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We prove the generalized Hyers-Ulam stability of the wave equation, Δ𝑢 = (1/𝑐2)𝑢
𝑡𝑡
, in a class of twice continuously differentiable

functions under some conditions.

1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the
mathematics club of the University of Wisconsin in which he
discussed a number of important unsolved problems. Among
those was the question concerning the stability of group
homomorphisms.

Let 𝐺
1
be a group and let 𝐺

2
be a metric group with

the metric 𝑑(⋅, ⋅). Given 𝜀 > 0, does there exist a 𝛿 >
0 such that if a function ℎ : 𝐺

1
→ 𝐺

2
satisfies the

inequality 𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺
1
,

then there exists a homomorphism 𝐻 : 𝐺
1
→ 𝐺

2

with 𝑑(ℎ(𝑥),𝐻(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐺
1
?

The case of approximately additive functions was solved
byHyers [2] under the assumption that𝐺

1
and𝐺

2
are Banach

spaces. Indeed, he proved that each solution of the inequality
‖𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝜀, for all 𝑥 and 𝑦, can be
approximated by an exact solution, say an additive function.
In this case, the Cauchy additive functional equation, 𝑓(𝑥 +
𝑦) = 𝑓(𝑥) + 𝑓(𝑦), is said to have the Hyers-Ulam stability.

Rassias [3] attempted to weaken the condition for the
bound of the norm of the Cauchy difference as follows:

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜀 (‖𝑥‖

𝑝
+
𝑦


𝑝

) (1)

and proved the Hyers’ theorem. That is, Rassias proved the
generalizedHyers-Ulam stability (or theHyers-Ulam-Rassias
stability) of the Cauchy additive functional equation. Since
then, the stability of several functional equations has been
extensively investigated [4–10].

The terminologies, the generalized Hyers-Ulam stability
and the Hyers-Ulam stability, can also be applied to the case
of other functional equations, of differential equations, and of
various integral equations.

Given a real number 𝑐 > 0, the partial differential
equation

Δ𝑢 (𝑥, 𝑡) −
1

𝑐2
𝑢
𝑡𝑡
(𝑥, 𝑡) = 0 (2)

is called the wave equation, where 𝑢
𝑡𝑡
(𝑥, 𝑡) and Δ𝑢(𝑥, 𝑡)

denote the second time derivative and the Laplacian of 𝑢(𝑥, 𝑡),
respectively.

For an integer 𝑛 ≥ 2, assume that 𝑈 and 𝑇 are open
(connected) subsets of R𝑛 and R, respectively. Let 𝜑 : 𝑈 ×
𝑇 → [0,∞) be a function. If, for each twice continuously
differentiable function 𝑢 : 𝑈 × 𝑇 → R satisfying


Δ𝑢 (𝑥, 𝑡) −

1

𝑐2
𝑢
𝑡𝑡
(𝑥, 𝑡)


≤ 𝜑 (𝑥, 𝑡) (𝑥 ∈ 𝑈, 𝑡 ∈ 𝑇) , (3)

there exist a solution 𝑢
0
: 𝑈 × 𝑇 → R of the wave equation

(2) and a functionΦ : 𝑈 × 𝑇 → [0,∞) such that

𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)
 ≤ Φ (𝑥, 𝑡) (𝑥 ∈ 𝑈, 𝑡 ∈ 𝑇) , (4)

where Φ(𝑥, 𝑡) is independent of 𝑢(𝑥, 𝑡) and 𝑢
0
(𝑥, 𝑡), then we

say that the wave equation (2) has the generalized Hyers-
Ulam stability (or the Hyers-Ulam-Rassias stability).

In this paper, using ideas from [11, 12], we prove the
generalized Hyers-Ulam stability of the wave equation (2).
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2. Main Results

For a given integer 𝑛 ≥ 2, 𝑥
𝑖
denotes the 𝑖th coordinate of any

point 𝑥 in R𝑛; that is 𝑥 = (𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
), and |𝑥| denotes

the Euclidean distance between 𝑥 and the origin; that is,

|𝑥| = √𝑥
2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛
. (5)

Given a real number 𝑐 > 0, assume that real numbers 𝑎
and 𝑡
2
satisfy 𝑎 > 𝑐 and 0 < 𝑡

2
< ∞, and define

𝑇 := (0, 𝑡
2
) , 𝑈 := {𝑥 ∈ R

𝑛
: |𝑥| > 𝑎𝑡2} ,

𝑅 := (𝑎,∞) .

(6)

We remark that (𝑥, 𝑡) ∈ 𝑈×𝑇 if and only if |𝑥|/𝑡 ∈ 𝑅. Using an
idea from [11], we define a class𝑊 of all twice continuously
differentiable functions 𝑢 : 𝑈 × 𝑇 → R with the properties

(i) 𝑢(𝑥, 𝑡) = 𝑡V(|𝑥|/𝑡) for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇 and for
some V : 𝑅 → R;

(ii) lim
|𝑥|→𝑎𝑡

2

lim
𝑡→ 𝑡
2

𝑢(𝑥, 𝑡) = 0.

If we define

(𝑢
1
+ 𝑢
2
) (𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) ,

(𝜆𝑢
1
) (𝑥, 𝑡) = 𝜆𝑢

1
(𝑥, 𝑡) ,

(7)

for all 𝑢
1
, 𝑢
2
∈ 𝑊 and 𝜆 ∈ R, then𝑊 is a vector space over

real numbers.That is,𝑊 is a large class such that it is a vector
space.

Theorem 1. Let a function 𝜑 : 𝑈 × 𝑇 → [0,∞) be given such
that there exists a positive real number 𝑠 with

𝑠 := sup
𝑥∈𝑈,𝑡∈𝑇

𝑡𝜑 (𝑥, 𝑡) . (8)

If a 𝑢 ∈ 𝑊 satisfies the inequality

Δ𝑢 (𝑥, 𝑡) −

1

𝑐2
𝑢
𝑡𝑡
(𝑥, 𝑡)


≤ 𝜑 (𝑥, 𝑡) , (9)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇, then there exists a solution 𝑢
0
: 𝑈 ×

𝑇 → R of the wave equation (2) which belongs to 𝑊 and
satisfies
𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)



≤ 𝑡 ∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

∫

∞

𝑧

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞 𝑑𝑧,

(10)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.

Proof. Let V : R → R be a function which satisfies

𝑢 (𝑥, 𝑡) = 𝑡V (
|𝑥|

𝑡
) , (11)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇. For any 𝑖 ∈ {1, 2, . . . , 𝑛}, we
differentiate 𝑢(𝑥, 𝑡) with respect to 𝑥

𝑖
to get

𝑢
𝑥
𝑖
(𝑥, 𝑡) =

𝑥
𝑖

|𝑥|
V (

|𝑥|

𝑡
) . (12)

Similarly, we obtain the second partial derivative of 𝑢(𝑥, 𝑡)
with respect to 𝑥

𝑖
as follows:

𝑢
𝑥
𝑖
𝑥
𝑖
(𝑥, 𝑡) = (

1

|𝑥|
−
𝑥
2

𝑖

|𝑥|
3
) V (

|𝑥|

𝑡
) +

1

𝑡

𝑥
2

𝑖

|𝑥|
2
V (

|𝑥|

𝑡
) .

(13)

Hence, we have

Δ𝑢 (𝑥, 𝑡) =

𝑛

∑

𝑖=1

𝑢
𝑥
𝑖
𝑥
𝑖
(𝑥, 𝑡) =

𝑛 − 1

𝑡

𝑡

|𝑥|
V (

|𝑥|

𝑡
) +

1

𝑡
V (

|𝑥|

𝑡
) .

(14)

By a similar way, we further get the second derivative of
𝑢(𝑥, 𝑡) with respect to 𝑡 as follows:

𝑢
𝑡𝑡
(𝑥, 𝑡) =

1

𝑡

|𝑥|
2

𝑡2
V (

|𝑥|

𝑡
) . (15)

Therefore, it follows from (14) and (15) that

Δ𝑢 (𝑥, 𝑡) −
1

𝑐2
𝑢
𝑡𝑡
(𝑥, 𝑡)

=
𝑛 − 1

𝑡

𝑡

|𝑥|
V (

|𝑥|

𝑡
)

+
1

𝑡
V (

|𝑥|

𝑡
) −

1

𝑐2𝑡

|𝑥|
2

𝑡2
V (

|𝑥|

𝑡
)

=
𝑛 − 1

𝑡

1

𝑟
V (𝑟) + (

1

𝑡
−
1

𝑐2𝑡
𝑟
2
) V (𝑟)

=
1

𝑡
(1 −

𝑟
2

𝑐2
)(V (𝑟) +

𝑛 − 1

𝑟

𝑐
2

𝑐2 − 𝑟2
V (𝑟)) ,

(16)

for any 𝑥 ∈ 𝑈, 𝑡 ∈ 𝑇, and 𝑟 := |𝑥|/𝑡 ∈ 𝑅, and it follows from
(8) and (9) that



V (𝑟) +
𝑛 − 1

𝑟

𝑐
2

𝑐2 − 𝑟2
V (𝑟)



≤
𝑐
2

𝑟2 − 𝑐2
𝑡𝜑 (𝑥, 𝑡) ≤

𝑐
2
𝑠

𝑟2 − 𝑐2

(17)

or



𝑤

(𝑟) +

𝑛 − 1

𝑟

𝑐
2

𝑐2 − 𝑟2
𝑤 (𝑟)



≤
𝑐
2
𝑠

𝑟2 − 𝑐2
, (18)

for all 𝑟 ∈ 𝑅, where we set 𝑤(𝑟) := V(𝑟).
Set

𝑔 (𝑟) :=
𝑛 − 1

𝑟

𝑐
2

𝑐2 − 𝑟2
, ℎ (𝑟) := 0,

𝜙 (𝑟) :=
𝑐
2
𝑠

𝑟2 − 𝑐2
,

(19)
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for each 𝑟 ∈ 𝑅. Then we have

∫

𝑟

𝑎

𝑔 (𝑝) 𝑑𝑝 = ln(𝑟
2

𝑎2
⋅
𝑎
2
− 𝑐
2

𝑟2 − 𝑐2
)

(𝑛−1)/2

,

∫

∞

𝑎

𝜙 (𝑟) exp{R(∫
𝑟

𝑎

𝑔 (𝑝) 𝑑𝑝)}𝑑𝑟

= ∫

∞

𝑎

(
𝑟
2

𝑎2
⋅
𝑎
2
− 𝑐
2

𝑟2 − 𝑐2
)

(𝑛−1)/2

𝑐
2
𝑠

𝑟2 − 𝑐2
𝑑𝑟

< ∫

∞

𝑎

𝑐
2
𝑠

𝑟2 − 𝑐2
𝑑𝑟 < ∞.

(20)

According to (18) and [13, Theorem 1], there exists a unique
real number 𝛼 such that



𝑤 (𝑟) − 𝛼(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

≤ (
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

× ∫

∞

𝑟

𝑐
2
𝑠

𝑞2 − 𝑐2
(
𝑞
2

𝑎2
⋅
𝑎
2
− 𝑐
2

𝑞2 − 𝑐2
)

(𝑛−1)/2

𝑑𝑞

≤ (
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

∫

∞

𝑟

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞

(21)

or

(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(𝛼 − ∫

∞

𝑟

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞)

≤ V (𝑟)

≤ (
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(𝛼 + ∫

∞

𝑟

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞) ,

(22)

for all 𝑟 ∈ 𝑅.
Hence, it follows from the last inequalities that

∫

𝑟

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(𝛼 − ∫

∞

𝑧

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞)𝑑𝑧

≤ V (𝑟) − lim
𝑧→𝑎

+

V (𝑧)

≤ ∫

𝑟

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(𝛼 + ∫

∞

𝑧

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞)𝑑𝑧,

(23)

for any 𝑟 ∈ 𝑅.

Due to (ii), it holds that lim
𝑧→𝑎

+V(𝑧) = 0. Replacing 𝑟
with |𝑥|/𝑡 in the last inequalities, we get


𝑢 (𝑥, 𝑡) − 𝛼𝑡 ∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

𝑑𝑧



≤ 𝑡 ∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

∫

∞

𝑧

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞 𝑑𝑧,

(24)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.
If we define a function 𝑢

0
: 𝑈 × 𝑇 → R by

𝑢
0
(𝑥, 𝑡) := 𝛼𝑡 ∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

𝑑𝑧, (25)

then we have

𝜕

𝜕𝑥
𝑖

𝑢
0
(𝑥, 𝑡) =

𝛼𝑥
𝑖

|𝑥|
(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

,

𝜕
2

𝜕𝑥
2

𝑖

𝑢
0
(𝑥, 𝑡) = 𝛼(

1

|𝑥|
−
𝑥
2

𝑖

|𝑥|
3
)(

𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

+
(𝑛 − 1) 𝛼𝑎

2
𝑐
2
𝑥
2

𝑖

(𝑎2 − 𝑐2) 𝑡𝑟3|𝑥|
2
(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−3)/2

,

Δ𝑢
0
(𝑥, 𝑡) =

(𝑛 − 1) 𝛼𝑎
2

(𝑎2 − 𝑐2) |𝑥|
(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−3)/2

,

𝜕

𝜕𝑡
𝑢
0
(𝑥, 𝑡) = 𝛼∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

𝑑𝑧

−
𝛼 |𝑥|

𝑡
(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

,

𝜕
2

𝜕𝑡2
𝑢
0
(𝑥, 𝑡) =

(𝑛 − 1) 𝛼𝑎
2
𝑐
2

(𝑎2 − 𝑐2) |𝑥|
(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−3)/2

,

(26)

for all𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇, which implies that𝑢
0
(𝑥, 𝑡) is a solution

of the wave equation (2).
It is now to show that 𝑢

0
∈ 𝑊. Let 𝐹 : 𝑅 → R be a

function with the property

𝐹 (𝑟) := ∫(
𝑎
2

𝑟2
⋅
𝑟
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

𝑑𝑟. (27)

Then we have

𝑢
0
(𝑥, 𝑡) = 𝛼𝑡 (𝐹(

|𝑥|

𝑡
) − 𝐹 (𝑎)) , (28)

which implies that 𝑢
0
(𝑥, 𝑡) can be expressed as 𝑡V(|𝑥|/𝑡),

where V(𝑟) = 𝛼𝐹(𝑟) − 𝛼𝐹(𝑎). Moreover, we get

lim
|𝑥|→𝑎𝑡2

lim
𝑡→ 𝑡
2

𝑢
0
(𝑥, 𝑡)

= lim
|𝑥|/𝑡→𝑎

+

𝛼𝑡∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

𝑑𝑧 = 0,

(29)
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which verifies that 𝑢
0
∈ 𝑊. Finally, by (24), the inequality (10)

holds true.

Assume now that 𝑏 and 𝑡
1
are given real numbers

satisfying 0 < 𝑏 < 𝑐 and 0 < 𝑡
1
< ∞. We then set

𝑇

:= (𝑡
1
,∞) , 𝑈


:= {𝑥 ∈ R

𝑛
: 0 < |𝑥| < 𝑏𝑡1} ,

𝑅

:= (0, 𝑏)

(30)

and define a class𝑊 of all twice continuously differentiable
functions 𝑢 : 𝑈 × 𝑇 → R with the properties

(iii) 𝑢(𝑥, 𝑡) = 𝑡V(|𝑥|/𝑡) for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇 and for
some V : 𝑅 → R;

(iv) lim
|𝑥|→𝑏𝑡

1

lim
𝑡→ 𝑡
1

𝑢(𝑥, 𝑡) = 0.

It might be remarked that (𝑥, 𝑡) ∈ 𝑈 × 𝑇 if and only if
|𝑥|/𝑡 ∈ 𝑅

. If we define

(𝑢
1
+ 𝑢
2
) (𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) ,

(𝜆𝑢
1
) (𝑥, 𝑡) = 𝜆𝑢

1
(𝑥, 𝑡) ,

(31)

for all 𝑢
1
, 𝑢
2
∈ 𝑊
and 𝜆 ∈ R, then𝑊 is a vector space over

real numbers.

Theorem 2. Let a function 𝜑 : 𝑈 × 𝑇 → [0,∞) be given
such that there exists a positive real number 𝑠 with

𝑠

:= sup
𝑥∈𝑈

,𝑡∈𝑇


𝑡𝜑 (𝑥, 𝑡) . (32)

If a 𝑢 ∈ 𝑊 satisfies the inequality

Δ𝑢 (𝑥, 𝑡) −

1

𝑐2
𝑢
𝑡𝑡
(𝑥, 𝑡)


≤ 𝜑 (𝑥, 𝑡) , (33)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇, then there exists a solution 𝑢
0
:

𝑈

× 𝑇

→ R of the wave equation (2) which belongs to𝑊

and satisfies
𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)



≤ 𝑡 ∫

𝑏

|𝑥|/𝑡

(
𝑏
2

𝑧2
⋅
𝑐
2
− 𝑧
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

∫

𝑧

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞 𝑑𝑧

(34)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.

Proof. If V : R → R is given by (11), then we can simply
follow the lines in the first part of the proof of Theorem 1 to
obtain



𝑤

(𝑟) +

𝑛 − 1

𝑟

𝑐
2

𝑐2 − 𝑟2
𝑤 (𝑟)



≤
𝑐
2
𝑠


𝑐2 − 𝑟2
, (35)

for all 𝑟 ∈ 𝑅, where 𝑤(𝑟) := V(𝑟).
Set

𝑔 (𝑟) :=
𝑛 − 1

𝑟

𝑐
2

𝑐2 − 𝑟2
, ℎ (𝑟) := 0,

𝜙 (𝑟) :=
𝑐
2
𝑠


𝑐2 − 𝑟2
,

(36)

for any 𝑟 ∈ 𝑅. Then we get

∫

𝑏

𝑟

𝑔 (𝑝) 𝑑𝑝 = ln(𝑏
2

𝑟2
⋅
𝑐
2
− 𝑟
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

,

∫

𝑏

0

𝜙 (𝑟) exp{R(∫
𝑟

𝑏

𝑔 (𝑝) 𝑑𝑝)}𝑑𝑟

= ∫

𝑏

0

(
𝑟
2

𝑏2
⋅
𝑐
2
− 𝑏
2

𝑐2 − 𝑟2
)

(𝑛−1)/2

𝑐
2
𝑠


𝑐2 − 𝑟2
𝑑𝑟

< ∫

𝑏

0

𝑐
2
𝑠


𝑐2 − 𝑟2
𝑑𝑟 < ∞.

(37)

According to (35) and [13, Corollary 2], there exists a unique
real number 𝛼 such that



𝑤 (𝑟) − 𝛼(
𝑏
2

𝑟2
⋅
𝑐
2
− 𝑟
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

≤ (
𝑏
2

𝑟2
⋅
𝑐
2
− 𝑟
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

∫

𝑟

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞

(38)

or

(
𝑏
2

𝑟2
⋅
𝑐
2
− 𝑟
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

(𝛼 − ∫

𝑟

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞)

≤ V (𝑟)

≤ (
𝑏
2

𝑟2
⋅
𝑐
2
− 𝑟
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

(𝛼 + ∫

𝑟

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞) ,

(39)

for all 𝑟 ∈ 𝑅.
From the last inequalities, it follows that

∫

𝑏

𝑟

(
𝑏
2

𝑧2
⋅
𝑐
2
− 𝑧
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

(𝛼 − ∫

𝑧

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞)𝑑𝑧

≤ lim
𝑧→𝑏

−

V (𝑧) − V (𝑟)

≤ ∫

𝑏

𝑟

(
𝑏
2

𝑧2
⋅
𝑐
2
− 𝑧
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

(𝛼 + ∫

𝑧

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞)𝑑𝑧,

(40)

for each 𝑟 ∈ 𝑅.
On account of (iv), we have lim

𝑧→𝑏
−V(𝑧) = 0. Replacing

𝑟 with |𝑥|/𝑡 in the last inequalities, we obtain



𝑢 (𝑥, 𝑡) − 𝛼𝑡 ∫

|𝑥|/𝑡

𝑏

(
𝑏
2

𝑧2
⋅
𝑐
2
− 𝑧
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

𝑑𝑧



≤ 𝑡 ∫

𝑏

|𝑥|/𝑡

(
𝑏
2

𝑧2
⋅
𝑐
2
− 𝑧
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

∫

𝑧

0

𝑐
2
𝑠


𝑐2 − 𝑞2
𝑑𝑞 𝑑𝑧,

(41)

for all 𝑥 ∈ 𝑈and 𝑡 ∈ 𝑇.
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Let us define a function 𝑢
0
: 𝑈

× 𝑇

→ R by

𝑢
0
(𝑥, 𝑡) := 𝛼𝑡 ∫

|𝑥|/𝑡

𝑏

(
𝑏
2

𝑧2
⋅
𝑐
2
− 𝑧
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

𝑑𝑧. (42)

Then, a similar argument to the last part of the proof of
Theorem 1 shows that 𝑢

0
(𝑥, 𝑡) is a solution of the wave

equation (2) and it belongs to𝑊. Finally, the validity of (34)
immediately follows from (41).

3. Remarks

Remark 1. The inequality (10) in Theorem 1 can be rewritten
as

𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)


≤ 𝑡 ∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

∫

∞

𝑧

𝑐
2
𝑠

𝑞2 − 𝑐2
𝑑𝑞 𝑑𝑧

≤ 𝑡∫

|𝑥|/𝑡

𝑎

(
𝑎
2

𝑧2
⋅
𝑧
2
− 𝑐
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

𝑐𝑠

2
(ln 𝑎 + 𝑐

𝑎 − 𝑐
) 𝑑𝑧

≤
𝑐𝑠𝑡

2
(

𝑎
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(ln 𝑎 + 𝑐
𝑎 − 𝑐

)

× ∫

|𝑥|/𝑡

𝑎

(1 −
𝑐
2

𝑧2
)

(𝑛−1)/2

𝑑𝑧,

(43)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇. If we further substitute sin 𝜃 for 𝑐/𝑧
in the previous inequality, then we obtain

𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)


≤
𝑐𝑠𝑡

2
(

𝑎
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(ln 𝑎 + 𝑐
𝑎 − 𝑐

)

× ∫

sin−1(𝑐𝑡/|𝑥|)

sin−1(𝑐/𝑎)
cos𝑛−1𝜃 (−𝑐 cos 𝜃

sin2𝜃
) 𝑑𝜃

= −
𝑐
2
𝑠𝑡

2
(

𝑎
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(ln 𝑎 + 𝑐
𝑎 − 𝑐

)

× [−
cos𝑛−1𝜃
sin 𝜃

]

sin−1(𝑐𝑡/|𝑥|)

sin−1(𝑐/𝑎)
+
(𝑛 − 1) 𝑐

2
𝑠𝑡

2

× (
𝑎
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(ln 𝑎 + 𝑐
𝑎 − 𝑐

)

× ∫

sin−1(𝑐𝑡/|𝑥| )

sin−1(𝑐/𝑎)
cos𝑛−2𝜃𝑑𝜃

= −
𝑐
2
𝑠𝑡

2
(

𝑎
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

(ln 𝑎 + 𝑐
𝑎 − 𝑐

)

× [
𝑎

𝑐
(1 − (

𝑐

𝑎
)

2

)

(𝑛−1)/2

−
|𝑥|

𝑐𝑡
(1 − (

𝑐𝑡

|𝑥|
)

2

)

(𝑛−1)/2

]

+
(𝑛 − 1) 𝑐

2
𝑠𝑡

2
(

𝑎
2

𝑎2 − 𝑐2
)

(𝑛−1)/2

× (ln 𝑎 + 𝑐
𝑎 − 𝑐

)∫

sin−1(𝑐𝑡/|𝑥|)

sin−1(𝑐/𝑎)
cos𝑛−2𝜃 𝑑𝜃,

(44)

for any 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.
For the case of 𝑛 = 3, the inequality (10) can be rewritten

as
𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)



≤
𝑐
2
𝑠𝑡

2

𝑎
2

𝑎2 − 𝑐2
(ln 𝑎 + 𝑐

𝑎 − 𝑐
)

× (
𝑐𝑡

|𝑥|
+
|𝑥|

𝑐𝑡
−
𝑐

𝑎
−
𝑎

𝑐
) ,

(45)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.

Remark 2. As in Remark 1, the inequality (34) in Theorem 2
can be rewritten as

𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)


≤
𝑐𝑠

𝑡

2
(

𝑏
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

× (ln 𝑐 + 𝑏
𝑐 − 𝑏

)∫

𝑏

|𝑥|/𝑡

(
𝑐
2

𝑧2
− 1)

(𝑛−1)/2

𝑑𝑧,

(46)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇. If we substitute 𝑐 cos 𝜃 for 𝑧 in the
previous inequality, then we get

𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)


≤ −
𝑐𝑠

𝑡

2
(

𝑏
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

(ln 𝑐 + 𝑏
𝑐 − 𝑏

)

× [

[

1

𝑡

(𝑐
2
𝑡
2
− |𝑥|
2
)
(𝑛−1)/2

|𝑥|
𝑛−2

−

(𝑐
2
− 𝑏
2
)
(𝑛−1)/2

𝑏𝑛−2
]

]

−
(𝑛 − 1) 𝑐

2
𝑠

𝑡

2
(

𝑏
2

𝑐2 − 𝑏2
)

(𝑛−1)/2

× (ln 𝑐 + 𝑏
𝑐 − 𝑏

)∫

cos−1(𝑏/𝑐)

cos−1(|𝑥|/𝑐𝑡)

sin𝑛−2𝜃
cos𝑛−1𝜃

𝑑𝜃,

(47)

for any 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.
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For the case of 𝑛 = 3, the inequality (34) can be rewritten
as
𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)



≤
𝑐
2
𝑠

𝑡

2

𝑏
2

𝑐2 − 𝑏2
(ln 𝑐 + 𝑏

𝑐 − 𝑏
)(

𝑐𝑡

|𝑥|
+
|𝑥|

𝑐𝑡
−
𝑏

𝑐
−
𝑐

𝑏
) ,

(48)

for all 𝑥 ∈ 𝑈 and 𝑡 ∈ 𝑇.

Remark 3. It is an open problem whether the wave equation
(2) has the generalized Hyers-Ulam stability for the case of
either 𝑇 = (0, 𝑡

2
) and 𝑈 = {𝑥 ∈ R𝑛 : 0 < |𝑥| < 𝑎𝑡

2
} or

𝑇 = (𝑡
1
,∞) and 𝑈 = {𝑥 ∈ R𝑛 : |𝑥| > 𝑏𝑡

1
} or 𝑇 = (0,∞) and

𝑈 = {𝑥 ∈ R𝑛 : |𝑥| > 0}.
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