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We deal with the asymptotic behaviour, for A — +00, of the counting function Np(1A) of certain positive self-adjoint operators
P with double order (m, u), m, 0 > 0, m# u , defined on a manifold with ends M. The structure of this class of noncompact
manifolds allows to make use of calculi of pseudodifferential operators and Fourier integral operators associated with weighted
symbols globally defined on R". By means of these tools, we improve known results concerning the remainder terms of the Weyl

Formulae for Np(A) and show how their behaviour depends on the ratio 71/u and the dimension of M.

1. Introduction

The aim of this paper is to study the asymptotic behaviour, for
A — +00, of the counting function

@

where A, < A, < --- is the sequence of the eigenvalues,
repeated according to their multiplicities, of a positive order,
self-adjoint, classical, elliptic SG-pseudodifferential operator
P on a manifold with ends. Explicitly, SG-pseudodifferential
operators P = p(x, D) = Op(p) on R” can be defined via the
usual left-quantization

1

Pu(x) = )

je""'fp(x,aa(s)df, ue SR, (2)

starting from symbols p(x,&) € C®(R" x R") with the
property that, for arbitrary multiindices «, 3, there exist
constants C,g > 0 such that the estimates

IDEDEp (x,8)] < Cop®)™ 1 ()t 1A (3)

hold for fixed m, yu € R and all (x,&) € R" x R", where
) =

class denoted by S™#(R"), and the corresponding operators
constitute the class L™#(R") = Op(S™*(R")). In the sequel
we will sometimes write S™ and L™, respectively, fixing
once and for all the dimension of the (noncompact) base
manifold to n.

These classes of operators, introduced on R" by Cordes
[1] and Parenti [2], see also Melrose [3] and Shubin [4], form
a graded algebra, that is, L™" o L™ ¢ L™"™F*¥ The remainder
elements are operators with symbols in S ®(R") =
Nompwere S™(R™) = §(R*"); that is, those having kernel
in S(R*), continuously mapping &'(R") to &(R"). An
operator P = Op(p) € L™ and its symbol p € S™ are called
SG-elliptic if there exists R > 0 such that p(x, &) is invertible
for x| + |&] = Rand

\J1+[y|?, y € R". Symbols of this type belong to the

P& =0(E) ™). (4)

In such case we will usually write P € EL™¥. Operators
in L™ act continuously from §(R") to itself and extend
as continuous operators from §'(R") to itself and from



H*(R") to H™™#(R"), where H*°(R"), 5,0 € R, denotes
the weighted Sobolev space

H* (R") = {u e 8" (R") : ull, = |Op (m0) ul 2 < oo},
Ty (%) = (€)°(x)°.
5)

Continuous inclusions H*? (R") «— H"f(R") hold when
s > rand 0 > p, compact when both inequalities are strict,
and

S®Y= () H R,

(s,0)€R?

s'(R) = | H*(R").

(s,0)€R?
(6)

An elliptic SG-operator P € L™ admits a parametrix E €
L™™7# such that

PE=1+K,, EP=1+K,, 7)

for suitable K;,K, € L™ = Op(§ ™), and it
turns out to be a Fredholm operator. In 1987, Schrohe [5]
introduced a class of noncompact manifolds, the so-called
SG-manifolds, on which it is possible to transfer from R”
the whole SG-calculus. In short, these are manifolds which
admit a finite atlas whose changes of coordinates behave like
symbols of order (0,1) (see [5] for details and additional
technical hypotheses). The manifolds with cylindrical ends
are a special case of SG-manifolds, on which also the
concept of SG-classical operator makes sense; moreover,
the principal symbol of an SG-classical operator P on a
manifold with cylindrical ends M, in this case a triple o(P) =
(O'W(P),O'E(P),OWe(P)) = (pu,, pe,pw), has an invariant
meaning on M, see Egorov and Schulze [6], Maniccia and
Panarese [7], Melrose [3], and Section 2. We indicate the
subspaces of classical symbols and operators adding the
subscript  to the notation introduced above.

The literature concerning the study of the eigenvalue
asymptotics of elliptic operators is vast and covers a number
of different situations and operator classes, see, for example,
the monograph by Ivrii [8]. Then, we only mention a few
of the many existing papers and books on this deeply
investigated subject, which are related to the case we consider
here, either by the type of symbols and underlying spaces,
or by the techniques which are used. We refer the reader to
the corresponding reference lists for more complete infor-
mations. On compact manifolds, well-known results were
proved by Hormander [9] and Guillemin [10], see also the
book by Kumano-go [11]. On the other hand, for operators
globally defined on R”, see Boggiatto et al. [12], Helffer [13],
Hormander [14], Mohammed [15], Nicola [16], and Shubin
[4]. Many other situations have been considered, see the cited
book by Ivrii. On manifolds with ends, Christiansen and
Zworski [17] studied the Laplace-Beltrami operator associ-
ated with a scattering metric, while Maniccia and Panarese
[7] applied the heat kernel method to study operators similar
to those considered here.

Here we deal with the case of manifolds with ends
for P € EL’S’“(M), positive and self-adjoint, such that
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m,u > 0, m#u, focusing on the (invariant) meaning of
the constants appearing in the corresponding Weyl formulae
and on achieving a better estimate of the remainder term.
Note that the situation we consider here is different from
that of the Laplace-Beltrami operator investigated in [17],
where continuous spectrum is present as well. In fact, in view
of Theorem 14, spec(P) consists only of a sequence of real
isolated eigenvalues {A ;} with finite multiplicity.

As recalled above, a first result concerning the asymptotic
behaviour of N(A) for operators including those considered
in this paper was proved by Maniccia and Panarese in [7],
giving, for A — +o0,

C ™ 4 0(/\”/'”) for m < y,

1yn/m n/m _
Np(A) = CyA log}t+o(/\ logA) for m =y, )

CA" 1o (/\”/“) for m > p.

Note that the constants C;, C,, C(l) above depend only on
the principal symbol of P, which implies that they have an
invariant meaning on the manifold M, see Sections 2 and
3. On the other hand, in view of the technique used there,
the remainder terms appeared in the form o(A" ™minimu))
and o(A"™logA) for m#u and m = p, respectively. An
improvement in this direction for operators on R" had been
achieved by Nicola [16], who, in the case m = y, proved that

Np(A) = CeA""log A + O (A""™), A — +c0,  (9)

while, for m # p, showed that the remainder term has the form
O mintmu=¢) for a suitable & > 0. A further improvement
of these results in the case m = y has recently appeared in
Battisti and Coriasco [18], where it has been shown that, for a
suitable € > 0,

NP (A) = C(I)A”/m IOgA, + CéAn/m +0 (A(n/m)fs) ,
(10)
A — +00.

Even the constant C has an invariant meaning on M,
and both Cé and Cg are explicitly computed in terms of trace
operators defined on L'}™(M).

In this paper the remainder estimates in the case m # y are
further improved. More precisely, we first consider the power
Q = pY/maxmul of p (see Maniccia et al. [19] for the properties
of powers of SG-classical operators). Then, by studying the
asymptotic behaviour in A of the trace of the operator ¥/, (-Q),
v, (t) = w(t)eitﬂ, y € C°(R), defined via a Spectral Theorem
and approximated in terms of Fourier Integral Operators, we
prove the following.

Theorem 1. Let M be a manifold with ends of dimension n and
let P € EL"*(M) be a positive self-adjoint operator such that
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m,u > 0, m# p, with domain H™ (M) < L*(M). Then, the
following Weyl formulae hold for A — +oo0:

CA™ 0 (AMH) + 0 (Alnm=00)

=C,A"m 10 ()\("/m)%l) for m< p,
Np(A) = 1
A+ 0 (A"m) + O (A®-1/m)

=CA"H 4+ 0 (A("/“)_EZ) for m>p,
(11)

where ¢, = min{l/py,n((1/m) — (1/u))} and &, = min{l/
m,n((1/p) — (1/m))}.

The order of the remainder is then determined by the ratio
of m and y and the dimension of M, since

1 1
2——£2, f0rm<y(=>l<ﬁ£1+—,
m U U m n
(12)
n 1 n m 1
— —<—, form>pye=>1<—<1+-.
123 m m u n
In particular, when max{m, y}/ min{m,u} > 2, the

remainder is always O\ maxtmuty

Examples include operators of Schrodinger type on M,
thatis, P = —A gt V, A g the Laplace-Beltrami operator in
M associated with a suitable metric g, V' a smooth potential
that, in the local coordinates x € Uy, € R" on the cylindrical
end growths as (x)”, with an appropriate 4 > 0 related to
g. Such examples will be discussed in detail, together with
the sharpness of the results in Theorem 1, in the forthcoming
paper [20], see also [21].

The key point in the proof of Theorem 1 is the study of the
asymptotic behaviour for A — +00 of integrals of the form

1) = [ DDy (1) a 6 ) dedidx, (1)

where a and ¢ satisfy certain growth conditions in x and &
(see Section 3 for more details). The integrals I(A) represent
in fact the local expressions of the trace of {,(-Q), obtained
through the so-called “geometric optic method,” specialised
to the SG situation, see, for example, Coriasco [22, 23],
Coriasco and Rodino [24]. To treat the integrals I(A) we
proceed similarly to Grigis and Sjostrand [25], Helffer and
Robert [26], see also Tamura [27].

The paper is organised as follows. Section 2 is devoted to
recall the definition of SG-classical operators on a manifold
with ends M. In Section 3 we show that the asymptotic
behaviour of Np(A), A — +o00, for a positive self-adjoint
operator P € L¥(M), m,uu > 0, is related to the asymp-
totic behaviour of oscillatory integrals of the form I(A). In
Section 4 we conclude the proof of Theorem 1, investigating
the behaviour of I(A) for A — +o0. Finally, some technical
details are collected in the Appendix.

2. SG-Classical Operators on
Manifolds with Ends

From now on, we will be concerned with the subclass of SG-
operators given by those elements P € L™*(R"), (m,u) €
R?, which are SG-classical, that is, P = Op(p) with p ¢
STH(R™) ¢ S™#(R"). We begin recalling the basic definitions
and results (see, e.g., [6,19] for additional details and proofs).

Definition 2. (i) A symbol p(x,&) belongs to the class
SZT(”;)(IR") if there exist p,, ; (x,&) € %?_i(R"), i=0,1,...
positively homogeneous functions of order m — i with respect
to the variable &, smooth with respect to the variable x, such

that, for a 0-excision function w,

N-1
P& = Y @(©) Py, (x,8) € STH(R"),
i=0 (14)

N=12,....

(ii) A symbol p(x,&) belongs to the class S:(i )(R") if there
exist p, . (x,§) € FER", k= 0,..., positively
homogeneous functions of order y — k with respect to the
variable x, smooth with respect to the variable &, such that,
for a 0-excision function w,

N-1

P = Y w(x) p, (%8 e N (R,
k=0 (15)

N=12,....

Definition 3. A symbol p(x,&) is SG-classical, and we write
p e S () = S = S i
(i) there exist pm,]-,_(x, & e %?‘7’([@’) such that for a 0-

excision function w, w(§)p,,_ j,,(x, & e SZ’I‘(‘JCJ;“(Rn) and

N-1
PE) =Y wE) p,j, (x,E) e "H(R"),
] (16)

N=12,..;

(ii) there exist p., (x, &) € %g_k(lR”) such that for a 0-

excision function w, w(x) Ppic (5 & e s;’l’(’g)‘k(Rn) and

N-1

PE - Yw@p, eSS NRY), N=12....
k=0
(17)

We set L™

ny _ pmp _ mou
cl(x,z)(R )=Ly" =0p(Sy™).

Remark 4. The definition could be extended in a natural way
from operators acting between scalars to operators acting
between (distributional sections of) vector bundles. One
should then use matrix-valued symbols whose entries satisfy
the estimates (3).

Note that the definition of SG-classical symbol implies
a condition of compatibility for the terms of the expansions



o

with respect to x and . In fact, defining o, “and o""on Sace)

and S:(ﬁ > Tespectively, as

0$_j(p)(x,5):pm_j,.(xf)s j:O’l""’

, (18)
ot (p) (%, 8) = p i (6,E), i=0,1,....
It is possibile to prove that
Py = 0y 7 (p) = 0y (027 ()
=t (o) (p)), j=01,...,i=0,1,....
(19)

Moreover, the composition of two SG-classical operators
is still classical. For P = Op(p) € LVC"I’“ the triple o(P) =
(GW(P)’GE(P)’Uwe(P)) = (pm,-’ p‘,y’ pm,y) = (Pu/’pe’py/e) iS
called the principal symbol of P. The three components are
also called the y-, e- and ye-principal symbol, respectively.
This definition keeps the usual multiplicative behaviour, that
is, for any R € ch’lp, S e LY, (r,p)(so) € R?, o(RS) =
0(8)a(T), with component-wise product in the right-hand
side. We also set

Sym, (P) (x,&) = Sym, (p) (x.£)
= Pm (-x> E)
=w (E) py/ (x’ 5)

+ (x) (P, (%,) = w (&) py, (x,8))

for a fixed 0-excision function w. Theorem 5 allows to express
the ellipticity of SG-classical operators in terms of their
principal symbol.

(20)

Theorem 5. An operator P € L is elliptic if and only if
each element of the triple o(P) is nonvanishing on its domain
of definition.

As a consequence, denoting by {A;} the sequence of
eigenvalues of P, ordered such that j < k = A; < A,
with each eigenvalue repeated accordingly to its multiplicity,
the counting function Np(A) = Y’ A< Lis well defined for a
SG-classical elliptic self-adjoint operator P see, for example,
[16, 18, 20, 21]. We now introduce the class of noncompact
manifolds with which we will deal.

Definition 6. A manifold with a cylindrical end is a triple
(M, X, [f]), where M = ][ is a n-dimensional smooth
manifold and

(i) A is a smooth manifold, given by # = (M, \ D) U
C with a n-dimensional smooth compact manifold

without boundary M,, D a closed disc of M,, and
C ¢ D a collar neighbourhood of dD in M;

(ii) & is a smooth manifold with boundary 0¢ = X, with
X diffeomorphic to 0D;

(i) f: [6f,oo)><§”_1 - G, 8f > 0, is a diffeomorphism,

F{d} % S$"') = X and FUl84,85 + &p)} x s" ),
& > 0, is diffeomorphic to C;
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(iv) the symbol [ ] means that we are gluing .# and %,
through the identification of C and f({[6 Iz ) e f)} X

Sn—l ))
(v) the symbol [ f] represents an equivalence class in the
set of functions

{g : [8g,oo) xS"! — @ : g is a diffeomorphism,
g({c?g} X §"_1) = X and g([(Sg,Sg + sg) X S”_l), (21)
g, > 0, is diffeomorphic to C} ,

where f ~ g if and only if there exists a diffeomorphism ® €
Diff(S"™!) such that

(6" 1)y =(p0w), (22)
forall p > max{§;,8,} and y € s" .

We use the following notation:
i) Uaf ={xeR":|x| > 8¢k
(ii) €, = f([7, 00)xS" 1), where 1 > (Sf. The equivalence
condition (22) implies that €, is well defined;
(iii) 7 : R"\ {0} — (0,00) x S™!
(Il x/1x1);

(iv) fp = fom: U_(;f — @ is a parametrisation of the end.

cx o a(x) =

Let us notice that, setting F = g_'o f,, the equivalence
condition (22) implies

F(x) = |x] @(i). (23)

|x|

We also denote the restriction of f, mapping U5f onto
€ =%\Xbyf,

The couple (&, f.") is called the exit chart. If o =
{(Q;, 1//,-)}?:’1 is such that the subset {(Q;, y/i)}f:l is a finite atlas
for M and (Q, vy) = (@, f;l), then M, with the atlas <,
is a SG-manifold (see [4]). An atlas &/ of such kind is called
admissible. From now on, we restrict the choice of atlases on
M to the class of admissible ones. We introduce the following
spaces, endowed with their natural topologies,

S (Us) = <|u € C* (Us) : Vo, p € N"

v8' > 8 sup |x°‘a‘8u (x)' < oo} ,

x€Uy

So(Us) = (] fue SR :suppucUs}, (24)
8'\6

S (M) = {u €C®(M):uof, € eS’(Uaf)
for any exit map fﬂ} ,

S’ (M) denotes the dual space of & (M) .
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Definition 7. The set S™ (Us,) consists of all the symbols
a € COO(Uaf) which fulfill (3) for (x,&) € Usf x R" only.
Moreover, the symbol a belongs to the subset SG*(Us ) if

it admits expansions in asymptotic sums of homogeneous
symbols with respect to x and & as in Definitions 2 and 3,
where the remainders are now given by SG-symbols of the
required order on Us, -

Note that, since Us is conical, the definition of homoge-
neous and classical symbol on Us, makes sense. Moreover, the

elements of the asymptotic expansions of the classical sym-
bols can be extended by homogeneity to smooth functions
on R"\ {0}, which will be denoted by the same symbols. It is

a fact that, given an admissible atlas {(();, ‘l/i)}f\_—]1 on M, there
exists a partition of unity {0;} and a set of smooth functions
{x;} which are compatible with the SG-structure of M, that is,

(i) supp 6; c Q;,supp x; € Q;, x;0;, =0;,i=1,...,N;

(ii) [0%(By © ) ()| < Colx) ™ and [0* (yy © fo)(x)] <
C,(x) ™ forall x € Us, -

Moreover, 8y and yy can be chosen so that 8 o f, and
Xn© f, are homogeneous of degree 0 on Uy. We denote by u*
the composition of u : ¥;(Q;) ¢ R" — C with the coordinate
patches y;, and by v, the compositionofv: ; c M — C
withy;',i = 1,..., N.Itis now possible to give the definition
of SG-pseudodifferential operator on M.

Definition 8. Let M be a manifold with a cylindrical end.
A linear operator P SM) — S'(M) is an SG-
pseudodifferential operator of order (m,u) on M, and we
write P € L™ (M), if, for any admissible atlas {(Q;, ;)}",
on M with exit chart (Qy, yy):

(1) foralli=1,...,N —land any 6;, x; € C°(€,), there
exist symbols pi(x, &) € S"(y,(€);)) such that

(6Pou"), ) = [[ €< (k. uy) dyd,
(25)

u e C% (y; ()

(2) forany 0y, x of the type described above, there exists
a symbol pN (x,&) e SG™H (U(;f) such that

(xnPONu"), (x) = ” ei(x_y)'EpN (x, &) u(y)dydx,
(26)

ued, (US,);
(3) Kp, the Schwartz kernel of P, is such that
KpeCO(MxM\AN)[)S((¢x&)\W), (27)
where A is the diagonal of M x M and W = (f,, x

fn)(V) with any conical neighbourhood V' of the
diagonal of Us, x Us,-

The most important local symbol of P is p™. Our
definition of SG-classical operator on M differs slightly from
the one in [7].

Definition 9. Let P € L™#(M). P is an SG-classical operator
on M, and we write P € LZ’M(M), ipr(x, & e S:T’”(U(gf) and
the operator P, restricted to the manifold .Z, is classical in
the usual sense.

The usual homogeneous principal symbol p,, of an SG-
classical operator P € L’g’” (M) is of course well defined as
a smooth function on T*M. In order to give an invariant
definition of the principal symbols homogeneous in x of an
operator P € L’:;’“ (M), the subbundle TyM = {(x,&) €
T*M : x € X,& € T; M} was introduced. The notions of
ellipticity can be extended to operators on M as well.

Definition 10. Let P € L”}*(M) and let us fix an exit map f,,.
We can define local objects p,,,_; , i P. .- as

Prncjii 08 = P, (6,8), 6€S™, EeR"\ {0},

Poui 0:8) = pl, ;(0,8), 0eS™, EeR".
(28)

Definition 11. An operator P € L*(M) is elliptic, and we
write P € EL"}*(M), if the principal part of p¥ € S™# Us,)
satisfies the SG-ellipticity conditions on Us R" and the

operator P, restricted to the manifold ., is elliptic in the
usual sense.

Proposition 12. The properties P € L™ (M) and P €
L"*(M), as well as the notion of SG-ellipticity, do not depend
on the (admissible) atlas on M. Moreover, the local functions p,
and p,,, give rise to invariantly defined elements of C*(Tx M)

and C®(TyM \ 0), respectively.

Then, with any P € Lyg’”(M), it is associated an
invariantly defined principal symbol in three components
0(P) = (Py> Pe> Pye)- Finally, through local symbols given by
ﬂ:;’)o'(x’ g) = <£>57 ] = 1) ce ’N - 1) and ni?]a'(x’ E) = <£>S<x>0)
s,0 € R, we get a SG-elliptic operator IT,, € L}/(M) and
introduce the (invariantly defined) weighted Sobolev spaces
H° (M) as

H* (M) = {u es (M): Hu el’ (M)} . (29)

The properties of the spaces H* (R") extend to H*? (M)
without any change, as well as the continuity of the linear
mappings P : H*"(M) — H ™% #(M) induced by P €
L"™*(M), mentioned in Section 1.



3. Spectral Asymptotics for
SG-Classical Elliptic Self-Adjoint
Operators on Manifolds with Ends

In this section we illustrate the procedure to prove Theorem 1,
similar to [13, 25, 27]. The result will follow from the Trace
formula (39), (41), the asymptotic behaviour (42), and the
Tauberian Theorem 19. The remaining technical points, in
particular the proof of the asymptotic behaviour of the
integrals appearing in (41), are described in Section 4 and in
the Appendix.

Let the operator P € EL'S’” (M) be considered as an
unbounded operator P : (M) C H(M) = I*(M) —
L*(M). The following proposition can be proved by reducing
to the local situation and using continuity and ellipticity of
P, its parametrix, and the density of (M) in the H* (M)
spaces.

Proposition 13. Every P ¢ EL'Z;’”(M), considered as an
unbounded operator P : (M) C LX(M) — L*(M), admits
a unique closed extension, still denoted by P, whose domain is
D(P) = H™(M).

From now on, when we write P € ELr:;’”(M ) we always
mean its unique closed extension, defined in Proposition 13.
As standard, we denote by g(P) the resolvent set of P, that is,
the setof all A € C such that AT — P maps H""*(M) bijectively
onto L*(M). The spectrum of P is then spec(P) = C \ o(P).
The next theorem was proved in [7].

Theorem 14 (Spectral theorem). Let P € ELZ’”(M ) be
regarded as a closed unbounded operator on L*(M) with dense

domain H™"(M). Assume also that m, y > 0 and P* = P.
Then

G) M -P)lisa compact operator on L*(M) for every
A € o(P). More precisely, (Al — P)™" is an extension by
continuity from 8(M) or a restriction from S'(M) of
an operator in EL:lm’_” (M).

(ii) spec (P) consists of a sequence of real isolated eigenval-
ues {A;} with finite multiplicity, clustering at infinity;
the orthonormal system of eigenfunctions {e;};5, is
complete in L*(M) = H**(M). Moreover, ej € S(M)
for all j.

Given a positive self-adjoint operator P € EL"*(M),
m,u > 0, u#m, we can assume, without loss of generality
(considering, if necessary, P + ¢ in place of P, withc € R a
suitably large constant), 1 < A, < A, .... Define the counting
function Np(1), A € R, as

Np(A) = Z 1 = # (spec (P) N (—00,A]). (30)
A<A

Clearly, N is nondecreasing, continuous from the right
and supported in [0, +00). If we set Q = PV 1 = max{m, u}
(see [19] for the definition of the powers of P), Q turns
out to be a SG-classical elliptic self-adjoint operator with
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a(Q) = (p;/l,p;/l,pllyg). We denote by {;} the sequence of
eigenvalues of Q, which satisfy n; = A;/ ! We can then, as

above, consider Ny (#). It is a fact that N(17) = O(11"/ l), see
(7].

From now on we focus on the case g > m > 0. The
case m > y > 0 can be treated in a completely similar way,
exchanging the role of x and &. So we can start from a closed
positive self-adjoint operator Q € EL’S’I(M ) with domain
2(Q) = H™ (M), m € (0,1). Foru € H™ (M), t € R,
we set

[ee]
it
U)u= Z;el 1; (u, ej)LZ(M)ej’ (31)
=

and the series converges in the L*(M) norm (cf, e.g., [25]).
Clearly, for all t € R, U(t) is a unitary operator such that

U (0) =1, U+s)=U@)U(s), t,seR. (32)

Moreover, if u € H (M) for some k € N, U(t)u €
CKR,H™(M)) n -~ n CO R, H"™*(M)) and, for u
H™ (M), we have D,U(t)u — QU(t)u = 0, U(0)u = u, which
implies that v(t,x) = U(t)u(x) is a solution of the Cauchy
problem

(D, - Q) v=0, Vo = 1. (33)

Let us fix ¥ € S(R). We can then define the operator

¥(—Q) either by using the formula

3

V(Qu=)y (_’71') (”’ ej)LZ(M)eJ" (34)
1

~
I

or by means of the vector-valued integral (_[ y(®U(t)dt)u =
jt[/(t)U(t)u dt,u € H*(M). Indeed, there exists N, € N
such that Y22, 17;N°
and gives an operator in ZL(L*(M)) with norm bounded by

¥l (- The following lemma, whose proof can be found in
the Appendix, is an analog on M of Proposition 1.10.11in [13].

< 00, so the definition makes sense

Lemma 15. y(-Q) is an operator with kernel K, (x,y) =
2 ¥(=n;)ej(x)e;(y) € S(M x M).

Clearly, we then have
JM K, (x, x)dx = ;‘/7 (=1;)- (35)

By the analysis in [22-24, 28] (see also [29]), the above
Cauchy problem (33) can solve modulo &'(M) by means of
a smooth family of operators V(t), defined for t € (-T,T),
T > 0 suitably small, in the sense that (D, —Q)oV is a family of
smoothing operators and V(0) is the identity on & '(M). More
explicitly, the following theorem holds (see the Appendix for
some details concerning the extension to the manifold M of
the results on R” proved in [22-24, 28]).
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Theorem 16. Define V(t)u = Zszl XA () (Opu), where 0,
and ;. are as in Definition 8, with x.0, = 0, k = 1,...,N,
while the A (t) are SG FIOs which, in the local coordinate open
set Uy = . (Qy) and with v € S(R"), are given by

(A (DY) (x) = j AR (1 X, E)PE)AE (36)

Each A (t) solves a local Cauchy problem (D, —Qy) o Ay €
C®((-T,T), L °(R")), Ax(0) = I, with Q; = Op(qy) and
{qi} < SGPH(R™) local (complete) symbol of Q associated with
{0} {xi), with phase and amplitude functions such that

Orpr (5%, &) — g (%, dogp (5%,8)) =0, @ (03x, &) = xE,

a € C¥((-T,7),8GY° (R")), @ (0x,8) =1

(37)
Then, V (t) satisfies
(D, -Q) oV e C”((-T,T), L™ (M)),

V() =1,
(38)

andU -V € C®°((-T,T), L (M)).

Remark 17. Trivially, for k = 1,...,N - 1, g, and g, can be
considered SG-classical, since, in those cases, they actually
have order —co with respect to x, by the fact that g, (x, &)
vanishes for x outside a compact set.

Remark 18. Notation like b € C®((-T,T),S"?(R")), B ¢
C®((-T,T),L""(M)), and similar, in Theorem 16 and in
the sequel, also mean that the seminorms of the involved
elements in the corresponding spaces (induced, in the men-

tioned cases, by (3)), are uniformly bounded with respect to
te(-T,T).

If we write y, (t) = ty(t)e_it)‘ in place of y(t), for a chosen
v € Cy°((-T, T)), the trace formula (35) becomes

JM K, (x,x)dx= Z % ()L - 11j) . (39)

Let us denote the kernel of U — V by r(t;x,y) €
C®((-T,T), (M x M)). Then, the distribution kernel of
[e™ yw(v) Udt = ,(-Q) is

N .
K‘V/\ (x’ )/) = Z)(k (x) J-J- v (t) e’(’“‘*‘/’k(f;x,f)f}/f)
k=1
x a (t;x,&) dtdéo, (y) (40)
* J ey ) r (tx,y)dt,

where the local coordinates in the right-hand side depend
on k and, to simplify the notation, we have omitted the

corresponding coordinate maps. By the choices of v, 0, and
X We obtain

Y501

Mz

” I () R0

X ay (t;x,&) 0, (x) dtdédx

=
1l
—_

+ ” e”“t// ) r (t; x, x) dtdx

J J J- v (t) ei(’t’“ka(t;x,E)*xE)

x ay (t;x,&) 0y (x) dtd&dx

(41)

M=z

bl
Il

1

+O(IM™).

Lety € C;°((-T,T)), T > 0, be such that y(0) = 1 and
¥ > 0,9(0) > 0 (eg,sety = x * y with a suitable y
C,°((-T, T))). By the analysis of the asymptotic behaviour
of the integrals appearing in (41), described in Section 4, we
finally obtain

o mim-1 n*-1
—dy) +o(A" )

th/ (A - nj) = for A — +o00, (42)
j

O(|AI™®)  for A — —oo0,
with n* = min{n, (n/m) — 1}. The following Tauberian
theorem is a slight modification of Theorem 4.2.5 of [13] (see
the Appendix).

Theorem 19. Assume that
(i) v € C(R) is an even function satisfying y(0) = 1,
>0, y(0) > 0;

(ii) No(A) is a nondecreasing function, supported in
[0, +00), continuous from the right, with polynomial
growth at infinity and isolated discontinuity points of
first kind {n;}, j € N, such thatn; — +00;

(iii) there exists d, > 0 such that
Y7 (A-n) = [ FO-n)dNg ()
j

ﬁd A(n/m)_l O A,n*_l
o + ( ) 43)

for A — +00,

O(IA™®)  for A — —c0,

withm € (0,1), n* = min{n, (n/m) — 1}.
Then
dy

N = 224" +O(X),  for A — +oo.  (49)



Remark 20. The previous statement can be modified as
follows: with v, N and m as in Theorem 19, when

| 7= ang )

ﬁd Am=1 o (ym/m)=2Y L o (yr-1
L, 0 () o)
for A — +o0,

O(JA™®)  for A — —oo,

with m € (0,1), then No(A) = (do/2m)A"™ + OA™/™1) +
O™, for A — +oo.

4, Proof of Theorem 1

In view of Theorem 19 and Remark 20, to complete the proof
of Theorem 1 we need to show that (42) holds. To this aim, as
explained previously, this section will be devoted to studying
the asymptotic behaviour for [A| — +00 of

1) = J SO (1) g (15 %, E) dedEdx,  (46)

where v € CP((-T,T)), y(0) = 1,a e C*((-T,T),
S*Y(R™)), a(0; x,&) = 1, and

O (t;x,85 1) = ¢ (tx,8) — xE — LA,
(47)
¢ € C®((-T,7),85" (R"),

such that

(i) 0,9(t; x,8) = q(x, do(t; x,&)), 9(0; x,§) = x&;

(i) CNE) < (do(t;x,8)) < C(&), for a suitable
constant C > 1;

(iii) g € S5 (R"), 0 < m < 1, SG-elliptic.

Since qil(x, &) € O((x) M E ™) for x| + |&] = R > 0, it is
not restrictive to assume that this estimate holds on the whole
phase space, so that, for a certain constant A > 1,

AT ) (E)" < q(x,8) < Alx) (E)". (48)

Remark 21. The assumption on g~' above amounts, at most,
to modifying g by adding and subtracting a compactly
supported symbol, that is, an element of ™ *°(R"). The
corresponding solutions ¢ and a of the eikonal and transport
equations, respectively, would then change, at most, by an
element of C*°((-T,T),S™ " (R")), see [23, 24, 28]. It is
immediate, by integration by parts with respect to t, that an
integral as (46) is O(|A|"*) fora € C*°((-T, T), S " (R")).
Then, the modified g obviously keeps the same sign every-
where.

For two functions f, g, defined on a common subset X
of R¥ and depending on parameters y € Y C R%, we will
write f < gor f(x,y) < g(x, y) to mean that there exists
a suitable constant ¢ > 0 such that | f(x, y)| < clg(x, y)| for
all (x, y) € X xY. The notation f ~ gor f(x,y) ~ g(x, y)
means that both f < gand g < f hold.
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Remark 22. The ellipticity of q yields, for A < 0,

0@ (x,EN) = q(x,dup (t:x,8)) — A > (x) (E)" + ||
(49)

which, by integration by parts, implies I(1) = O(]A|"*) when
A — —oo0.

From now on any asymptotic estimate is to be meant for
A — +oo.

We will make use of a partition of unity on the phase
space. The supports of its elements will depend on suitably
large positive constants k;,k, > 1. We also assume, as it is
possible, A > A, again with an appropriate 1, > 1. As we
will see below, the values of k;, k,, and A, depend only on g
and its associated seminorms.

Proposition 23. Let H, be any function in C;°(R) such that
supp H, € [(2k,)"",2k,],0 < H, < landH, = 1on[k{', k],
where k, > 1 is a suitably chosen, large positive constant. Then

I =0(™)+ J e@(t;xmw(twl(<x>2<f> ) (50)

x a(t; x, &) dtdédx.
Proof. Write

I = Jei‘b(t;x,f;/\)w(t) [1 H, ( (x) §§> )]

x a(t; x, &) dtdédx

. Jeid)(t;x,f;)t)v/ O H, ( (x) )(f) )

x a(t; x, &) dtdédx,

(51)

and observe that, by A™(x)(§)" < g(x,&) < A{x)(E)",
x,& € R", we find

A [k m
|0,@ (£ x,& A)| > 2t (é - AC> (x) (&)
) (52)
when X&) & <k,
A
-1 -1
|atCD tx, & A)| > (Ai) (x)(f)m + [(Ai) k, - 1] A
when % > k.
(53)

Thus, if k; > 2AC we have [0,D(f; x, & A)| ~ A + (x)(E)™
on the support of 1-H; ({x){&)" /1), and the assertion follows
integrating by parts with respect to ¢ in the first integral of
(51). O

Remark 24. We actually choose k; > 4AC > 2AC, since this
will be needed in the proof of Proposition 28; see also Section
C in the Appendix.
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Let us now pick H, € C;°(R) such that 0 < H,(v) < 1,
H,(v) = 1 for |[v] < k, and H,(v) = 0 for |v| > 2k,, where
k, > 11is a constant which we will choose big enough (see
below). We can then write

M) =0(1") +J e PEE Ny (1) H, ( ) f) )
x H, (|&]) a (t; x, &) dtdédx

+ JeiQ(t;x,f;A)I// (t) Hl ( <X> i5> ) (54)

x [1-H, (|&])] a (t; x, &) dtdédx
=OMV )+ LV +LA).

In what follows, we will systematically use the notation
S = S"P(y,n), y € RN € R to generally denote
functions depending smoothly on y and # and satisfying
SG-type estimates of order r, p in y,#. In a similar fashion,
S;p = C®((-T,T),S""(y,1)) will stand for some function
of the same kind which, additionally, depends smoothly on
t € (-T,T), and, for all s € Z,, D;C*((-T,T),S""(y,n))
satisfies SG-type estimates of order r, p in y, #, uniformly with
respecttot € (=T, T).

To estimate I;(A), we will apply the stationary phase
theorem. We begin by rewriting the integral I; (1), using the
fact that ¢ is solution of the eikonal equation associated with
g and that g is a classical SG-symbol. Note that then d}¢ €
CO((-T,T), 8" "' (R™) € C¥((-T, T), S (R™), since

n
0 (%8 = ) () (6 dup (6. 9)
i=1 (55)
x 0y, (q (%, drop (5x,5)))

In view of the Taylor expansion of ¢ at ¢t = 0, recalling
the property g(x, &) = w(x)q,(x, &) + S™(x,£), w a fixed 0-
excision function, we have, for some 0 < §; < 1,

O (tx,6M) = —At — xE + ¢ (05 x, &) + 10, (05 x, §)
+ g 3¢ (t8,;x,§)
= At +tq(x, &) + ST (x, &)
= M +tw (x) q, (x, &) + 8™ (x, &)
+ 28 (x, §)
= M + tw (x) g, (%, &) + 8™ (x, &)

+ 2w (x) Spr ! (6, 8) + 28777 (x,8),
(56)

where the subscript e denotes the x-homogeneous (exit)
principal parts of the involved symbols, which are all SG-
classical and real-valued, see [28].

Observe that |x| ~ A on the support of the integrand in
I,(A), so that we can, in fact, assume w(x) = 1 there. Indeed,
recalling that, by definition, w € C*(R"), w(v) = 0 for |v| <
B, w(v) = 1 for |v| > 2B, with a fixed constant B > 0, it is
enough to observe that

€] < 1,

which o