑𝑧) = (�̃�
1
(𝑑𝑡, 𝑑𝑧

1
) , . . . , �̃�

𝑑
(𝑑𝑡, 𝑑𝑧

𝑚
))

= (𝑁
1
(𝑑𝑡, 𝑑𝑧

1
) − 𝜆

1
(𝑑𝑧

1
) 𝑑𝑡, . . . ,

𝑁
𝑚
(𝑑𝑡, 𝑑𝑧

𝑚
) − 𝜆

𝑚
(𝑑𝑧

𝑚
) 𝑑𝑡) ,

(54)

where {𝑁
𝑗
, 𝑗 = 1, . . . , 𝑚} are independent one-dimensional

Poisson random measures with characteristic measure {𝜆
𝑗
,

𝑗 = 1, . . . , 𝑚} coming from 𝑚 independent one-dimensional
Poisson point processes.

The averaged system of (18) is defined as follows:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ ∫
R𝑚

𝑏 (𝑥 (𝑡−) , 𝑥 ((𝑡 − 𝜏) −) , 𝑟 (𝑡) , 𝑧)

× �̃� (𝑑𝑡, 𝑑𝑧) ,

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(55)
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where 𝑥(𝑡−) = lim
𝑠↑𝑡
𝑥(𝑠), 𝑏 : R𝑛

× R𝑛

× S × R𝑚

→ R𝑛×𝑚.
Similar to the definition of 𝑓, we define

𝑏 (𝑥, 𝑦, 𝑖, 𝑧) =

𝑁
𝑖

∑

𝑗=1

𝜇
𝑖

𝑗
𝑏 (𝑥, 𝑦, 𝑠

𝑖𝑗
, 𝑧) . (56)

For each 𝑠
𝑖𝑗
∈ S𝑖 with 𝑖 ∈ {1, . . . , 𝑙} and 𝑗 ∈ {1, . . . , 𝑁

𝑖
}.

To assure the existence and uniqueness of the solution of
(52), we also give the following standard assumptions.

(H2) For any integer 𝑅, there is a constant ℎ
𝑅
> 0, such

that
𝑓 (𝑥, 𝑦, 𝑖) − 𝑓 (𝑥

1
, 𝑦

1
, 𝑖)


∨

𝑚

∑

𝑘=1

∫
R


𝑏
(𝑘)

(𝑥
2
, 𝑦

2
, 𝜅, 𝑧

𝑘
) − 𝑏

(𝑘)

(𝑥
1
, 𝑦

1
, 𝜅, 𝑧

𝑘
)

𝜆
𝑘
(𝑑𝑧

𝑘
)

≤ ℎ
𝑅
(
𝑥2 − 𝑥

1

 +
𝑦2 − 𝑦

1

)

(57)

for all 𝑖 ∈ S and those 𝑥
1
, 𝑥

2
, 𝑦

1
, 𝑦

2
∈ R𝑛 with |𝑥

1
| ∨ |𝑥

2
| ∨

|𝑦
1
| ∨ |𝑦

2
| ≤ 𝑅.

(H3)There is an ℎ > 0, such that for any 𝑥, 𝑦 ∈ R𝑛, 𝑖 ∈ S,

𝑓 (𝑥, 𝑦, 𝑖)
 ∨

𝑚

∑

𝑘=1

∫
R


𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
)

𝜆
𝑘
(𝑑𝑧

𝑘
)

≤ ℎ (1 + |𝑥| +
𝑦
) , 𝑓 (0, 0, 𝜅) ≡ 0, 𝑏 (0, 0, 𝜅, 𝑧) ≡ 0.

(58)

Given 𝑉 ∈ 𝐶
𝑝

(R𝑛

× S;R
+
), we define the operator L𝑉 by

L𝑉 (𝑥, 𝑦, 𝑖)

= 𝑉
𝑥
(𝑥, 𝑖) 𝑓 (𝑥, 𝑦, 𝑖) +

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝑥, 𝑗)

+ ∫
R

𝑚

∑

𝑘=1

{𝑉 (𝑥 + 𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
) , 𝜅) − 𝑉 (𝑥, 𝑖)

−𝑉
𝑥
(𝑥, 𝑖) 𝑏

(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
)} 𝜆

𝑘
(𝑑𝑧

𝑘
) ,

(59)

where

𝑉
𝑥
(𝑥, 𝑖) = (

𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
𝑚

) . (60)

We need the following lemma, for details see [16].

Lemma 5. Let (H1) and (H2), (H3) hold, as 𝜀 → 0; then,
(𝑥

𝜀

(⋅), 𝑟
𝜀

(⋅)) converges weakly to (𝑥(⋅), 𝑟(⋅)) in 𝐷([0,∞),R𝑛

×

S), where 𝐷([0,∞),R𝑛

× S) is the space of functions defined
on [0,∞) that are right continuous and have left limits taking
values in R𝑛

× S and endowed with the Skorohod topology.

We now state our main result in this section.

Theorem6. Let (H1) and (H2), (H3) hold; there is a function
𝑉(𝑥, 𝑖) ∈ 𝐶

𝑝

(R𝑛

×S;R
+
) satisfying (H4), and there are positive

constants 𝜆, 𝑐
1
, 𝑐
2
, and 𝑞 > 1 such that

(i) 𝑐
1
|𝑥|

𝑝

≤ 𝑉(𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝,
(ii) E[max

𝑖∈SL𝑉(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑖)] ≤ −𝜆E[max
𝑖∈S𝑉(𝑥(𝑡),

𝑖)] provided E[min
𝑖∈S𝑉(𝑥(𝑡 + 𝜃), 𝑖)] < 𝑞E[max

𝑖∈S𝑉(𝑥

(𝑡), 𝑖)], −𝜏 ≤ 𝜃 ≤ 0,

Then, for all 𝜉 ∈ 𝐶([−𝜏, 0];R𝑛

),

lim sup
𝜀→0

E
𝑥

𝜀

(𝑡)

𝑝

≤ ]
4
𝑒
−]
3
𝑡

, (61)

where

]
3
= min{𝜆,

log 𝑞

𝜏
} , 𝑎𝑛𝑑

]
4
𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

]
4
=
𝑐
2

𝑐
1

sup
−𝜏≤𝜃≤0

𝐸
𝜉

𝑝

.

(62)

Proof. As the proof of Theorem 1, define

𝑉 (𝑥, 𝜁) =

𝑙

∑

𝑖=1

𝑉 (𝑥, 𝑖) 𝐼
{𝜁∈S𝑖} = 𝑉 (𝑥, 𝑖) if 𝜁 ∈ S

𝑖

. (63)

We extend 𝑟(𝑡) to [−𝜏, 0] by setting 𝑟(𝑡) = 𝑟(0). Then,
E𝑉(𝑥𝜀(𝑡), 𝑟𝜀(𝑡)) is right continuous on 𝑡 ≥ −𝜏.

Let ] ∈ (0, ]
3
) be arbitrary, and define

𝑈 (𝑡) := 𝑒
]𝑡 lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

= 𝑒
]𝑡 lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) .

(64)

If we can show that 𝑈(𝑡) ≤ 𝑐
1
]
4
, then the proof is completed.

If 𝑡 ∈ [−𝜏, 0], by condition (i), is the same as the proof of
Theorem 1, we have 𝑈(𝑡) ≤ 𝑐

1
]
4
.

In the following we shall prove that 𝑈(𝑡) ≤ 𝑐
1
]
4
if 𝑡 ≥ 0.

Otherwise, there exists the smallest 𝜌 ∈ (0,∞) such that all
𝑡 ∈ [−𝜏, 𝜌), 𝑈(𝑡) ≤ 𝑐

1
]
4
, and𝑈(𝜌) ≥ 𝑐

1
]
4
as well as𝑈(𝜌+𝛿) >

𝑈(𝜌) for all suffieciently small 𝛿.
As the same in the proof of Theorem 1 we can have that

lim
𝜀→0

E𝑉(𝑥𝜀(𝜌), 𝑟𝜀(𝜌)) ̸= 0. Hence for 𝑡 ∈ [𝜌 − 𝜏, 𝜌), there
exists a 𝑞 such that

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

< 𝑞 lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌)) , ] <
log 𝑞

𝜏
.

(65)

Consequently, there exists a sufficiently small 𝜀
0
> 0, such

that for any 𝜀 ∈ (0, 𝜀
0
),

E [min
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌 + 𝜃) , 𝑖)] ≤ 𝑞E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌) , 𝑖) ] ,

𝜃 ∈ [−𝜏, 0] .

(66)

By condition (ii),

E [max
𝑖∈S

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑖)] ≤−𝜆E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝑡) , 𝑖)] ,

(67)
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we then have for ] < ] ≤ 𝜆,

E [L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] ≤ −]E [𝑉 (𝑥
𝜀

(𝑡) , 𝑟 (𝑡))] .

(68)

We now consider

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

[𝑒
](𝜌+𝛿)

E [𝑉 (𝑥
𝜀

(𝜌 + 𝛿) , 𝑟
𝜀

(𝜌 + 𝛿))]

−𝑒
]𝜌
E𝑉 [(𝑥

𝜀

(𝜌) , 𝑟
𝜀

(𝜌))]]

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡.

(69)

By the definition of the operator L similar to that of the proof
of Theorem 1, we have

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+

𝑚

∑

𝑘=1

∫
R

{𝑉 (𝑥
𝜀

(𝑡) + 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
) , 𝑟

𝜀

(𝑡))

− 𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) − 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)}

× 𝜆
𝑘
(𝑑𝑧

𝑘
)

+

𝑁

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

= L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))]

+

𝑚

∑

𝑘=1

∫
R

{𝑉 (𝑥
𝜀

(𝑡) + 𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡−𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
) , 𝑟

𝜀

(𝑡))

− 𝑉(𝑥
𝜀

(𝑡) + b
(𝑘)

× (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡−𝜏)−) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
) ,

𝑟
𝜀

(𝑡) )} 𝜆
𝑘
(𝑑𝑧

𝑘
)

−

𝑚

∑

𝑘=1

∫
R

{𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
))

− 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
)} 𝜆

𝑘
(𝑑𝑧

𝑘
)

+

𝑁

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) −

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) .

(70)

This implies

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× {

𝑚

∑

𝑘=1

∫
R

{𝑉 (𝑥
𝜀

(𝑡)

+ 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
) , 𝑟

𝜀

(𝑡))

− 𝑉(𝑥
𝜀

(𝑡) + 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑙
) , 𝑟

𝜀

(𝑡))} 𝜆
𝑘
(𝑑𝑧

𝑘
) } 𝑑𝑡

− lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× {

𝑚

∑

𝑘=1

∫
R

{𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))
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× (𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡−𝜏)−) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
))

−𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
))}

× 𝜆
𝑘
(𝑑𝑧

𝑘
) } 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(

𝑁

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

−

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗))𝑑𝑡

=: 𝐽
1
+ 𝐽

2
+ 𝐽

3
+ 𝐽

4
+ 𝐽

5
.

(71)

By the definition of 𝑏,

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

− 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

=

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
− 𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] .

(72)

By assumption (H2), we have

𝐽
4
= lim sup

𝜀→0

𝑚

∑

𝑘=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× ∫
R

[𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

− 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −)

, 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)]

× 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡

= lim sup
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× ∫
R

𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
−𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]

× 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡

≤ lim sup
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

[E



∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥

× (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× ∫
R

𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
− 𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]

×𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡



2

]

]

1/2

.

(73)

By the argument of Lemma 7.14 in [9], the right side of the
inequality above is equivalent to 0, that is, 𝐽

4
= 0. Similarly,

by mean-value theorem, we can show that there exists 𝜂(𝑘)(𝑡)
which is between 𝑥𝜀(𝑡)+𝑏(𝑘)(𝑥𝜀(𝑡−), 𝑥𝜀((𝑡−𝜏)−), 𝑟𝜀(𝑡), 𝑧

𝑘
) and

𝑥
𝜀

(𝑡) + 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−), 𝑥
𝜀

((𝑡 − 𝜏)−), 𝑟
𝜀

(𝑡), 𝑧
𝑘
) such that

𝐽
3
= lim

𝜀→0

𝑚

∑

𝑘=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× {∫
R

{𝑉
𝑥
(𝜂 (𝑡))

× [𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡−𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

− 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
] } 𝜆

𝑘
(𝑑𝑧

𝑘
) } 𝑑𝑡

= lim
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× 𝑉
𝑥
(𝜂 (𝑡)) ∫

R

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
− 𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡

≤ lim
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

[E



∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝜂 (𝑡))

× ∫
R

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,
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𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠
𝑖𝑗
}
− 𝜇

𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]

× 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡


2

]
1/2

.

(74)

By the argument of Lemma 7.14 in [9], we have 𝐽
3
= 0. Similar

to the proof of Theorem 1, we can derive 𝐽
2
= 0, 𝐽

5
= 0.

Therefore we arrive at

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡 ≤ 0;

(75)

then,

𝑈(𝜌 + 𝛿) ≤ 𝑈 (𝜌) . (76)

This contradicts the definition of 𝜌. The proof is therefore
completed.

We shall give an example to illustrate our theory:

Example 7. Let 𝑟𝜀(⋅) be a Markov chain generated by

Γ
𝜀

=
1

𝜀
Γ̃ + Γ̂ =

1

𝜀
(

−1 0 1 0

1

2
−1 0

1

2
0 2 −2 0

0
1

2

1

2
−1

); (77)

here we set Γ̂ = 0. The stationary distribution is 𝜇 =

(4/19, 8/19, 3/19, 4/19). Consider a one-dimensional equa-
tion

𝑑𝑥
𝜀

(𝑡) = 𝑓 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑑𝑡

+ ∫

∞

0

𝜎 (𝑟
𝜀

(𝑡) , 𝑧) 𝑥
𝜀

((𝑡 − 𝜏) −) �̃� (𝑑𝑡, 𝑑𝑧)

(78)

with

𝑓 (𝑥, 1) = 2 sin𝑥, 𝑓 (𝑥, 2) = −
19

8
𝑥,

𝑓 (𝑥, 3) = −
19

6
𝑥, 𝑓 (𝑥, 4) = −2 sin𝑥.

(79)

Let

𝛽 (𝑧) =
4

19
𝜎 (1, 𝑧) +

8

19
𝜎 (2, 𝑧) +

3

19
𝜎 (3, 𝑧) +

4

19
𝜎 (4, 𝑧) ,

∫

∞

0

𝛽
2

(𝑧) 𝜆 (𝑑𝑧) < 2.

(80)

Then the limit equation is

𝑑𝑥 (𝑡) = −
3

2
𝑥 (𝑡) 𝑑𝑡 + ∫

∞

0

𝛽 (𝑧) 𝑥 ((𝑡 − 𝜏) −) �̃� (𝑑𝑡, 𝑑𝑧) .

(81)

Let 𝑉(𝑥) = 𝑥
2; then,

L𝑉 (𝑥, 𝑦) ≤ −3|𝑥|
2

+ ∫

∞

0

𝛽
2

(𝑧) 𝜆 (𝑑𝑧)
𝑦

2

. (82)

We can find a 𝑞 > 1 such that 3−2𝑞 > 0.Therefore, for any𝜙 ∈

𝐿
2

F
𝑡

([−𝜏, 0];R𝑛

) satisfying E[min
𝑖∈S𝜙(𝜃)] ≤ 𝑞E[max

𝑖∈S𝜙(0)]

on −𝜏 ≤ 𝜃 ≤ 0, (49) yields

E [max
𝑖∈S

L𝑉 (𝑥, 𝑦, 𝑖)] ≤ − (3 − 2𝑞)E [max
𝑖=1,2

𝑉 (𝑥, 𝑖)] . (83)

Hence, byTheorem 6, the solution𝑥𝜀(𝑡) ismean square stable.
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