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We investigate the spatial dynamics of a predator-prey system with Allee effect. By using bifurcation analysis, the exact Turing
domain is found in the parameters space. Furthermore, we obtain the amplitude equations and determine the stability of different
patterns. In Turing space, it is found that predator-prey systems with Allee effect have rich dynamics. Our results indicate that
predator mortality plays an important role in the pattern formation of populations. More specifically, as predator mortality rate
increases, coexistence of spotted and stripe patterns, stripe patterns, spotted patterns, and spiral wave emerge successively. The
results enrich the finding in the spatial predator-prey systems well.

1. Introduction

The Allee effect, named after the ecologist Warder Clyde
Allee, has been recognized as an important phenomenon of
positive density dependence in low-density population [1–5].
Allee effect can occur whenever fitness of an individual in a
small or sparse population decreases as the population size or
density also declines [6, 7]. Since the outstanding work of
Allee [1], the Allee effect has been regarded as one of the cen-
tral and highly important issues in the population and com-
munity ecology. And its critical importance has widely been
realized in the conservation biology that Allee effect is most
likely to increase the extinction risk of low-density popula-
tions. As a result, studies on Allee effect have received more
andmore attention frombothmathematicians and ecologists.

Long time series of the density of both prey and predator
is needed, so it is difficult to analyse their dynamics. As a
result, it may provide useful information by constructing
mathematical models to investigate the dynamical behaviors
of predator-prey systems. There have been a large group of
papers on predator-prey systems with Allee effect [8–13].

However, these previous works did not take into account the
effect of space.

There are also some works done on spatial predator-
prey systems with Allee effect [14–16]. Petrovskii et al. found
that the deterministic system with Allee effect can induce
patch invasion [14]. Morozov et al. found that the temporal
population oscillations can exhibit chaotic dynamics even
when the distribution of the species in the space was regular
[15]. Moreover, they found that the chaos accompanied with
patch invasion even though the environments were het-
erogeneous [16]. However, their results were obtained by
choosing particular initial conditions. Then, it is natural to
ask what kind of patterns can be obtained in predator-prey
systems with Allee effect by using other initial conditions. To
understand that mechanism well, we will investigate a
predator-prey system with Allee effect.

Because of the insightful work of many scientists over
recent years, we can make research on pattern selection by
using the standard multiple scale analysis [17, 18], in which
the control parameters and the derivatives are expanded in
terms of a small enough parameter. In the neighborhood of
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the bifurcation points (Hopf and Turing bifurcation points),
the critical amplitudes follow the normal forms, and thus
their general forms can be obtained from the methods of
symmetry-breaking bifurcations.

The paper is organized as follows. In Section 2, we present
a predator-prey system with Allee effect and give Turing
region in parameters space. In Section 3, by using multiple
scale analysis, we obtain amplitude equations. In Section 4,
we show the spatial patterns by a series of numerical simu-
lations. Finally, conclusions and discussions are presented in
Section 5.

2. A Predator-Prey System with Allee Effect

We consider the following model of two-dimensional spa-
tiotemporal system [14–16, 19]:

𝜕𝐻

𝜕𝑇
= 𝐹 (𝐻) − 𝑓 (𝐻, 𝑃) + 𝐷

1
Δ𝐻, (1a)

𝜕𝑃

𝜕𝑇
= 𝜅𝑓 (𝐻, 𝑃) − 𝐷 (𝑃) + 𝐷

2
Δ𝑃, (1b)

where 𝐻 = 𝐻(𝑋, 𝑌, 𝑇) and 𝑃 = 𝑃(𝑋, 𝑌, 𝑇) are densities of
prey and predator, respectively, at time𝑇 and position (𝑋, 𝑌).
The function 𝐹(𝐻) represents the intrinsic prey growth,
𝑓(𝐻, 𝑃) = 𝑓(𝐻)𝑃 represents predation term, 𝜅 is the food
utilization coefficient, 𝐷

1
and 𝐷

2
are diffusion coefficients,

and𝐷(𝑃) describes predator mortality.
It is assumed that the predation term is a bilinear form

of prey and predator density and predator mortality is a
nonlinear function of predator density. As a result, we choose
𝑓(𝐻, 𝑃) = 𝐻𝑃 and𝐷(𝑃) = 𝑀𝑃2 [20].

When the prey population obeys Allee dynamics, its
growth rate can be parameterized as follows [14, 15, 21]:

𝐹 (𝐻) =
4𝜔

(𝐾 − 𝐻
0
)
2
𝐻(𝐻 −𝐻

0
) (𝐾 − 𝐻) , (2)

where 𝐾 is the prey-carrying capacity, 𝜔 is the maximum
per capita growth rate, and 𝐻

0
quantifies the intensity of the

Allee effect. If 0 < 𝐻
0
< 𝐾, 𝐹(𝐻) is a strong Allee effect; if

−𝐾 < 𝐻
0
< 0, 𝐹(𝐻) is a weak Allee effect; if 𝐻

0
≤ −𝐾, the

Allee effect is absent.
In order to minimize the number of parameters involved

in the model system, it is extremely useful to write the
system in a nondimensionalized form. Although there is no
unique method of doing this, it is often a good idea to relate
the variables to some key relevant parameters. Introducing
dimensionless variables

𝑢 =
𝐻

𝐾
, V =

𝑃

𝜅𝐾
, 𝑡 = 𝑎𝑇,

𝑋 = 𝑋√
𝑎

𝐷
1

, 𝑌 = 𝑌√
𝑎

𝐷
1

,

(3)

we obtain the following equations:

𝜕𝑢

𝜕𝑡
= 𝛾𝑢 (𝑢 − 𝛽) (1 − 𝑢) − 𝑢V + Δ𝑢, (4a)

𝜕V

𝜕𝑡
= 𝑢V − 𝛿V

2
+ 𝜀ΔV, (4b)

where

𝛽 =
𝐻

0

𝐾
, 𝛾 =

4𝜔𝐾

𝐴𝜅(𝐾 − 𝐻
0
)
2
,

𝛿 =
𝑀

𝑎
, 𝜀 =

𝐷
2

𝐷
1

.

(5)

First of all, we need to investigate the dynamics of nonspatial
model of systems (4a) and (4b)

𝑑𝑢

𝑑𝑡
= 𝛾𝑢 (𝑢 − 𝛽) (1 − 𝑢) − 𝑢V, (6a)

𝑑V

𝑑𝑡
= 𝑢V − 𝛿V

2
. (6b)

Systems (6a) and (6b) have three boundary equilibrium
named 𝐸

0
= (0, 0), 𝐸

1
= (1, 0), and 𝐸

2
= (𝛽, 0) and two

interior equilibriums named 𝐸
3
and 𝐸

4
, where

𝐸
3
= (

𝛾𝛿 + 𝛾𝛽𝛿 − 1 + √𝑄

2𝛾𝛿
,
𝛾𝛿 + 𝛾𝛽𝛿 − 1 + √𝑄

2𝛾𝛿2
) , (7a)

𝐸
4
= (

𝛾𝛿 + 𝛾𝛽𝛿 − 1 − √𝑄

2𝛾𝛿
,
𝛾𝛿 + 𝛾𝛽𝛿 − 1 − √𝑄

2𝛾𝛿2
) , (7b)

where 𝑄 = (𝛾𝛿)2 − 2(𝛾𝛿)2𝛽 − 2𝛾𝛽𝛿 + 1.
Froma biological point of view,we are concernedwith the

dynamics of 𝐸
3
and 𝐸

4
. The Jacobian matrix corresponding

to the equilibrium point is that

𝐽 = (
𝑎
11
𝑎
12

𝑎
21
𝑎
22

) , (8)

where

𝑎
11
= 2𝛾𝑢

∗
− 𝛾𝛽 − 3𝛾(𝑢

∗
)
2

+ 2𝛾𝛽𝑢
∗
,

𝑎
12
= −𝑢

∗
,

𝑎
21
= V

∗
− 𝛿,

𝑎
22
= 𝑢

∗
.

(9)

Diffusion-driven instability requires the stable, homoge-
neous steady state is driven unstable by the interaction of the
dynamics and diffusion of the species; and therefore

𝑎
11
+ 𝑎

22
< 0,

𝑎
11
𝑎
22
− 𝑎

12
𝑎
21
> 0.

(10)
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It is found from direct calculations that 𝐸
3
is unstable and

𝐸
4
is stable. Denote 𝐸

4
= (𝑢

∗
, V∗).

Following the standard linear analysis of the reaction-
diffusion equation [22], we consider a perturbation near the
steady state:

𝑢 ( ⃗𝑟, 𝑡) = 𝑢
∗
+ 𝑢 (𝑟, 𝑡) ,

V ( ⃗𝑟, 𝑡) = V
∗
+ V (𝑟, 𝑡) ,

(11)

where 𝑢(𝑟, 𝑡) ≪ 𝑢
∗, V(𝑟, 𝑡) ≪ V∗, and 𝑟 = (𝑋, 𝑌). Assume

that

(
𝑢 (𝑟, 𝑡)

V (𝑟, 𝑡)
) = (

𝛼
1

𝛼
2

) 𝑒
𝜆𝑡
𝑒
𝑖(𝜅𝑋𝑋+𝜅𝑌𝑌), (12)

where 𝜆 is the growth rate of perturbation in time 𝑡, 𝛼
1
and

𝛼
2
represent the amplitudes, and 𝜅

𝑋
and 𝜅

𝑌
are the wave

number of the solutions.
The characteristic equation of the systems (4a) and (4b)

is

(𝐴 − 𝜆𝐼) (
𝑢

V
) = 0, (13)

where

𝐴 = (

𝑎
11
− (𝜅

2

𝑋
+ 𝜅

2

𝑌
) 𝑎

12

𝑎
21

𝑎
22
− 𝜀 (𝜅

2

𝑋
+ 𝜅

2

𝑌
)

) . (14)

As a result, we have characteristic polynomial:

𝜆
2
− 𝑡𝑟

𝜅
𝜆 + Δ

𝜅
= 0, (15)

𝑡𝑟
𝜅
= 𝑎

11
+ 𝑎

22
− 𝜅

2
(1 + 𝜀)

Δ

= 𝑡𝑟
𝐽
− 𝜅

2
(1 + 𝜀) ,

Δ
𝜅
= 𝑎

11
𝑎
22
− 𝑎

12
𝑎
21
− 𝜅

2
(𝑎

11
𝜀 + 𝑎

22
) + 𝜅

4
𝜀

Δ

= Δ
𝐽
− 𝜅

2
(𝑎

11
𝜀 + 𝑎

22
) + 𝜅

4
𝜀,

(16)

where 𝜅2 = 𝜅2
𝑋
+ 𝜅

2

𝑌
.

The roots of (15) can be obtained by the following form:

𝜆
𝜅
=
1

2
(𝑡𝑟

𝜅
± √𝑡𝑟2

𝜅
− 4Δ

𝜅
) . (17)

When Im(𝜆
𝜅
) ̸= 0 and Re(𝜆

𝜅
) = 0, Hopf bifurcation

will emerge. Then, we have that the critical value of Hopf
bifurcation parameter-𝛿 equals

𝛿
𝐻
=

𝛾 (𝛾 + 𝛽 − 1)

𝛾2𝛽2 + 𝛾2 − 2𝛾2𝛽 − 1
. (18)

When 𝜅2 = (𝜅
𝑇
)
2
= √Δ 𝐽

/𝜀 and Im(𝜆
𝜅
) = 0, Re(𝜆

𝜅
) = 0,

Turing bifurcation will occur. Denote 𝛿
𝑇
as the critical value

of 𝛿 as Turing instability occurs. Since the expression is
complicated, we omit it here.

In Figure 1, we show the two critical lines in the parameter
space spanned by 𝛽 and 𝛿. The equilibria that can be found
in the region, marked by 𝑇 (Turing space), are stable with

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
𝛽

Turing line
Hopf line

𝛿

T

Figure 1: Bifurcation diagram for the systems (4a) and (4b). The
green one is theHopf bifurcation critical line and the red one, Turing
bifurcation critical line. The figure shows the Turing space which is
marked by 𝑇. Parameters values: 𝛾 = 1.5 and 𝜀 = 0.15.

respect to the homogeneous perturbations, but they lose
their stability with respect to the perturbations of specific
wave numbers 𝜅. In this region, stationary patterns can be
observed. To see the effect of parameter 𝛿 well, we plot
in Figure 2 the dispersion relation corresponding to several
values of 𝛿 while keeping the other parameters fixed. We see
that the available Turing modes shift to higher wave numbers
when 𝛽 decreases.

3. Spatial Dynamics of Systems (4a) and (4b)
In the following, we use multiple scale analysis to determine
the amplitude equations when |𝜅| = 𝜅

𝑇
. Denote 𝛿 as the

controlled parameters. When the controlled parameter is
larger than the critical value of Turing point, the solutions of
systems (4a) and (4b) can be expanded as

𝑐 = 𝑐
0
+

𝑁

∑

𝑖=1

(𝐴
𝑖
exp (𝑖𝜅

𝑖
⃗𝑟) + (𝐴

𝑖
exp (−𝑖𝜅

𝑖
⃗𝑟)) , (19)

with |𝜅| = 𝜅
𝑇
. 𝐴

𝑗
and the conjugate 𝐴

𝑗
are the amplitudes

associated with the modes 𝜅
𝑗
and −𝜅

𝑗
.

Close to onset 𝛽 = 𝛽
𝑇
, one has that

𝜕𝐴
𝑖

𝜕𝑡
= 𝑠

𝑖
𝐴

𝑖
+ 𝐹

𝑖
(𝐴

𝑖
, 𝐴

𝑗
, . . .) . (20)

Based on the center manifold near the Turing bifurcation
point, it can be concluded that amplitude 𝐴

𝑗
satisfies

𝜕𝐴
𝑖

𝜕𝑡
= 𝐹

𝑖
(𝐴

𝑖
, 𝐴

𝑖
, 𝐴

𝑗
, 𝐴

𝑗
, . . .) . (21)
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Figure 2: Dispersion relation for different 𝛿. Parameters values: 𝛽 =
0.02, 𝛾 = 1.5, and 𝜀 = 0.15. (a) 𝛿 = 1.08; (b) 𝛿 = 1.04; (c) 𝛿 = 1; (d)
𝛿 = 0.96; and (e) 𝛿 = 0.92.

In order to obtain the amplitude equations, we first need
to investigate the linearized form of systems (4a) and (4b) at
the equilibrium point𝐸

4
. By setting 𝑢 = 𝑢∗+𝑥 and V = V∗+𝑦,

we have the following equations:

𝜕𝑥

𝜕𝑡
= [2𝛾𝑢

∗
− 3𝛾(𝑢

∗
)
2

+ 2𝛾(𝑢
∗
)
2

𝛽 − 𝛾𝛽 − V
∗
] 𝑥

+ (𝛽𝛾 − 3𝛾𝑢
∗
+ 𝛾) 𝑥

2
− 𝛾𝑥

3
− 𝑥𝑦 + Δ𝑥,

(22a)

𝜕𝑦

𝜕𝑡
= V

∗
𝑥 + 𝑢

∗
𝑦 + 𝑥𝑦 − 2𝛿V

∗
𝑦 − 𝛿𝑦

2
+ 𝜀Δ𝑦. (22b)

Close to onset 𝛿 = 𝛿
𝑇
, the solutions of systems (4a) and

(4b) can be expanded as series form:

𝑈 = 𝑈
𝑠
+

3

∑

𝑗=1

𝑈
0
[𝐴

𝑗
exp (𝑖𝜅

𝑗
⃗𝑟) + 𝐴

𝑗
exp (−𝑖𝜅

𝑗
⃗𝑟)] . (23)

System (19) can be expanded as

𝑈
∗
=

3

∑

𝑗=1

𝑈
0
[𝐴

𝑗
exp (𝑖𝜅

𝑗
⃗𝑟) + 𝐴

𝑗
exp (−𝑖𝜅

𝑗
⃗𝑟)] , (24)

where 𝑈
0
= ((𝑎

∗

11
𝜀 + 𝑎

∗

11
)/(2𝑎

∗

21
), 1)

𝑇 is the eigenvector of the
linearized operator.

From the standard multiple scale analysis, up to the third
order in the perturbations, the spatiotemporal evolution of
the amplitudes can be described as

𝜏
𝜕𝐴

𝑘

𝜕𝑡
= 𝜇𝐴

𝑘
+∑

𝑙𝑚

ℎ
𝑙𝑚
𝐴

𝑙
𝐴

𝑚
+ ∑

𝑙𝑚𝑛

𝑔
𝑙𝑚𝑛
𝐴

𝑙
𝐴

𝑚
𝐴

𝑛
. (25)

Due to spatial translational symmetry, we have the follow-
ing equation:

𝜏
𝜕𝐴

𝑘

𝜕𝑡
exp (𝑖𝜅

𝑘
𝑟
0
)

= 𝜇𝐴
𝑘
exp (𝑖𝜅

𝑘
𝑟
0
) +∑

𝑙𝑚

ℎ
𝑙𝑚
𝐴

𝑙
𝐴

𝑚
exp [𝑖 (𝜅

𝑙
+ 𝜅

𝑚
) 𝑟

0
]

+ ∑

𝑙𝑚𝑛

𝑔
𝑙𝑚𝑛
𝐴

𝑙
𝐴

𝑚
𝐴

𝑛
exp [𝑖 (𝜅

𝑙
+ 𝜅

𝑚
+ 𝜅

𝑛
) 𝑟

0
] .

(26)

Comparing (25) with (26), one can find that the two
equations hold only if 𝜅

𝑘
= 𝜅

𝑙
+ ⋅ ⋅ ⋅ + 𝜅

𝑚
. From the center

manifold theory, we know that amplitude equations do not
include the amplitude with unstable mode. As a result, we
have the following equations:

𝜏
0

𝜕𝐴
1

𝑑𝑡
= 𝜇𝐴

1
+ ℎ𝐴

2
𝐴

3

− (𝑔
1

𝐴1


2

+ 𝑔
2
(
𝐴2


2

+
𝐴3


2

))𝐴
1
,

𝜏
0

𝜕𝐴
2

𝑑𝑡
= 𝜇𝐴

2
+ ℎ𝐴

1
𝐴

3

− (𝑔
1

𝐴2


2

+ 𝑔
2
(
𝐴1


2

+
𝐴3


2

))𝐴
2
,

𝜏
0

𝜕𝐴
3

𝑑𝑡
= 𝜇𝐴

3
+ ℎ𝐴

1
𝐴

2

− (𝑔
1

𝐴3


2

+ 𝑔
2
(
𝐴1


2

+
𝐴2


2

)) 𝐴
3
,

(27)

where 𝜇 = (𝛿
𝑇
− 𝛿)/𝛿

𝑇
and 𝜏

0
is a typical relaxation time.

In the following part, we will give the expressions of 𝜏
0
, ℎ,

𝑔
1
, and 𝑔

2
. Let

𝑋 = (
𝑥

𝑦
) ,

𝑁 = (
𝑁

1

𝑁
2

) .

(28)

Then systems (4a) and (4b) can be written as:

𝜕𝑋

𝜕𝑡
= 𝐿𝑋 + 𝑁, (29)

where

𝐿 = (

2𝛾𝑢
∗
− 3𝛾(𝑢

∗
)
2
+ 2𝛾𝛽(𝑢

∗
)
2
− 𝛾𝛽 − V∗ + Δ 0

V∗ 𝑢
∗
− 2𝛿V∗ + 𝜀Δ

) ,

𝑁 = (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 𝛾𝑥

3
− 𝑥𝑦

𝑥𝑦 − 𝛿𝑦
2 ) .

(30)

We need to investigate the dynamical behavior when 𝛿 is
close to 𝛿

𝑇
, and thus we expand 𝛿 as:

𝛿
𝑇
− 𝛿 = 𝜖𝛿

1
+ 𝜖

2
𝛿
2
+ 𝜖

3
𝛿
3
+ 𝑂 (𝜖

4
) , (31)
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where 𝜖 is a small enough parameter. We expand𝑋 and𝑁 as
the series form of 𝜖:

𝑋 = (
𝑥

𝑦
) = 𝜖(

𝑥
1

𝑦
1

) + 𝜖
2
(
𝑥
2

𝑦
2

) + 𝜖
3
(
𝑥
3

𝑦
3

) + ⋅ ⋅ ⋅ ,

𝑁 = (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) (𝑥

2

1
𝜖
2
+ 2𝑥1𝑥2𝜖

3
) − 𝛾𝑥
3

1
𝜖
3
− 𝑥1𝑦1𝜖

2
− (𝑥2𝑦1 + 𝑥1𝑦2) 𝜖

3
+ 𝑜 (𝜖
4
)

𝑥1𝑦1𝜖
2
+ (𝑥2𝑦1 + 𝑥1𝑦2) 𝜖

3
+ 𝑜 (𝜖
4
)

) .

(32)

Linear operator 𝐿 can be expanded as

𝐿 = 𝐿
𝑇
+ (𝛿

𝑇
− 𝛿)𝑀, (33)

where

𝐿
𝑇
= (

𝑎
∗

11
+ Δ 𝑎

∗

12

𝑎
∗

21
𝑎
∗

22
+ 𝜀Δ

) , 𝑀 = (
𝑏
11
𝑏
12

𝑏
21
𝑏
22

) . (34)

Let

𝑇
0
= 𝑡, 𝑇

1
= 𝜖𝑡, 𝑇

2
= 𝜖

2
𝑡, (35)

and 𝑇
𝑖
is a dependent variable. For the derivation of time, we

have that
𝜕

𝜕𝑡
=

𝜕

𝜕𝑇
0

+ 𝜖
𝜕

𝜕𝑇
1

+ 𝜖
2 𝜕

𝜕𝑇
2

+ 𝑜 (𝜖
3
) . (36)

The solutions of systems (4a) and (4b) have the following
form:

𝑋 = (
𝑥

𝑦
) =

3

∑

𝑖=1

(

𝐴
𝑥

𝑖

𝐴
𝑦

𝑖

) exp (𝑖𝜅
𝑖
⃗𝑟) + ⋅ ⋅ ⋅ . (37)

This expression implies that the bases of the solutions have
nothing to do with time and the amplitude𝐴 is a variable that
changes slowly. As a result, one has the following equation:

𝜕𝐴

𝜕𝑡
= 𝜖

𝜕𝐴

𝜕𝑇
1

+ 𝜖
2 𝜕𝐴

𝜕𝑇
2

+ 𝑜 (𝜖
3
) . (38)

Substituting the above equations into (29) and expanding
(29) according to different orders of 𝜖, we can obtain three
equations as follows:

𝜖 : 𝐿
𝑇
(
𝑥
1

𝑦
1

) = 0;

𝜖
2
: 𝐿

𝑇
(
𝑥
2

𝑦
2

) =
𝜕

𝜕𝑇
1

(
𝑥
1

𝑦
1

) − 𝛿
1
𝑀(

𝑥
1

𝑦
1

)

− (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) 𝑥

2

1
− 𝑥

1
𝑦
1

𝑥
1
𝑦
1

) ;

𝜖
3
: 𝐿

𝑇
(
𝑥
3

𝑦
3

) =
𝜕

𝜕𝑇
1

(
𝑥
2

𝑦
2

) +
𝜕

𝜕𝑇
2

(
𝑥
1

𝑦
1

) − 𝛿
1
𝑀(

𝑥
2

𝑦
2

)

− 𝛿
2
𝑀(

𝑥
1

𝑦
1

) − 𝐸,

(39)

where

𝐸 = (
2𝑥

1
𝑥
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 𝛾𝑥

3

1
− (𝑥

2
𝑦
1
+ 𝑥

1
𝑦
2
)

𝑥
2
𝑦
1
+ 𝑥

1
𝑦
2

) .

(40)

We first consider the case of the first order of 𝜀. Since 𝐿
𝑇
is

the linear operator of the system close to the onset, (𝑥
1
, 𝑦

1
)
𝑇

is the linear combination of the eigenvectors that corresponds
to the eigenvalue zero. Since that

(
𝑥

𝑦
) =

3

∑

𝑖=1

(

𝐴
𝑥

𝑖

𝐴
𝑦

𝑖

) exp (𝑖𝜅
𝑖
⃗𝑟) + c.c., (41)

we have that

(𝑎
∗

11
+ Δ) 𝑥

1
+ 𝑎

∗

12
𝑦
1
= 0, (42a)

𝑎
∗

21
𝑥
1
+ (𝑎

∗

22
+ 𝜀Δ) 𝑦

1
= 0. (42b)

As 𝜀𝑎∗
12
= ((𝑎

∗

22
− 𝜀𝑎

∗

11
)/2𝑎

∗

21
)
2, we can obtain that 𝑥

1
= (𝑎

∗

22
−

𝜀𝑎
∗

11
)/(2𝑎

∗

21
) by assuming 𝑦

1
= 1.

Let 𝑅 = (𝑎∗
11
𝜀 − 𝑎

∗

22
)/2𝑎

∗

21
then

(
𝑥
1

𝑦
1

) = (
𝑅

1
) (𝑊

1
exp (𝑖𝜅

1
⃗𝑟) + 𝑊

2
exp (𝑖𝜅

2
⃗𝑟)

+𝑊
3
exp (𝑖𝜅

3
⃗𝑟)) + c.c.,

(43)

where |𝜅
𝑗
| = 𝜅

∗

𝑇
and 𝑊

𝑗
is the amplitude of the mode

exp(𝑖𝜅
𝑗
𝑟).

Now, we consider the case of the second order of 𝜀. Note
that

𝐿
𝑇
(
𝑥
2

𝑦
2

) =
𝜕

𝜕𝑇
1

(
𝑥
1

𝑦
1

) − 𝛿
𝑇
(
𝑏
11
𝑥
1
+ 𝑏

12
𝑦
1

𝑏
21
𝑥
1
+ 𝑏

22
𝑦
1

)

− (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) 𝑥

2

1
− 𝑥

1
𝑦
1

𝑥
1
𝑦
1

)

= (
𝐹
𝑥

𝐹
𝑦

) .

(44)

According to the Fredholm solubility condition, the
vector function of the right hand of the above equation must
be orthogonal with the zero eigenvectors of operator L+

𝑐
. And

the zero eigenvectors of operator L+

𝑐
are

(

1

−
1

𝜀
𝑅

) exp (𝑖𝜅
𝑗
⃗𝑟) + c.c (𝑗 = 1, 2, 3) . (45)

It can be found from the orthogonality condition that

(

1

−
1

𝜀
𝑅

)(

𝐹
𝑖

𝑥

𝐹
𝑖

𝑦

) = 0, (46)

where 𝐹𝑖

𝑥
and 𝐹𝑖

𝑦
represent the coefficients corresponding to

exp(𝑖𝜅
𝑗
𝑟) in 𝐹

𝑥
and 𝐹

𝑦
.
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By investigating exp(𝑖𝜅
1
⃗𝑟), one has

(

𝐹
1

𝑥

𝐹
1

𝑦

) = (

𝑅
𝜕𝑊

1

𝜕𝑇
1

𝜕𝑊
1

𝜕𝑇
1

)− 𝛿
1
(

𝑏
11
𝑅𝑊

1
+ 𝑏

12
𝑊

1

𝑏
21
𝑅𝑊

1
+ 𝑏

22
𝑊

1

)

−(

2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾)𝑊

2
𝑊

3
+ 2𝑅𝑊

2
𝑊

3

2𝑅𝑊
2
𝑊

3

) .

(47)

It can be obtained from the orthogonality condition that

𝜀 − 1

𝜀
𝑅
𝜕𝑊

1

𝜕𝑇
1

= 𝛿 (𝑅𝑏
11
+ 𝑏

22
−
𝑅

𝜀
(𝑅𝑏

21
+ 𝑏

22
)𝑊

1
)

+ 2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾 +

1

𝑅
−
1

𝜀
)𝑊

2
𝑊

3
.

(48)

By using the same methods, one has

(
𝑥
2

𝑦
2

) = (
𝑋

0

𝑌
0

) +

3

∑

𝑗=1

(
𝑋

𝑗

𝑌
𝑗

) exp (𝑖𝜅
𝑗
⃗𝑟)

+

3

∑

𝑗=1

(
𝑋

𝑗𝑗

𝑌
𝑗𝑗

) exp (2𝑖𝜅
𝑗
⃗𝑟) + 𝑄 + c.c.,

(49)

where

𝑄 = (
𝑋

12

𝑌
12

) exp (𝑖 (𝜅
1
− 𝜅

2
) ⃗𝑟) + (

𝑋
23

𝑌
23

) exp (𝑖 (𝜅
2
− 𝜅

3
) ⃗𝑟)

+ (
𝑋

31

𝑌
31

) exp (𝑖 (𝜅
3
− 𝜅

1
) ⃗𝑟) .

(50)

By solving the sets of the linear equations about exp(0),
exp(𝑖𝜅

𝑗
⃗𝑟), exp(2𝑖𝜅

𝑗
⃗𝑟), and exp(𝑖(𝜅

𝑗
− 𝜅

𝑘
) ⃗𝑟), we obtain that

(
𝑋

0

𝑌
0

)

=(

𝑎
∗

22
[−2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 2𝑅] + 2𝑅𝑎

∗

12

𝑎∗
11
𝑎∗
22
− 𝑎∗

12
𝑎∗
21

𝑎
∗

21
[2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 2𝑅] + 2𝑅𝑎

∗

11

𝑎∗
11
𝑎∗
22
− 𝑎∗

12
𝑎∗
21

)

× (
𝑊1


2

+
𝑊2


2

+
𝑊3


2

) ,

(
𝑋

𝑗𝑗

𝑌
𝑗𝑗

)

=(

(𝑎
∗

22
− 4𝜀𝜅

2

𝑇
) [−𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 𝑅] + 𝑅𝑎

∗

12

(𝑎∗
11
− 4𝜅2

𝑇
) (𝑎∗

22
− 4𝜀𝜅2

𝑇
) − 𝑎∗

12
𝑎∗
21

𝑎
∗

21
[𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+𝛾) − 2𝑅] − 𝑅 (𝑎

∗

11
− 4𝜀𝜅

2

𝑇
)

(𝑎∗
11
− 4𝜅2

𝑇
) (𝑎∗

22
− 4𝜀𝜅2

𝑇
) − 𝑎∗

12
𝑎∗
21

)

×𝑊
2

𝑗
,

(
𝑋

𝑗𝑘

𝑌
𝑗𝑘

)

=(

(𝑎
∗

22
− 3𝜀𝜅

2

𝑇
) [−2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 2𝑅] + 2𝑅𝑎

∗

12

(𝑎
∗

11
− 3𝜅

2

𝑇
) (𝑎

∗

22
− 3𝜀𝜅

2

𝑇
) − 𝑎

∗

12
𝑎
∗

21

𝑎
∗

21
[2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+𝛾) − 2𝑅] − 2𝑅(𝑎

∗

11
− 3𝜅

2

𝑇
)

(𝑎
∗

11
− 3𝜅

2

𝑇
) (𝑎

∗

22
− 3𝜀𝜅

2

𝑇
) − 𝑎

∗

12
𝑎
∗

21

)

×𝑊
𝑗
𝑊

𝑘
,

(51)

where 𝜅2
𝑇
= √(𝑎∗

11
𝑎∗
22
− 𝑎∗

12
𝑎∗
21
)/𝜀.

For the third order of 𝜀, we have that

𝐿
𝑇
(
𝑥
3

𝑦
3

) =
𝜕

𝜕𝑇
1

(
𝑥
2

𝑦
2

) +
𝜕

𝜕𝑇
2

(
𝑥
1

𝑦
1

)

− 𝛿
1
𝑀(

𝑥
2

𝑦
2

) − 𝛿
2
𝑀(

𝑥
1

𝑦
1

) − 𝑆,

(52)

where

𝑆 = (
2𝑥

1
𝑥
2
(𝛽𝛾 − 3𝛾𝑢

∗
) − 𝛾𝑥

3

1
− (𝑥

2
𝑦
1
+ 𝑥

1
𝑦
2
)

𝑥
2
𝑦
1
+ 𝑥

1
𝑦
2

) . (53)

Using the Fredholm solubility condition, we can obtain

𝜀 − 1

𝜀
𝑅
𝜕𝑊

1

𝜕𝑇
2

+
𝜀 − 1

𝜀
𝑅
𝜕𝑌

1

𝜕𝑇
1

= 𝛿
2
[𝑅𝑏

11
+ 𝑏

12
−
1

𝜀
𝑅 (𝑅𝑏

21
+ 𝑏

22
)]𝑊

1

+ 𝛿
1
[𝑅𝑏

11
+ 𝑏

12
−
1

𝜀
(𝑅𝑏

21
+ 𝑏

22
)] 𝑌

1
+ 𝑍,

(54)

where

𝑍 = [2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 2𝑅 − 2

1

𝜀
]

× [𝑊
1
𝑌
0
+𝑊 − 2𝑌

12
+𝑊

3
𝑌
13
+𝑊

1
𝑌
11

+ 𝑊
2
𝑌
3
+𝑊

3
𝑌
2
]

− (𝐺
1

𝑊1


2

+ 𝐺
2

𝑊2


2

+ 𝐺
3

𝑊3


2

)𝑊
1
,
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Table 1: Coefficients for different parameter sets.

𝛽 𝛿 ℎ 𝑔
1

𝑔
2

𝜇
1

𝜇
2

𝜇
3

𝜇
4

0.02 0.92 −19.08604 7599.215 6906.578 0.0042531 0 5.770186 0.046076
0.02 0.96 2.1329690 −740.11 −1429.72 −0.000315 0 −0.00708 −0.00611
0.02 1 8.4304106 −207.521 −474.186 −0.015371 0 −0.20741 −0.01250
0.02 1.12 11.304093 −99.3194 −193.856 −0.0655924 0 −1.42005 −0.04391

(a) (b) (c)

(d) (e) (f)

Figure 3: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 0.92. (a) 𝑡 = 0; (b) 𝑡 = 100; (c)
𝑡 = 200; (d) 𝑡 = 500; (e) 𝑡 = 1000; and (f) 𝑡 = 2000.

𝐺
1
= (

1

𝜀
𝑅 − 1) [𝑅 (𝑦

11
+ 𝑦

0
) + 𝑥

11
+ 𝑥

0
]

− 2𝑅 (𝑥
11
+ 𝑥

0
) (𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 3𝛾𝑅

3
,

𝐺
2
= (

1

𝜀
𝑅 − 1) [𝑅 (𝑦

12
+ 𝑦

0
) + 𝑥

12
+ 𝑥

0
]

− 2𝑅 (𝑥
12
+ 𝑥

0
) (𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 6𝛾𝑅

3
.

(55)

By using the same methods, we can obtain the other two
equations. The amplitude 𝐴

𝑖
can be expanded as

𝐴
𝑖
= 𝜖𝑊

𝑖
+ 𝜖

2
𝑉
𝑖
+ 𝑜 (𝜖

3
) . (56)

As a result, we have

𝜏
0

𝜕𝐴
1

𝜕𝑡
= 𝜇𝐴

1
+ ℎ𝐴

2
𝐴

3
− (𝑔

1

𝐴1


2

+ 𝑔
2

𝐴2


2

+
𝐴3


2

)𝐴
1
.

(57)

The other two equations can be obtained through the
transformation of the subscript of 𝐴. By calculations, we
obtain the expressions of the coefficients of 𝜏

0
, ℎ, 𝑔

1
, and

𝑔
2
as follows:

𝜏
0
= 𝑅

𝜀 − 1

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]
,

ℎ =
[2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 2𝑅 − 2 (𝑅

2
/𝜀)]

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]

,

𝑔
1
=

𝐺
1

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]
,

𝑔
2
=

𝐺
2

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]
,

(58)
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(a) (b) (c)

(d) (e) (f)

Figure 4: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 0.96. (a) 𝑡 = 0; (b) 𝑡 = 50; (c) 𝑡 = 100;
(d) 𝑡 = 200; (e) 𝑡 = 500; and (f) 𝑡 = 1000.

where 𝐺
1
= ((𝑅/𝜀) − 1)[𝑅(𝑦

0
+ 𝑦

11
) + 𝑥

0
+ 𝑥

11
] − 2𝑅(𝑥

0
+

𝑥
11
)(𝛽𝛾−3𝛾𝑢

∗
+𝛾)+3𝛾𝑅

3 and𝐺
2
= ((𝑅/𝜀)−1)[𝑅(𝑦

0
+𝑦

12
)+

𝑥
0
+ 𝑥

12
] − 2𝑅(𝑥

0
+ 𝑥

12
)(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 6𝛾𝑅

3.
By using substitutions, we have

𝜏
0

𝜕𝜑

𝑑𝑡
= −ℎ

𝜌
2

1
𝜌
2

2
+ 𝜌

2

1
𝜌
2

3
+ 𝜌

2

2
𝜌
2

3

𝜌
1
𝜌
2
𝜌
3

sin𝜑,

𝜏
0

𝜕𝜌
1

𝑑𝑡
= 𝜇𝜌

1
+ ℎ𝜌

2
𝜌
3
cos𝜑 − 𝑔

1
𝜌
3

1
− 𝑔

2
(𝜌

2

2
𝜌
2

3
) 𝜌

1
,

𝜏
0

𝜕𝜌
2

𝑑𝑡
= 𝜇𝜌

2
+ ℎ𝜌

1
𝜌
3
cos𝜑 − 𝑔

1
𝜌
3

2
− 𝑔

2
(𝜌

2

1
𝜌
2

3
) 𝜌

2
,

𝜏
0

𝜕𝜌
3

𝑑𝑡
= 𝜇𝜌

3
+ ℎ𝜌

1
𝜌
2
cos𝜑 − 𝑔

1
𝜌
3

3
− 𝑔

2
(𝜌

2

1
𝜌
2

2
) 𝜌

3
,

(59)

where 𝜑 = 𝜑
1
+ 𝜑

2
+ 𝜑

3
. In order to see the relationships

between different parameters, we give the values of coeffi-
cients for different parameter sets in Table 1.

The dynamical systems (4a) and (4b) possess five kinds of
solutions [23] as follows.

(1) The stationary state (𝑂), given by

𝜌
1
= 𝜌

2
= 𝜌

3
= 0, (60)

is stable for 𝜇 < 𝜇
2
= 0 and unstable for 𝜇 > 𝜇

2
.

(2) Stripe patterns (𝑆), given by

𝜌
1
= √

𝜇

𝑔
1

̸= 0, 𝜌
2
= 𝜌

3
= 0, (61)

are stable for 𝜇 > 𝜇
3
= ℎ

2
𝑔
1
/(𝑔

2
− 𝑔

1
)
2, and unstable

for 𝜇 < 𝜇
3
.

(3) Hexagon patterns (𝐻
0
, 𝐻

𝜋
) are given by

𝜌
1
= 𝜌

2
= 𝜌

3
=

|ℎ| ± √ℎ2 + 4 (𝑔1 + 2𝑔2𝜇)

2 (𝑔
1
+ 2𝑔

2
)

, (62)

with 𝜑 = 0 or 𝜋, and exist when

𝜇 > 𝜇
1
=

−ℎ
2

4 (𝑔
1
+ 2𝑔

2
)
. (63)

The solution 𝜌+ = |ℎ| + √ℎ2 + 4(𝑔
1
+ 2𝑔

2
𝜇)/2(𝑔

1
+

2𝑔
2
) is stable only for

𝜇 < 𝜇
4
=
2𝑔

1
+ 𝑔

2

(𝑔
2
− 𝑔

1
)
2
ℎ
2
, (64)
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(a) (b) (c)

(d) (e) (f)

Figure 5: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 1. (a) 𝑡 = 0; (b) 𝑡 = 150; (c) 𝑡 = 300;
(d) 𝑡 = 500; (e) 𝑡 = 600; and (f) 𝑡 = 1000.

and 𝜌− = (|ℎ| − √ℎ2 + 4(𝑔
1
+ 2𝑔

2
𝜇))/2(𝑔

1
+ 2𝑔

2
) is

always unstable.
(4) The mixed states are given by

𝜌
1
=

|ℎ|

𝑔
2
− 𝑔

1

, 𝜌
2
= 𝜌

3
= √

𝜇 − 𝑔
1
𝜌
2

1

𝑔
1
+ 𝑔

2

, (65)

with 𝑔
2
> 𝑔

1
. They exist when 𝜇 > 𝜇

3
and are always

unstable.

4. Spatial Pattern of Systems (4a) and (4b)
In this section, we perform extensive numerical simulations
of the spatially extended systems (4a) and (4b) in two-
dimensional spaces. All our numerical simulations employ
the zero-flux boundary conditions with a system size of 200 ×
200. The space step is Δ𝐻 = 1, and the time step is Δ𝑡 =
0.00001.

In Figure 3, we show the spatial pattern of prey population
at different time. In the parameter set, 𝛾 = 1.5, 𝜀 = 0.15,
and 𝛿 = 0.92, we find that 𝜇 ∈ (𝜇

3
, 𝜇

4
), which means that

there is coexistence of spotted and stripe patterns. As shown
in this figure, our theoretical results are consistent with the
numerical results.

By setting 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 0.96, one can obtain
that 𝜇 > 𝜇

4
. In Figure 4, we show the spatial pattern of prey

population when 𝑡 equals 0, 50, 100, 200, 500, and 1000. At
the initial time, the prey population shows patched invasion.
As time increases, stripe pattern appears and the structure
does not change a lot. While keeping other parameters fixed
and increasing 𝛿, we find that stripe pattern will occupy the
whole space. However, some stripe patterns connect with
each other and cause the emergence of spotted patternswhich
are shown in Figure 5.

Figure 6 shows the evolution of the spatial pattern of prey
population at 𝑡 = 0, 100, 300, 500, 1000, and 2000 iterations,
with small random perturbation of the stationary solution
of the spatially homogeneous systems (4a) and (4b). The
corresponding parameters values are 𝛾 = 1.5, 𝜀 = 0.15,
and 𝛿 = 1.04. By the amplitude equations, we can conclude
that there are spotted patterns of prey population for this
parameter set. In this case, one can see that for the systems
(4a) and (4b), the random initial distribution leads to the
formation of an irregular transient pattern in the domain.
After these forms, it grows slightly and spotted patterns
emerge. When the time is large enough, the spotted patterns
prevail over the two-dimensional space. As time further
increases, the pattern structures of the prey population do not
undergo any further changes.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 1.04. (a) 𝑡 = 0; (b) 𝑡 = 100; (c)
𝑡 = 300; (d) 𝑡 = 500; (e) 𝑡 = 1000; and (f) 𝑡 = 2000.

5. Conclusion and Discussion

Allee effect has been paid much attention due to its strong
potential impact on population dynamics [24]. In this paper,
we investigated the pattern dynamics of a spatial predator-
prey systems with Allee effect. Based on the bifurcation
analysis, exact Turing pattern region is obtained. By using
amplitude equations, the Turing pattern selection of the
predator-prey system is well presented. It is found that the
predator-prey systems with Allee effect have rich spatial
dynamics by performing a series of numerical simulations.

It should be noted that our results were obtained under
the assumption that predation is modeled by the bilinear
function of the prey and predator densities. However, this
function has limitations to describe many realistic phenom-
ena in the biology. By numerical simulations, we find that
the system exhibits similar behaviour when the functional
response is of other types, such as Holling-II and Holling-III
forms.

To compare the spatial dynamics for different parame-
ters, we give the spatial patterns of population 𝑢 when the
parameter values are out of the domain of Turing space.
For this parameter set, systems (4a) and (4b) have Hopf

bifurcation, and spiral waves occupy the whole domain
instead of stationary patterns, which is shown in Figure 7.The
stability of spiral wave can be done by using the spectrum
theory analysis [25, 26]. In the further study, we will use the
spectrum theory to show the stability of spiral wave.

In [15], they found that a spatial predator-preymodel with
Allee effect and linear death rate could increase the system’s
complexity and enhance chaos in population dynamics.
However, in this paper, we showed that a spatial population
model with Allee effect and nonlinear death rate can induce
stationary patterns, which is different from the previous
results.

From a biological point of view, our results show that
predator mortality plays an important role in the spatial
invasions of populations. More specifically, low predator
mortality will induce stationary patterns (cf. Figures 3–
6), and high predator mortality corresponds to travelling
patterns (cf. Figure 7). When the populations exhibit wave
distribution in space, the dynamics of populations may
be accompanied with chaotic properties [27, 28]. If the
chaotic behavior occurs, it may lead to the extinction of the
population, or the population may be out of control [29, 30].
In that case, we need to find out the best way to control the
chaos or change the chaotic behavior.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 1.2. (a) 𝑡 = 0; (b) 𝑡 = 100; (c) 𝑡 = 200;
(d) 𝑡 = 300; (e) 𝑡 = 400; and (f) 𝑡 = 500.
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