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We first introduce certain new concepts of 𝛼-𝜂-proximal admissible and 𝛼-𝜂-𝜓-rational proximal contractions of the first and
second kinds.Then we establish certain best proximity point theorems for such rational proximal contractions in metric spaces. As
an application, we deduce best proximity and fixed point results in partially ordered metric spaces.The presented results generalize
and improve various known results from best proximity point theory. Several interesting consequences of our obtained results
are presented in the form of new fixed point theorems which contain famous Banach’s contraction principle and some of its
generalizations as special cases. Moreover, some examples are given to illustrate the usability of the obtained results.

1. Introduction and Preliminaries

Let (𝑋, 𝑑) be a metric space and 𝑇 be a self-mapping defined
on a subset of 𝑋. Fixed point theory is an important tool for
solving equations of the kind 𝑇𝑥 = 𝑥, whose solutions are
the fixed points of the mapping 𝑇. Many problems arising
in different areas of mathematics, such as optimization, vari-
ational analysis, and differential equations, can be modeled
as fixed point equations of the form 𝑇𝑥 = 𝑥. On the other
hand, if 𝑇 is not a self-mapping, the equation 𝑇𝑥 = 𝑥 could
have no solutions and, in this case, it is of a certain interest to
determine an element 𝑥 that is in some sense closest to 𝑇𝑥.
One of the most interesting results in this direction is due to
Fan [1] and can be stated as follows.

Theorem F. Let 𝐾 be a nonempty compact convex subset of
a normed space 𝐸 and 𝑇 : 𝐾 → 𝐸 be a continuous non-
self-mapping. Then there exists an 𝑥 such that ‖𝑥 − 𝑇𝑥‖ =
𝑑(𝐾, 𝑇𝑥) = inf{‖𝑇𝑥 − 𝑢‖ : 𝑢 ∈ 𝐾}.

Many generalizations and extensions of this result
appeared in the literature (see [2–6] and, references therein).

Let 𝐴 and 𝐵 be two nonempty subsets of a metric
space (𝑋, 𝑑). A best proximity point of a nonself-mapping

𝑇 : 𝐴 → 𝐵 is a point 𝑥 ∈ 𝐴 satisfying the equality 𝑑(𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵), where 𝑑(𝐴, 𝐵) = inf{𝑑(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Though
best approximation theorems ensure the existence of approx-
imation solutions, such results need not yield optimal solu-
tions. But best proximity point theorems provide sufficient
conditions that assure the existence of approximate solutions
which are optimal as well. For more details on this approach,
we refer the reader to [5, 7–32].

The aim of this paper is to introduce certain new con-
cepts of 𝛼-𝜂-proximal admissible and 𝛼-𝜂-𝜓-rational proxi-
mal contractions of the first and second kinds.Thenwe estab-
lish certain best proximity point theorems for such rational
proximal contractions. As an application, we deduce best
proximity and fixed point results in partially ordered metric
spaces. The presented results generalize and improve vari-
ous known results from best proximity point theory. Sev-
eral interesting consequences of our obtained results are
presented in the formof newfixed point theoremswhich con-
tain famous Banach’s contraction principle and some of its
generalizations as special cases.Moreover, some examples are
given to illustrate the usability of the obtained results.

Now we give some basic notations and definitions that
will be used in the sequel.
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Let 𝐴 and 𝐵 be two nonempty subsets of a metric space
(𝑋, 𝑑). We denote by 𝐴

0
and 𝐵

0
the following sets:

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} ,

(1)

where 𝑑(𝐴, 𝐵) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}. For the map
𝑇 : 𝐴 → 𝐵, we define the set of all best proximity points of
𝑇 by

𝐵est (𝑇) = {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵)} . (2)

Definition 1. Let (𝑋, 𝑑) be a metric space and let 𝐴 and
𝐵 be two nonempty subsets of 𝑋. Then 𝐵 is said to be
approximatively compact with respect to 𝐴 if every sequence
{𝑦
𝑛
} in 𝐵, satisfying the condition 𝑑(𝑥, 𝑦

𝑛
) → 𝑑(𝑥, 𝐵) for

some 𝑥 in 𝐴, has a convergent subsequence.

Obviously, every set is approximatively compact with
respect to itself.

Very recently, Nashine et al. [22] introduced rational
proximal contraction of the first and second kinds as follows.

Definition 2. Let 𝐴 and 𝐵 be nonempty subsets of a metric
space (𝑋, 𝑑).Then𝑇 : 𝐴 → 𝐵 is said to be a rational proximal
contraction of the first kind if there exist nonnegative real
numbers 𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1, such that,
for all 𝑥

1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] .

(3)

Definition 3. Let 𝐴 and 𝐵 be nonempty closed subsets of
a metric space (𝑋, 𝑑). Then 𝑇 : 𝐴 → 𝐵 is said to be a
rational proximal contraction of the second kind if there exist
nonnegative real numbers 𝑎, 𝑏, 𝑐, and 𝑑with 𝑎+𝑏+2𝑐+2𝑑 <
1, such that, for all 𝑥

1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑇𝑢
1
, 𝑇𝑢
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
)] 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
2
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
1
)] .

(4)

Note that a rational proximal contraction of the second
kind is not necessarily a rational proximal contraction of the
first kind; for examples, see [22].

Definition 4 (see [28]). Let 𝑇 be a self-mapping on a metric
space (𝑋, 𝑑) and 𝛼 : 𝑋×𝑋 → [0, +∞) be a function. We say
that 𝑇 is 𝛼-admissible mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (5)

Recently, Jleli and Samet [15] introduced new concepts
of 𝛼-proximal admissible and 𝛼-𝜓-proximal contractive type
mappings as follows.

Definition 5 (see [15]). Let 𝑇 : 𝐴 → 𝐵, 𝛼 : 𝐴 × 𝐴 → [0,∞).
We say that 𝑇 is 𝛼-proximal admissible if

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) ,

󳨐⇒ 𝛼 (𝑢
1
, 𝑢
2
) ≥ 1

(6)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

Clearly, if 𝐴 = 𝐵, then 𝛼-proximal admissible map 𝑇
reduces to 𝛼-admissible map.

Definition 6 (see [15]). A nonself-mapping𝑇 : 𝐴 → 𝐵 is said
to be 𝛼-𝜓-proximal contraction if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (7)

for all 𝑥, 𝑦 ∈ 𝐴, 𝛼 : 𝐴 × 𝐴 → [0,∞), 𝜓 ∈ Ψ.

Salimi et al. [27] modified the concept of 𝛼-admissible
mappings as follows.

Definition 7. Let 𝑇 be a self-mapping on ametric space (𝑋, 𝑑)
and 𝛼, 𝜂 : 𝑋×𝑋 → [0, +∞) be two functions. We say that 𝑇
is 𝛼-admissible mapping with respect to 𝜂 if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦) 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .

(8)

Note that if we take 𝜂(𝑥, 𝑦) = 1, then this definition reduces
to Definition 4. Also, if we take 𝛼(𝑥, 𝑦) = 1, then we say that
𝑇 is 𝜂-subadmissible mapping.

For the examples of 𝛼-admissible mappings with respect
to 𝜂, we refer to [27] and the examples in the next section.

2. Best Proximity and Fixed Point Results in
Metric Spaces

First wemodify the notion of𝛼-proximal admissiblemapping
as follows.
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Definition 8. Let 𝑇 : 𝐴 → 𝐵 and 𝛼, 𝜂 : 𝐴 × 𝐴 → [0,∞)

be functions. We say that 𝑇 is 𝛼-proximal admissible with
respect to 𝜂 if, for all 𝑥

1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴,

𝛼 (𝑥
1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
) ,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) ,

󳨐⇒ 𝛼 (𝑢
1
, 𝑢
2
) ≥ 𝜂 (𝑢

1
, 𝑢
2
) .

(9)

Note that if we take 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐴, then this
definition reduces to Definition 5. In case 𝛼(𝑥, 𝑦) = 1 for all
𝑥, 𝑦 ∈ 𝐴, then we shall say that𝑇 is 𝜂-proximal subadmissible
mapping.

Clearly, if 𝐴 = 𝐵, then the previous definition reduces to
Definition 7.

Definition 9. Let 𝐴 and 𝐵 be nonempty subsets of a metric
space (𝑋, 𝑑). Then 𝑇 : 𝐴 → 𝐵 is said to be 𝛼-𝜂-rational
proximal contraction of the first kind if there exist nonneg-
ative real numbers 𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1,
such that, for all 𝑥

1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴,

𝛼 (𝑥
1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
)

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] .

(10)

In case 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐴, then 𝑇 : 𝐴 → 𝐵 is said to
be 𝛼-rational proximal contraction of the first kind.

Definition 10. Let 𝐴 and 𝐵 be nonempty closed subsets of a
metric space (𝑋, 𝑑). Then 𝑇 : 𝐴 → 𝐵 is said to be a 𝛼-𝜂-
rational proximal contraction of the second kind if there exist
nonnegative real numbers 𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎 + 𝑏 + 2𝑐 +
2𝑑 < 1, such that, for all 𝑥

1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴,

𝛼 (𝑥
1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
) ,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑇𝑢
1
, 𝑇𝑢
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
)] 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
2
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
1
)] . (11)

In case 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐴, then 𝑇 : 𝐴 → 𝐵 is said to
be 𝛼-rational proximal contraction of the second kind.

We are ready to prove the following best proximity point
result for 𝛼-𝜂-rational proximal contraction of the first kind.

Theorem 11. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) and let 𝐵 be approximatively
compact with respect to𝐴. Assume that 𝛼, 𝜂 : 𝐴×𝐴 → [0,∞)

are functions, 𝐴
0
and 𝐵

0
are nonempty, and 𝑇 : 𝐴 → 𝐵

is an 𝛼-𝜂-rational proximal contraction of the first kind which
satisfies the following assertions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝛼-proximal admissible with respect to 𝜂,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 𝜂 (𝑥

0
, 𝑥
1
) , (12)

(iv) if {𝑥
𝑛
} is a sequence in 𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥

𝜂(𝑥
𝑛
, 𝑥
𝑛+1
) and 𝑥

𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then

𝛼(𝑥
𝑛
, 𝑥) ≥ 𝜂(𝑥

𝑛
, 𝑥) for all 𝑛 ∈ N.

Then there exists 𝑧 ∈ 𝐴
0
, such that

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (13)

Moreover, if 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐵est(𝑇), then 𝑧 is
unique best proximity point of 𝑇.

Proof. By (iii) there exist elements 𝑥
0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 𝜂 (𝑥

0
, 𝑥
1
) . (14)

On the other hand, 𝑇(𝐴
0
) ⊆ 𝐵

0
, then and there exists 𝑥

2
∈

𝐴
0
, such that

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (15)

Now, since, 𝑇 is 𝛼-𝜂-proximal admissible, then we have
𝛼(𝑥
1
, 𝑥
2
) ≥ 𝜂(𝑥

1
, 𝑥
2
). That is,

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
) . (16)

Again, since 𝑇(𝐴
0
) ⊆ 𝐵
0
, there exists 𝑥

3
∈ 𝐴
0
, such that

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) . (17)

Thus,

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) ,

𝛼 (𝑥
1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
)

(18)
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together with 𝑇 is 𝛼-𝜂-proximal admissible imply that
𝛼(𝑥
2
, 𝑥
3
) ≥ 𝜂(𝑥

2
, 𝑥
3
). Hence,

𝑑 (𝑥
3
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

2
, 𝑥
3
) ≥ 𝜂 (𝑥

2
, 𝑥
3
) . (19)

Continuing this process, we get

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) ,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 𝜂 (𝑥

𝑛
, 𝑥
𝑛+1
) , ∀𝑛 ∈ N ∪ {0} .

(20)

Since 𝑇 is 𝛼-𝜂-rational proximal contraction of the first kind,
then we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝑎𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝑏

[1 + 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)] 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

1 + 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

+ 𝑐 [𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)]

+ 𝑑 [𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛
)]

≤ 𝑎𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑏𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

+ 𝑐 [𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)]

+ 𝑑 [𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)] ,

(21)

which implies

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ ℎ𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , (22)

where ℎ = (𝑎 + 𝑐 + 𝑑)/(1 − 𝑏 − 𝑐 − 𝑑) < 1. That is, {𝑥
𝑛
} is a

Cauchy sequence in 𝐴 and since (𝑋, 𝑑) is a complete metric
space and 𝐴 is closed, so there exists an element 𝑧 ∈ 𝐴 such
that 𝑥

𝑛
→ 𝑧 as 𝑛 → ∞. Also, we have

𝑑 (𝑧, 𝐵) ≤ 𝑑 (𝑧, 𝑇𝑥𝑛
)

≤ 𝑑 (𝑧, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛
)

= 𝑑 (𝑧, 𝑥
𝑛+1
) + 𝑑 (𝐴, 𝐵)

≤ 𝑑 (𝑧, 𝑥
𝑛+1
) + 𝑑 (𝑧, 𝐵) .

(23)

Taking limit as 𝑛 → ∞ in the previous inequality, we have

lim
𝑛→∞

𝑑 (𝑧, 𝑇𝑥
𝑛
) = 𝑑 (𝑧, 𝐵) . (24)

As 𝐵 is approximatively compact with respect to 𝐴, so the
sequence {𝑇𝑥

𝑛
} has a subsequence {𝑇𝑥

𝑛𝑘
} that converges to

some 𝑦 ∈ 𝐵. Hence,

𝑑 (𝑧, 𝑦) = lim
𝑛→∞

𝑑 (𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
) = 𝑑 (𝐴, 𝐵) (25)

and so 𝑧 ∈ 𝐴
0
. Now, since 𝑇(𝐴

0
) ⊆ 𝐵

0
, then, 𝑑(𝑤, 𝑇𝑧) =

𝑑(𝐴, 𝐵) for some 𝑤 ∈ 𝐴. From (iv) and (66), we have 𝛼(𝑥
𝑛
,

𝑧) ≥ 𝜂(𝑥
𝑛
, 𝑧) for all 𝑛 ∈ N. Therefore, we proved that

𝛼 (𝑥
𝑛
, 𝑧) ≥ 𝜂 (𝑥

𝑛
, 𝑧) ,

𝑑 (𝑤, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵)

(26)

for all 𝑛 ∈ N. Since 𝑇 is a 𝛼-𝜂-rational proximal contraction
of the first kind, so we have

𝑑 (𝑤, 𝑥
𝑛+1
) ≤ 𝑎𝑑 (𝑧, 𝑥

𝑛
)

+ 𝑏

[1 + 𝑑 (𝑧, 𝑤)] 𝑑 (𝑥𝑛
, 𝑥
𝑛+1
)

1 + 𝑑 (𝑧, 𝑥
𝑛
)

+ 𝑐 [𝑑 (𝑧, 𝑤) + 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)]

+ 𝑑 [𝑑 (𝑧, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛
, 𝑤)] .

(27)

Taking limit as 𝑛 → ∞ in the previous inequality, we get

𝑑 (𝑤, 𝑧) ≤ (𝑐 + 𝑑) 𝑑 (𝑤, 𝑧) . (28)

As 𝑐 + 𝑑 < 1, so 𝑤 = 𝑧. This implies that

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝑤, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (29)

Assume that 𝑦∗ is another best proximity point of 𝑇 such
that 𝛼(𝑧, 𝑦∗) ≥ 𝜂(𝑧, 𝑦∗). That is,

𝛼 (𝑧, 𝑦
∗
) ≥ 𝜂 (𝑧, 𝑦

∗
) ,

𝑑 (𝑧, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑦
∗
, 𝑇𝑦
∗
) = 𝑑 (𝐴, 𝐵) .

(30)

Now, since 𝑇 is 𝛼-𝜂-rational proximal contraction of the first
kind, so we have

𝑑 (𝑧, 𝑦
∗
) ≤ 𝑎𝑑 (𝑧, 𝑦

∗
)

+ 𝑏

[1 + 𝑑 (𝑧, 𝑧)] 𝑑 (𝑦
∗
, 𝑦
∗
)

1 + 𝑑 (𝑧, 𝑦
∗
)

+ 𝑐 [𝑑 (𝑧, 𝑧) + 𝑑 (𝑦
∗
, 𝑦
∗
)]

+ 𝑑 [𝑑 (𝑧, 𝑦
∗
) + 𝑑 (𝑦

∗
, 𝑧)] ,

(31)

which implies that 𝑑(𝑧, 𝑦∗) ≤ (𝑎+2𝑑)𝑑(𝑧, 𝑦∗). As 𝑎+2𝑑 < 1,
so 𝑧 = 𝑦∗.That is, 𝑧 is a unique best proximity point of𝑇.

By taking 𝜂(𝑥, 𝑦) = 1 in Theorem 11, we deduce the fol-
lowing corollary.

Corollary 12. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐵 is approximatively
compact with respect to 𝐴. Assume that 𝛼 : 𝐴 × 𝐴 → [0,∞),
𝐴
0
and 𝐵

0
are nonempty, and 𝑇 : 𝐴 → 𝐵 is an 𝛼-rational

proximal contraction of the first kind satisfying the following
assertions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝛼-proximal admissible,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1, (32)

(iv) if {𝑥
𝑛
} is a sequence in𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 and

𝑥
𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1 for all

𝑛 ∈ N.
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Then there exists 𝑧 ∈ 𝐴
0
, such that

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (33)

Moreover, if 𝛼(𝑥, 𝑦) ≥ 1 for all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇), then 𝑧 is unique

best proximity point of 𝑇.

If in the previous corollary we take 𝛼(𝑥, 𝑦) = 1, then we
obtain the following result.

Corollary 13 (see [22, Theorem 3.1]). Let 𝐴 and 𝐵 be
nonempty closed subsets of a complete metric space (𝑋, 𝑑) and
let 𝐵 be approximatively compact with respect to 𝐴. Assume
that 𝐴

0
and 𝐵

0
are nonempty and 𝑇 : 𝐴 → 𝐵 is a rational

proximal contraction of the first kind with 𝑇(𝐴
0
) ⊆ 𝐵

0
. Then

there exists a unique 𝑧 ∈ 𝐴
0
, such that

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (34)

Further, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑(𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to 𝑧.

Example 14. Let𝑋 = R and 𝑑(𝑥, 𝑦) = |𝑥 −𝑦| be metric on𝑋.
Suppose 𝐴 = (−∞, −1] and 𝐵 = [5/4, +∞). Define 𝑇 : 𝐴 →

𝐵 by

𝑇𝑥 =

{
{
{
{
{
{

{
{
{
{
{
{

{

−𝑥
3
+

5

4

, if 𝑥 ∈ (−∞, −2) \ {−3} ,
9

4

, if 𝑥 = −3,

−

1

4

𝑥 + 1, if 𝑥 ∈ [−2, −1] .

(35)

Also, define 𝛼 : 𝑋2 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

3, if 𝑥, 𝑦 ∈ [−2, −1] ,
0, otherwise.

(36)

Clearly, 𝑑(𝐴, 𝐵) = 9/4. Now, we have

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵)

=

9

4

for some 𝑦 ∈ 𝐵} = {−1} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵)

=

9

4

for some 𝑥 ∈ 𝐴} = {5
4

} .

(37)

Also, 𝑇(𝐴
0
) ⊆ 𝐵
0
. Let

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) =

9

4

,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) =

9

4

.

(38)

Then,
𝑥
1
, 𝑥
2
∈ [−2, −1] ,

𝑑 (𝑢
1
, 𝑇𝑥
1
) =

9

4

,

𝑑 (𝑢
2
, 𝑇𝑥
2
) =

9

4

.

(39)

Note that 𝑇𝑤 ∈ [5/4, 3/2] for all 𝑤 ∈ [−2, −1]. Hence,
𝑢
1
= 𝑢
2
= −1. That is, 𝛼(𝑢

1
, 𝑢
2
) ≥ 1. That is, 𝑇 is a 𝛼-proximal

admissible mapping. Also, assume that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞. Therefore, {𝑥

𝑛
} ⊆

[−2, −1] and then 𝑥 ∈ [−2, −1]. That is, 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all

𝑛 ∈ N ∪ {0}. Further, 𝑑(−1, 𝑇(−1)) = 𝑑(𝐴, 𝐵) = 9/4 and
𝛼(−1, −1) ≥ 1.

Again, assume that

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) =

9

4

,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) =

9

4

.

(40)

Then 𝑥
1
, 𝑥
2
∈ [−2, −1] and 𝑢

1
= 𝑢
2
= −1. Hence,

𝑑 (𝑢
1
, 𝑢
2
) = 0 ≤ 𝑎𝑑 (𝑥

1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] .

(41)

Thus, all of the conditions of Corollary 12 (Theorem 11) hold
and there exists a unique 𝑧 = −1 ∈ 𝐴

0
, such that

𝑑 (−1, 𝑇 (−1)) = 𝑑 (𝐴, 𝐵) =

9

4

. (42)

Example 15. Let𝑋 = R and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| be metric on𝑋.
Suppose𝐴 = [0, 1] ∪ {2, 20} and 𝐵 = [0, 1/4] ∪ {2, 20}. Define
𝑇 : 𝐴 → 𝐵 by

𝑇𝑥 =

{
{
{
{

{
{
{
{

{

20, if 𝑥 = 2,
2, if 𝑥 = 20,
1

4

𝑥, if 𝑥 ∈ [0, 1] .
(43)

Also, define 𝛼 : 𝑋2 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1, if 𝑥, 𝑦 ∈ [0, 1] ,
0, otherwise.

(44)

Clearly, 𝑑(𝐴, 𝐵) = 0. Now, we have

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) = 0

for some ∈ 𝐵} = 𝐵,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) = 0

for some𝑥 ∈ 𝐴} = 𝐵.

(45)
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Also, 𝑇(𝐴
0
) ⊆ 𝐵
0
. Let

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) = 0,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) = 0.

(46)

Then, 𝑥
1
, 𝑥
2
∈ [0, 1] and 𝑢

1
= 𝑇𝑥
1
and 𝑢

2
= 𝑇𝑥
2
. Note that

𝑇𝑤 ∈ [0, 1] for all 𝑤 ∈ [0, 1]; Hence, 𝑢
1
, 𝑢
2
∈ [0, 1] that is,

𝛼(𝑢
1
, 𝑢
2
) ≥ 1. That is, 𝑇 is a 𝛼-proximal admissible mapping.

Also, assume that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 ∈ N∪{0} and 𝑥

𝑛
→

𝑥 as 𝑛 → ∞. Therefore, {𝑥
𝑛
} ⊆ [0, 1] and then 𝑥 ∈ [0, 1].

That is, 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N ∪ {0}. Further, 𝑑(0, 𝑇(0)) =

𝑑(𝐴, 𝐵) = 0 and 𝛼(0, 0) ≥ 1
Let 𝑎 = 1/2, 𝑏 = 1/6, and 𝑐 = 𝑑 = 1/24.
Again, assume that

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) = 0,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵) = 0.

(47)

Then 𝑥
1
, 𝑥
2
∈ [0, 1] and 𝑢

1
= 𝑇𝑥
1
= (1/4)𝑥

1
and 𝑢

2
=

𝑇𝑥
2
= (1/4)𝑥

2
. Hence,

𝑑 (𝑢
1
, 𝑢
2
) =

1

4

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑑 (𝑥
1
, 𝑥
2
) 𝑑 (𝑥
1
, 𝑥
2
)

+

1

6

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+

1

24

[𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+

1

24

[𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] .

(48)

All of the conditions of Corollary 12 (Theorem 11) hold and
there exists a unique 𝑧 = 0 ∈ 𝐴

0
, such that

𝑑 (0, 𝑇 (0)) = 𝑑 (𝐴, 𝐵) = 0. (49)

Let

𝑑 (0, 𝑇0) = 𝑑 (𝐴, 𝐵) = 0,

𝑑 (2, 𝑇20) = 𝑑 (𝐴, 𝐵) = 0,

(50)

imply

𝑑 (0, 20) ≤

1

2

𝑑 (0, 2)

+

1

6

[1 + 𝑑 (0, 0)] 𝑑 (2, 20)

1 + 𝑑 (0, 2)

+

1

24

[𝑑 (0, 0) + 𝑑 (2, 20)]

+

1

24

[𝑑 (0, 20) + 𝑑 (2, 0)] .

(51)

Then,

20 ≤ 1 + 1 +

18

24

+

22

24

, (52)

which is a contradiction. Therefore, Corollary 32 [22, Theo-
rem 3.1] cannot be applied here.

If in Theorem 11 we take 𝛼(𝑥, 𝑦) = 1, then we obtain the
following result.

Corollary 16. Let 𝐴 and 𝐵 be nonempty closed subsets of
a complete metric space (𝑋, 𝑑) and let 𝐵 be approximatively
compact with respect to 𝐴. Assume that 𝜂 : 𝐴 × 𝐴 → [0,∞),
𝐴
0
and𝐵

0
are nonempty, and𝑇 : 𝐴 → 𝐵 is a nonself-mapping

satisfying the following assertions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝜂-proximal subadmissible,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝜂 (𝑥

0
, 𝑥
1
) ≤ 1, (53)

(iv)

𝜂 (𝑥
1
, 𝑥
2
) ≤ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] ,

(54)

(v) if {𝑥
𝑛
} is a sequence in 𝐴 such that 𝜂(𝑥

𝑛
, 𝑥
𝑛+1
) ≤ 1 and

𝑥
𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then 𝜂(𝑥

𝑛
, 𝑥) ≤ 1 for all

𝑛 ∈ N,

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then there exists 𝑧 ∈ 𝐴
0
, such that,

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (55)

Moreover, if 𝜂(𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇), then 𝑧 is unique.

The following are immediate consequences of
Theorem 11.

Theorem 17. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping satisfying the following assertions:

(i) 𝑇 is 𝛼-admissible with respect to 𝜂,
(ii) there exists element 𝑥

0
in𝑋, such that

𝛼 (𝑥
0
, 𝑇𝑥
0
) ≥ 𝜂 (𝑥

0
, 𝑇𝑥
0
) , (56)
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(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥

𝜂(𝑥
𝑛
, 𝑥
𝑛+1
) and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
,

𝑥) ≥ 𝜂(𝑥
𝑛
, 𝑥) for all 𝑛 ∈ N,

(iv)

𝛼 (𝑥
1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
)

󳨐⇒ 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑇𝑥
1
)] 𝑑 (𝑥

2
, 𝑇𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝑑 (𝑥

2
, 𝑇𝑥
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)] ,

(57)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

If in Theorem 17 we take 𝜂(𝑥, 𝑦) = 1, then we obtain the
following result.

Theorem 18. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping satisfying the following assertions:

(i) 𝑇 is 𝛼-admissible,
(ii) there exists element 𝑥

0
in𝑋, such that,

𝛼 (𝑥
0
, 𝑇𝑥
0
) ≥ 1 (58)

(iii) if {𝑥
𝑛
} is a sequence in𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 and

𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1 for all

𝑛 ∈ N,
(iv)

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1

󳨐⇒ 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑇𝑥
1
)] 𝑑 (𝑥

2
, 𝑇𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝑑 (𝑥

2
, 𝑇𝑥
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)] ,

(59)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

If in Theorem 17 we take 𝛼(𝑥, 𝑦) = 1, then we obtain the
following result.

Theorem 19. Let 𝑋 be a complete metric space and 𝑇 : 𝑋 →

𝑋 be a mapping satisfying the following assertions:

(i) 𝑇 is 𝜂-subadmissible,

(ii) there exists element 𝑥
0
in𝑋, such that

𝜂 (𝑥
0
, 𝑇𝑥
0
) ≤ 1, (60)

(iii) if {𝑥
𝑛
} is a sequence in𝑋 such that 𝜂(𝑥

𝑛
, 𝑥
𝑛+1
) ≤ 1 and

𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝜂(𝑥

𝑛
, 𝑥) ≤ 1 for all

𝑛 ∈ N,
(iv)

𝜂 (𝑥
1
, 𝑥
2
) ≤ 1

󳨐⇒ 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑇𝑥
1
)] 𝑑 (𝑥

2
, 𝑇𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝑑 (𝑥

2
, 𝑇𝑥
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)] ,

(61)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

If in Theorem 18 we take 𝛼(𝑥, 𝑦) = 1, then we obtain the
following fixed point result for rational contraction of first
kind.

Theorem 20. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping satisfying the following rational ine-
quality:

𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
) ≤ 𝑎𝑑 (𝑥

1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑇𝑥
1
)] 𝑑 (𝑥

2
, 𝑇𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝑑 (𝑥

2
, 𝑇𝑥
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)] ,

(62)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

We now establish best proximity point result for 𝛼-𝜂-
rational proximal contraction of the second kind.

Theorem 21. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴 is approximatively
compact with respect to𝐵. Assume that 𝛼, 𝜂 : 𝐴×𝐴 → [0,∞),
𝐴
0
and 𝐵

0
are nonempty, and 𝑇 : 𝐴 → 𝐵 is a continuous 𝛼-

𝜂-rational proximal contraction of the second kind, such that

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝛼-proximal admissible with respect to 𝜂,
(iii) There exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 𝜂 (𝑥

0
, 𝑥
1
) . (63)
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Then there exists 𝑥 ∈ 𝐵
𝑒𝑠𝑡
(𝑇) and, for any fixed 𝑥

0
∈ 𝐴
0
, the

sequence {𝑥
𝑛
}, defined by 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to

𝑥, and 𝑇𝑥 = 𝑇𝑧 for all 𝑥, 𝑧 ∈ 𝐵
𝑒𝑠𝑡
(𝑇) when 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇).

Proof. Following the same lines of the proof of Theorem 11,
there exists a sequence {𝑥

𝑛
} ∈ 𝐴
0
, such that

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) ,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 𝜂 (𝑥

𝑛
, 𝑥
𝑛+1
) , ∀𝑛 ∈ N ∪ {0} .

(64)

Since 𝑇 is a 𝛼-𝜂-rational proximal contraction of the second
kind, we get

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
) ≤ 𝑎𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
)] 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)

1 + 𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
)

+ 𝑐 [𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)]

+ 𝑑 [𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛+1
) + 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛
)]

≤ 𝑎𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑏𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)

+ 𝑐 [𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)]

+ 𝑑 [𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
)] ,

(65)

which implies

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
) ≤ ℎ𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) , (66)

where ℎ = (𝑎 + 𝑐 + 𝑑)/(1 − 𝑏 − 𝑐 − 𝑑) < 1. That is, {𝑇𝑥
𝑛
} is a

Cauchy sequence and since (𝑋, 𝑑) is a complete metric space
and 𝐵 is closed, so there exists an element 𝑦∗ ∈ 𝐵 such that
𝑇𝑥
𝑛
→ 𝑦
∗ as 𝑛 → ∞. Also, we have

𝑑 (𝑦
∗
, 𝐴) ≤ 𝑑 (𝑦

∗
, 𝑥
𝑛+1
)

≤ 𝑑 (𝑦
∗
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑥
𝑛+1
)

= 𝑑 (𝑦
∗
, 𝑇𝑥
𝑛
) + 𝑑 (𝐴, 𝐵)

≤ 𝑑 (𝑦
∗
, 𝑇𝑥
𝑛
) + 𝑑 (𝑦

∗
, 𝐴) .

(67)

Taking limit as 𝑛 → ∞ in the previous inequality, we have

lim
𝑛→∞

𝑑 (𝑦
∗
, 𝑥
𝑛
) = 𝑑 (𝑦

∗
, 𝐴) . (68)

Since 𝐴 is approximatively compact with respect to 𝐵, so
the sequence, {𝑥

𝑛
} has a subsequence {𝑥

𝑛𝑘
} that converges to

some 𝑥∗ ∈ 𝐴. Now, by applying continuity of 𝑇, we get

𝑑 (𝑥
∗
, 𝑇𝑥
∗
) = lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
) = 𝑑 (𝐴, 𝐵) . (69)

That is, 𝑥∗ ∈ 𝐵est(𝑇). Now, assume that 𝑧∗ is a another best
proximity point of 𝑇. That is, 𝑑(𝑧∗, 𝑇𝑧∗) = 𝑑(𝐴, 𝐵). Now,

since, 𝑇 is a 𝛼-𝜂-rational proximal contraction of the second
kind and 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐵est(𝑇), then

𝑑 (𝑇𝑥
∗
, 𝑇𝑧
∗
) ≤ 𝑎𝑑 (𝑇𝑥

∗
, 𝑇𝑧
∗
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
∗
, 𝑇𝑥
∗
)] 𝑑 (𝑇𝑧

∗
, 𝑇𝑧
∗
)

1 + 𝑑 (𝑇𝑥
∗
, 𝑇𝑧
∗
)

+ 𝑐 [𝑑 (𝑇𝑥
∗
, 𝑇𝑥
∗
) + 𝑑 (𝑇𝑧

∗
, 𝑇𝑧
∗
)]

+ 𝑑 [𝑑 (𝑇𝑥
∗
, 𝑇𝑧
∗
) + 𝑑 (𝑇𝑧

∗
, 𝑇𝑥
∗
)] .

(70)

This implies that

𝑑 (𝑇𝑥
∗
, 𝑇𝑧
∗
) ≤ (𝑐 + 𝑑) 𝑑 (𝑇𝑥

∗
, 𝑇𝑧
∗
) . (71)

And, hence, 𝑑(𝑇𝑥∗, 𝑇𝑧∗) = 0 gives us 𝑇𝑥∗ = 𝑇𝑧∗.

Corollary 22. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴 is approximatively
compact with respect to 𝐵. Assume that 𝛼 : 𝐴 × 𝐴 → [0,∞),
𝐴
0
and 𝐵

0
are nonempty, and 𝑇 : 𝐴 → 𝐵 is a continuous

mapping, such that

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝛼-proximal admissible,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1, (72)

(iv)

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑇𝑢
1
, 𝑇𝑢
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
)] 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
2
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
1
)] ,

(73)

where 𝑎+𝑏+2𝑐+2𝑑 < 1. Then there exists 𝑥 ∈ 𝐵
𝑒𝑠𝑡
(𝑇) and, for

any fixed𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) =

𝑑(𝐴, 𝐵), converges to 𝑥, and 𝑇𝑥 = 𝑇𝑧 for all 𝑥, 𝑧 ∈ 𝐵
𝑒𝑠𝑡
(𝑇)

when 𝛼(𝑥, 𝑦) ≥ 1 for all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇).

If in the previous corollary we take 𝛼(𝑥, 𝑦) = 1, then we
have the following result.

Corollary 23 (see [22, Theorem 3.2]). Let 𝐴 and 𝐵 be non-
empty closed subsets of a complete metric space (𝑋, 𝑑) such that
𝐴 is approximatively compact with respect to 𝐵. Assume that
𝐴
0
and 𝐵

0
are nonempty and 𝑇 : 𝐴 → 𝐵 is a continuous
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rational proximal contraction of the second kind, such that
𝑇(𝐴
0
) ⊆ 𝐵

0
. Then there exists 𝑥 ∈ 𝐵

𝑒𝑠𝑡
(𝑇) and, for any fixed

𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵),

converges to 𝑥, and 𝑇𝑥 = 𝑇𝑧 for all 𝑥, 𝑧 ∈ 𝐵
𝑒𝑠𝑡
(𝑇).

Corollary 24. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴 is approximatively
compact with respect to 𝐵. Assume that 𝜂 : 𝐴 × 𝐴 → [0,∞),
𝐴
0
and 𝐵

0
are nonempty and 𝑇 : 𝐴 → 𝐵 is a continuous

mapping, such that 𝑇(𝐴
0
) ⊆ 𝐵

0
and 𝑇 is 𝜂-proximal subad-

missible, such that

𝜂 (𝑥
1
, 𝑥
2
) ≤ 1

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑇𝑢
1
, 𝑇𝑢
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
)] 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
2
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
1
)]

(74)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴, where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then there

exists𝑥 ∈ 𝐵
𝑒𝑠𝑡
(𝑇) and, for any fixed𝑥

0
∈ 𝐴
0
, the sequence {𝑥

𝑛
},

defined by 𝑑(𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to 𝑥, and 𝑇𝑥 =

𝑇𝑧 for all 𝑥, 𝑧 ∈ 𝐵
𝑒𝑠𝑡
(𝑇)when 𝜂(𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∈ 𝐵

𝑒𝑠𝑡
(𝑇).

The following are immediate consequences of
Theorem 21.

Theorem 25. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a continuous mapping satisfying the following
assertions:

(i) 𝑇 is 𝛼-admissible with respect to 𝜂,
(ii) there exists element 𝑥

0
in𝑋, such that

𝛼 (𝑥
0
, 𝑇𝑥
0
) ≥ 𝜂 (𝑥

0
, 𝑇𝑥
0
) , (75)

(iii)

𝛼 (𝑥
1
, 𝑥
2
) ≥ 𝜂 (𝑥

1
, 𝑥
2
)

󳨐⇒ 𝑑 (𝑇
2
𝑥
1
, 𝑇
2
𝑥
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
)] 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
2
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
1
)] ,

(76)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

If in Theorem 25 we take 𝜂(𝑥, 𝑦) = 1, then we obtain the
following result.

Theorem 26. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a continuous mapping satisfying the following
assertions:

(i) 𝑇 is 𝛼-admissible,
(ii) there exists element 𝑥

0
in𝑋, such that

𝛼 (𝑥
0
, 𝑇𝑥
0
) ≥ 1 (77)

(iii)

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1

󳨐⇒ 𝑑 (𝑇
2
𝑥
1
, 𝑇
2
𝑥
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
)] 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
2
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
1
)] ,

(78)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

If in Theorem 25 we take 𝛼(𝑥, 𝑦) = 1, then we obtain the
following result.

Theorem 27. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a continuous mapping satisfying the following
assertions:

(i) 𝑇 is 𝜂-subadmissible
(ii) there exists element 𝑥

0
in𝑋, such that

𝜂 (𝑥
0
, 𝑇𝑥
0
) ≤ 1, (79)

(iii)

𝜂 (𝑥
1
, 𝑥
2
) ≤ 1

󳨐⇒ 𝑑 (𝑇
2
𝑥
1
, 𝑇
2
𝑥
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
)] 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
2
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
1
)] ,

(80)



10 Abstract and Applied Analysis

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

If in Theorem 26 we take 𝛼(𝑥, 𝑦) = 1, then we obtain the
following result.

Theorem 28. Let 𝑋 be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a continuous mapping satisfying the following
rational inequality:

𝑑 (𝑇
2
𝑥
1
, 𝑇
2
𝑥
2
) ≤ 𝑎𝑑 (𝑇𝑥

1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
)] 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
1
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇
2
𝑥
2
) + 𝑑 (𝑇𝑥

2
, 𝑇
2
𝑥
1
)] ,

(81)

where 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Then 𝑇 has a unique fixed point in
𝑋.

Our next best proximity point result is about 𝛼-𝜂-rational
proximal contraction of the first and second kinds where
we consider only completeness of (𝑋, 𝑑) without assuming
continuity of the mapping 𝑇 and approximative compactness
of 𝐴 and 𝐵.

Theorem 29. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑). Assume that 𝛼, 𝜂 : 𝐴 × 𝐴 →

[0,∞), 𝐴
0
and 𝐵

0
are nonempty, and 𝑇 : 𝐴 → 𝐵 is 𝛼-𝜂-

rational proximal contraction of the first and second kinds, such
that

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝛼-proximal admissible with respect to 𝜂,
(iii) there exists elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 𝜂 (𝑥

0
, 𝑥
1
) , (82)

(iv) if {𝑥
𝑛
} is a sequence in 𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 𝜂(𝑥

𝑛
,

𝑥
𝑛+1
) and 𝑥

𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥

𝜂(𝑥
𝑛
, 𝑥) for all 𝑛 ∈ N.

Then there exists unique 𝑥 ∈ 𝐵
𝑒𝑠𝑡
(𝑇). Also, for any fixed

𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵),

converges to 𝑥, whenever 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) for all 𝑥, 𝑦 ∈

𝐵
𝑒𝑠𝑡
(𝑇).

Proof. As in proof of Theorem 11, there exists a sequence
{𝑥
𝑛
} ∈ 𝐴
0
, such that

𝑑 (𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) ,

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 𝜂 (𝑥

𝑛
, 𝑥
𝑛+1
) , ∀𝑛 ∈ N ∪ {0} ,

(83)

and the sequence {𝑥
𝑛
} is a Cauchy sequence and so converges

to some 𝑥∗ ∈ 𝐴. Also, by proof ofTheorem 21, we obtain that

the sequence {𝑇𝑥
𝑛
} is a Cauchy sequence and converges to

some 𝑦∗ ∈ 𝐵. Hence, we have

𝑑 (𝑥
∗
, 𝑦
∗
) = lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) . (84)

That is, 𝑥∗ ∈ 𝐴
0
. Since 𝑇𝐴

0
⊆ 𝐵
0
, so 𝑑(𝑢, 𝑇𝑥∗) = 𝑑(𝐴, 𝐵) for

some 𝑢 ∈ 𝐴. Thus we have 𝑑(𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵) and

𝑑(𝑢, 𝑇𝑥
∗
) = 𝑑(𝐴, 𝐵) and so by (iv) this implies that 𝛼(𝑥

𝑛
,

𝑥
∗
) ≥ 𝜂(𝑥

𝑛
, 𝑥
∗
) for all 𝑛 ≥ 0. Now, since 𝑇 is a 𝛼-𝜂-rational

proximal contraction of the first kind, we get

𝑑 (𝑥
𝑛+1
, 𝑢) ≤ 𝑎𝑑 (𝑥

𝑛
, 𝑥
∗
)

+ 𝑏

[1 + 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)] 𝑑 (𝑥

∗
, 𝑢)

1 + 𝑑 (𝑥
𝑛
, 𝑥
∗
)

+ 𝑐 [𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

∗
, 𝑢)]

+ 𝑑 [𝑑 (𝑥
𝑛
, 𝑢) + 𝑑 (𝑥

∗
, 𝑥
𝑛+1
)] .

(85)

Taking limit as 𝑛 → ∞ in the previous inequality, we get

𝑑 (𝑥
∗
, 𝑢) ≤ (𝑏 + 𝑐 + 𝑑) 𝑑 (𝑥

∗
, 𝑢) , (86)

which implies that 𝑑(𝑥∗, 𝑢) = 0. That is, 𝑥∗ = 𝑢. Hence,
𝑑(𝑥
∗
, 𝑇𝑥
∗
) = 𝑑(𝐴, 𝐵). Further, following similar proof of

Theorem 11 we can deduce the uniqueness of best proximity
point of 𝑇.

If 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐴 in the previous theorem, we
obtain the following result.

Corollary 30. Let 𝐴 and 𝐵 be nonempty closed subsets of a
completemetric space (𝑋, 𝑑). Assume that𝛼 : 𝐴×𝐴 → [0,∞),
𝐴
0
and 𝐵

0
are nonempty, and 𝑇 : 𝐴 → 𝐵 is 𝛼-rational prox-

imal contraction of the first and second kinds, such that

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is 𝛼-proximal admissible,

(iii) there exists elements 𝑥
0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1, (87)

(iv) if {𝑥
𝑛
} is a sequence in 𝐴 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥

𝜂(𝑥
𝑛
, 𝑥
𝑛+1
) and 𝑥

𝑛
→ 𝑥 ∈ 𝐴 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
,

𝑥) ≥ 1 for all 𝑛 ∈ N.

Then there exists unique 𝑥 ∈ 𝐵
𝑒𝑠𝑡
(𝑇). Also, for any fixed 𝑥

0
∈

𝐴
0
, the sequence {𝑥

𝑛
}, defined by 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵),

converges to 𝑥, whenever 𝛼(𝑥, 𝑦) ≥ 1 for all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇).

Corollary 31. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐵 is approximatively
compact with respect to 𝐴. Assume that 𝜂 : 𝐴 × 𝐴 → [0,∞)

and 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1. Let 𝐴
0
and 𝐵

0
be nonempty and let
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𝑇 : 𝐴 → 𝐵 be a nonself-mapping such that 𝑇(𝐴
0
) ⊆ 𝐵
0
and

𝑇 is 𝜂-proximal subadmissible mapping such that

𝜂 (𝑥
1
, 𝑥
2
) ≤ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] ,

𝜂 (𝑥
1
, 𝑥
2
) ≤ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑇𝑢
1
, 𝑇𝑢
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
)] 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
2
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
1
)]

(88)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
. Then there exists unique 𝑥 ∈ 𝐵

𝑒𝑠𝑡
(𝑇).

Also, for any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by

𝑑(𝑥
𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to 𝑥, where 𝜂(𝑥, 𝑦) ≤ 1 for

all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇).

Corollary 32 (see [22, Theorem 3.3]). Let 𝐴 and 𝐵 be non-
empty closed subsets of a complete metric space (𝑋, 𝑑). Assume
that 𝐴

0
and 𝐵

0
are nonempty and 𝑇 : 𝐴 → 𝐵 is rational

proximal contraction of the first and second kinds, such that
𝑇(𝐴
0
) ⊆ 𝐵

0
. Then there exists unique 𝑥 ∈ 𝐵

𝑒𝑠𝑡
(𝑇). Also, for

any fixed 𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
} defined by 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) =

𝑑(𝐴, 𝐵), converges to 𝑥.

Remark 33. (1) Similarly we may obtain many results as an
immediate consequence of Theorem 29.

(2) If 𝑏 = 0 in our results (Theorem 11–Corollary 32), we
get the modified and improved versions of recent results in
[26].

3. Best Proximity and Fixed Point Results in
Partially Ordered Metric Spaces

The aim of this section is to deduce main results (Theorems
3.1–3.3 [22]) in the context of partially ordered metric spaces.
Moreover, we obtain certain recent fixed point results as

corollaries in partially ordered metric spaces. Existence of
best proximity and fixed points in partially ordered metric
spaces has been considered recently by many authors (see,
[7, 8, 11, 25, 33]).

Definition 34 (see [25]). A mapping 𝑇 : 𝐴 → 𝐵 is said to be
proximally order preserving if and only if it satisfies the con-
dition that

𝑥
1
⪯ 𝑥
2
,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑢
1
⪯ 𝑢
2

(89)

for all 𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
∈ 𝐴.

Clearly, if 𝐴 = 𝐵, then proximally order-preserving map
𝑇 reduces to nondecreasing map.

Definition 35. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete partially ordered metric space (𝑋, 𝑑, ⪯). Then 𝑇 :

𝐴 → 𝐵 is said to be an ordered rational proximal con-
traction of the first kind if there exist nonnegative real
numbers 𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1, such that

𝑥
1
⪯ 𝑥
2
,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] .

(90)

Definition 36. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete partially ordered metric space (𝑋, 𝑑, ⪯). Then 𝑇 :

𝐴 → 𝐵 is said to be an ordered rational proximal contraction
of the second kind if there exist nonnegative real numbers
𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎 + 𝑏 + 2𝑐 + 2𝑑 < 1, such that

𝑥
1
⪯ 𝑥
2
,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑇𝑢
1
, 𝑇𝑢
2
)

≤ 𝑎𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
)] 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)

1 + 𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
)

+ 𝑐 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
1
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
2
)]

+ 𝑑 [𝑑 (𝑇𝑥
1
, 𝑇𝑢
2
) + 𝑑 (𝑇𝑥

2
, 𝑇𝑢
1
)] . (91)
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Theorem 37. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete partially ordered metric space (𝑋, 𝑑, ⪯) and let 𝐵
be approximatively compact with respect to 𝐴. Assume that
𝐴
0
and 𝐵

0
are nonempty and 𝑇 : 𝐴 → 𝐵 is an ordered

rational proximal contraction of the first kind which satisfies
the following assertions:

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is proximally order-preserving,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
⪯ 𝑥
1
, (92)

(iv) if {𝑥
𝑛
} is a nondecreasing sequence in𝐴 such that 𝑥

𝑛
→

𝑥 ∈ 𝐴 as 𝑛 → ∞, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N.

Then there exists 𝑧 ∈ 𝐴
0
, such that,

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (93)

Proof. Define 𝛼 : 𝐴 × 𝐴 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

1, iff 𝑥 ⪯ 𝑦
0, otherwise.

(94)

At first, we prove that 𝑇 is 𝛼-proximal admissible mapping.
For this, assume that

𝛼 (𝑥, 𝑦) ≥ 1,

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) ,

𝑑 (V, 𝑇𝑦) = 𝑑 (𝐴, 𝐵) .

(95)

So,
𝑥 ⪯ 𝑦,

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) ,

𝑑 (V, 𝑇𝑦) = 𝑑 (𝐴, 𝐵) .

(96)

Now since, 𝑇 is a proximally order preserving, so, 𝑢 ⪯ V. That
is, 𝛼(𝑢, V) ≥ 1 which implies that 𝑇 is 𝛼-proximal admissible.

By (iii), we have

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝛼 (𝑥

0
, 𝑥
1
) ≥ 1. (97)

Further as 𝑇 is an ordered rational proximal contraction, we
have

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1,

𝑑 (𝑢
1
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑢
2
, 𝑇𝑥
2
) = 𝑑 (𝐴, 𝐵)

󳨐⇒ 𝑑 (𝑢
1
, 𝑢
2
)

≤ 𝑎𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑢
1
)] 𝑑 (𝑥

2
, 𝑢
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑢
1
) + 𝑑 (𝑥

2
, 𝑢
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑢
2
) + 𝑑 (𝑥

2
, 𝑢
1
)] ,

(98)

which implies that 𝑇 : 𝐴 → 𝐵 is 𝛼-rational proximal con-
traction of the first kind. Assume that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 ∈ N such that 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞. Then 𝑥

𝑛
⪯ 𝑥
𝑛+1

for all 𝑛 ∈ N. Hence, by (iv) we get 𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N

and so 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N. That is, all conditions of

Corollary 12 hold and consequently there exists 𝑧 ∈ 𝐴
0
, such

that

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (99)

Similarly, we can prove following best proximity point
result in partially ordered metric space.

Theorem 38. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete partially ordered metric space (𝑋, 𝑑, ⪯) and 𝐵 be
approximatively compact with respect to 𝐴. Assume that 𝐴

0

and let 𝐵
0
are nonempty and 𝑇 : 𝐴 → 𝐵 is a continuous

ordered rational proximal contraction of the second kind, such
that

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is proximally order-preserving,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
⪯ 𝑥
1
, (100)

where 𝑎+𝑏+2𝑐+2𝑑 < 1. Then there exists 𝑥 ∈ 𝐵
𝑒𝑠𝑡
(𝑇) and, for

any fixed𝑥
0
∈ 𝐴
0
, the sequence {𝑥

𝑛
}, defined by𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) =

𝑑(𝐴, 𝐵), converges to 𝑥, and 𝑇𝑥 = 𝑇𝑧 for all 𝑥, 𝑧 ∈ 𝐵
𝑒𝑠𝑡
(𝑇)

when 𝑥 ⪯ 𝑦 for all 𝑥, 𝑦 ∈ 𝐵
𝑒𝑠𝑡
(𝑇).

Theorem 39. Let 𝐴 and 𝐵 be nonempty closed subsets of a
complete partially ordered metric space (𝑋, 𝑑, ⪯). Assume that
𝐴
0
and 𝐵

0
are nonempty and 𝑇 : 𝐴 → 𝐵 is a continuous

ordered rational proximal contraction of the first and second
kind, such that

(i) 𝑇(𝐴
0
) ⊆ 𝐵
0
,

(ii) 𝑇 is proximally order-preserving,
(iii) there exist elements 𝑥

0
and 𝑥

1
in 𝐴
0
, such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
⪯ 𝑥
1
, (101)

(iv) if {𝑥
𝑛
} is a nondecreasing sequence in𝐴 such that 𝑥

𝑛
→

𝑥 ∈ 𝐴 as 𝑛 → ∞, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N.

Then there exists 𝑧 ∈ 𝐴
0
, such that

𝑑 (𝑧, 𝑇𝑧) = 𝑑 (𝐴, 𝐵) . (102)

Further, we can easily deduce the following recent fixed
point results fromTheorem 37.

Theorem 40. Let (𝑋, 𝑑, ⪯) be a complete partially ordered
metric space. Assume that 𝑇 : 𝑋 → 𝑋 is self-mapping on 𝑋
which satisfies the following assertions:

(i) 𝑇 is nondecreasing mapping,
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(ii) there exists 𝑥
0
∈ 𝑋 such that, 𝑥

0
⪯ 𝑇𝑥
0
,

(iii) if {𝑥
𝑛
} is nondecreasing sequence in𝑋 such that 𝑥

𝑛
→

𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N,

(iv)

𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
) ≤ 𝑎𝑑 (𝑥

1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑇𝑥
1
)] 𝑑 (𝑥

2
, 𝑇𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

+ 𝑐 [𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝑑 (𝑥

2
, 𝑇𝑥
2
)]

+ 𝑑 [𝑑 (𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑥

2
, 𝑇𝑥
1
)]

(103)

for all 𝑥
1
⪯ 𝑥
2
∈ 𝑋. Then 𝑇 has a fixed point.

If we put 𝑐 = 𝑑 = 0 in the previous theorem, we obtain
the following recent results.

Corollary 41 (see [11, Theorems 2 and 3]). Let (𝑋, 𝑑, ⪯) be a
complete partially ordered metric space. Assume that 𝑇 : 𝑋 →

𝑋 is self-mapping on𝑋which satisfies the following assertions:

(i) 𝑇 is nondecreasing mapping,
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
,

(iii) if 𝑇 is continuous or {𝑥
𝑛
} is a nondecreasing sequence

in 𝑋 such that 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝑥

𝑛
⪯ 𝑥

for all 𝑛 ∈ N,
(iv)

𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
) ≤ 𝑎𝑑 (𝑥

1
, 𝑥
2
)

+ 𝑏

[1 + 𝑑 (𝑥
1
, 𝑇𝑥
1
)] 𝑑 (𝑥

2
, 𝑇𝑥
2
)

1 + 𝑑 (𝑥
1
, 𝑥
2
)

(104)

for all 𝑥
1
⪯ 𝑥
2
in𝑋, where 𝑎 + 𝑏 < 1. Then 𝑇 has a fixed point.

Remark 42. (1) Similarly we may obtain many results as an
immediate consequence of Theorems 38 and 39.

(2) If in Corollary 41 we put 𝑏 = 0, then Theorems 2.1
and 2.2 of [23] are obtained. If 𝑎 = 0 in Corollary 41, we get
Theorem 5 in [11].
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orems in partially ordered sets and applications to ordinary dif-
ferential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.

[24] S. Sadiq Basha, “Extensions of Banach’s contraction principle,”
Numerical Functional Analysis and Optimization, vol. 31, no. 4–
6, pp. 569–576, 2010.

[25] S. S. Basha, “Best proximity point theorems on partially ordered
sets,” Optimization Letters, vol. 7, no. 5, pp. 1035–1043, 2013.

[26] S. S. Basha and N. Shahzad, “Best proximity point theorems
for generalized proximal contractions,” Fixed Point Theory and
Applications, vol. 2012, article 42, 9 pages, 2012.

[27] P. Salimi, A. Latif, and N. Hussain, “Modified 𝛼-𝜓-contractive
mappings with applications,” Fixed Point Theory and Applica-
tions, vol. 2013, article 151, 2013.

[28] B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for 𝛼-
𝜓-contractive typemappings,”Nonlinear Analysis, vol. 75, no. 4,
pp. 2154–2165, 2012.

[29] W. Sanhan, C. Mongkolkeha, and P. Kumam, “Generalized
proximal 𝜓-contraction mappings and best proximity points,”
Abstract and Applied Analysis, vol. 2012, Article ID 896912, 19
pages, 2012.

[30] V. S. Raj, “A best proximity point theorem forweakly contractive
non-self-mappings,” Nonlinear Analysis, vol. 74, no. 14, pp.
4804–4808, 2011.

[31] V. Sankar Raj and P. Veeramani, “Best proximity pair theorems
for relatively nonexpansive mappings,” Applied General Topol-
ogy, vol. 10, no. 1, pp. 21–28, 2009.

[32] T. Suzuki, M. Kikkawa, and C. Vetro, “The existence of best
proximity points in metric spaces with the property UC,” Non-
linear Analysis, vol. 71, no. 7-8, pp. 2918–2926, 2009.

[33] N.Hussain, A. Latif, andM.H. Shah, “Coupled and tripled coin-
cidence point results without compatibility,” Fixed Point The-
ory and Applications, vol. 2012, article 77, 9 pages, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


