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An ideal 𝐼 is a hereditary and additive family of subsets of positive integers N. In this paper, we will introduce the concept of
generalized random 𝑛-normed space as an extension of random 𝑛-normed space. Also, we study the concept of lacunary mean
(𝐿)-ideal convergence and 𝐿-ideal Cauchy for sequences of complex numbers in the generalized random 𝑛-norm. We introduce
𝐼
𝐿
-limit points and 𝐼

𝐿
-cluster points. Furthermore, Cauchy and 𝐼

𝐿
-Cauchy sequences in this construction are given. Finally, we find

relations among these concepts.

1. Introduction

The sets of natural numbers and complex numbers will be
denoted by N and C, respectively. Fast [1] and Steinhaus
[2] independently introduced the notion of statistical
convergence for sequences of real numbers, which is a
generalization of the concept of convergence. The concept
of statistical convergence is a very valuable functional
tool for studying the convergence problems of numerical
sequences through the concept of density. Afterward, several
generalizations and applications of this concept have been
presented by different authors (see [3–6]). Kostyrko et al.
[7] presented a generalization of the concept of statistical
convergence with the help of an ideal 𝐼 of subsets of the
set of natural numbers N, and more is studied in [8–11].
This concept of ideal convergence plays a fundamental role
not only in pure mathematics but also in other branches
of science concerning mathematics, mainly in information
theory, computer science, dynamical systems, geographic
information systems, and populationmodelling. Menger [12]
generalized the metric axioms by associating a distribution
function with each pair of points of a set.This system is called

a probabilistic metric space. By using the concept of Menger,
Šerstnev [13] introduced the concept of probabilistic normed
spaces. It provides an important area into which many
essential results of linear normed spaces can be generalized;
see [14]. Later, Alsina et al. [15] presented a new definition
of probabilistic normed space which includes the definition
of normed space which includes the definition of Šerstnev
as a special case. The concept of ideal convergence for
single and double sequences of real numbers in probabilistic
normed space was introduced and studied by Mursaleen
and Mohiuddine [16]. Mursaleen and Alotaibi [17] studied
the notion of ideal convergence for single and double
sequences in random 2-normed spaces, respectively. For
more details and linked concept, we refer to [18–26]. In
[27, 28], Gähler introduced a gorgeous theory of 2-normed
and 𝑛-normed spaces in the 1960s; we have studied these
subjects and constructed some sequence spaces defined by
ideal convergence in 𝑛-normed spaces [29, 30]. Another
important alternative of statistical convergence is the notion
of lacunary statistical convergence introduced by Fridy and
Orhan [31]. Recently, Mohiuddine and Aiyub [4] studied
lacunary statistical convergence by introducing the concept
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Θ-statistical convergence in random 2-normed space.
Their work can be considered as a particular generalization
of the statistical convergence. In [32], Mursaleen and
Mohiuddine generalized the idea of lacunary statistical
convergence with respect to the intuitionistic fuzzy normed
space, and Debnath [33] investigated lacunary ideal
convergence in intuitionistic fuzzy normed linear spaces.
Also, lacunary statistically convergent double sequences in
probabilistic normed space were studied by Mohiuddine and
Savaş in [34]. Jebril and Dutta [35] introduced the concept of
random 𝑛-normed space. In this paper, we firstly give some
basic definitions and properties of random 𝑛-normed space
in Section 2. In Section 3, we define a new and interesting
notion of generalized random 𝑛-normed spaces; convergent
sequences in it are introduced and we provide some results
on it. In Section 4, we study lacunary mean (𝐿)-ideal conver-
gence and 𝐿-ideal Cauchy for sequences of complex numbers
in the generalized random 𝑛-norm. Finally, in Section 5, we
introduce 𝐼

𝐿
-limit points and 𝐼

𝐿
-cluster points. Moreover,

Cauchy and 𝐼
𝐿
-Cauchy sequences in this framework are

given, and we find relations among these concepts.

2. Definitions and Preliminaries

For the reader’s expediency, we restate some definitions and
results that will be used in this paper.

The notion of statistical convergence depends on the
density (asymptotic or natural) of subsets of N.

Definition 1. A subset 𝐸 of N is said to have natural density
𝛿(𝐸) if

𝛿 (𝐸) = lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐸}| exists, (1)

where |𝐸| denotes the cardinality of the set 𝐸.

Definition 2. A sequence (𝑥
𝑘
) is statistically convergent to ℓ

if, for every 𝜀 > 0,

𝛿 ({𝑘 ∈ N :
𝑥𝑘 − ℓ

 ≥ 𝜀}) = 0. (2)

In this case, ℓ is called the statistical limit of the sequence (𝑥
𝑘
).

Definition 3. A nonempty family of sets 𝐼 ⊆ 2
N is said to be

an ideal on N if and only if

(a) 𝜙 ∈ 𝐼,
(b) for each 𝐴, 𝐵 ∈ 𝐼 one has 𝐴 ∪ 𝐵 ∈ 𝐼,
(c) for each 𝐵 ∈ 𝐼 and 𝐴 ⊂ 𝐵, implies 𝐴 ∈ 𝐼.

Definition 4. An ideal 𝐼 is an admissible ideal if {𝑥} ∈ 𝐼 for
each 𝑥 ∈ N.

Definition 5. An ideal 𝐼 ⊆ 2
N is said to be nontrivial if 𝐼 ̸= 𝜙

and N ∉ 𝐼.

Definition 6. A nonempty family of sets 𝐹 ⊆ 2
N is said to be

a filter on N if and only if

(a) 𝜙 ∉ 𝐹,

(b) for each 𝐴, 𝐵 ∈ 𝐹 one has 𝐴 ∩ 𝐵 ∈ 𝐹,
(c) for each 𝐴 ∈ 𝐹 and 𝐵 ⊃ 𝐴, implies 𝐵 ∈ 𝐹.

For each ideal 𝐼, there is a filter 𝐹(𝐼) corresponding to 𝐼;
that is, 𝐹(𝐼) = {𝐾 ⊆ N : N − 𝐾 ∈ 𝐼}.

Example 7. If we take 𝐼 = 𝐼
𝑓

= {𝐴 ⊆ N : 𝐴 is a finite subset},
then 𝐼

𝑓
is a nontrivial admissible ideal of N and the corre-

sponding convergence coincides with the usual convergence.

Example 8. If we get 𝐼 = 𝐼
𝛿

= {𝐴 ⊆ N : 𝛿(𝐴) = 0},
where 𝛿(𝐴) denote the asymptotic density of the set 𝐴, then
𝐼
𝛿
is a nontrivial admissible ideal ofN and the corresponding

convergence coincides with the statistical convergence.

Definition 9. A sequence 𝑥 = (𝑥
𝑘
) is said to be 𝐼-convergent

to a real number ℓ if

{𝑘 ∈ N :
𝑥𝑘 − ℓ

 ≥ 𝜀} ∈ 𝐼 for every 𝜀 > 0. (3)

In this case, we write 𝐼 − lim𝑥
𝑘

= ℓ.

Definition 10. By a lacunary sequenceΘ = (𝑖
𝑗
), 𝑗 = 0, 1, 2, . . .,

where 𝑖
0

= 0, one will mean an increasing sequence of
nonnegative integers with 𝑖

𝑗
− 𝑖
𝑗−1

→ ∞ as 𝑗 → ∞,
ℎ
𝑗

= 𝑖
𝑗

− 𝑖
𝑗−1

. The intervals determined by Θ will be denoted
by Λ
𝑗

= (𝑖
𝑗−1

, 𝑖
𝑗
].

Definition 11. A sequence 𝑥 = (𝑥
𝑘
) is said to be lacunary (𝐿)-

statistically convergent to the number ℓ if, for every 𝜀 > 0,
one has

lim
𝑗→∞

1

ℎ
𝑗


{𝑘 ∈ Λ

𝑗
:
𝑥𝑘 − ℓ

 ≥ 𝜀}

= 0. (4)

The notion of lacunary ideal convergence of real sequences
is introduced by Tripathy et al. [36], and Hazarika [37, 38]
introduced the lacunary ideal convergent sequences of fuzzy
real numbers and studied some properties.

Definition 12. Let 𝐼 ⊂ 2
N be a nontrivial ideal. A sequence

𝑥 = (𝑥
𝑘
) is said to be 𝐼

𝐿
-summable to a number ℓ if, for every

𝜀 > 0, the set

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝑥𝑘 − ℓ
 ≥ 𝜀

}

}

}

∈ 𝐼. (5)

Definition 13. Let 𝑛 ∈ N and let 𝑋 be a linear space over the
field 𝐾 of dimension 𝑑, where 𝑑 ≥ 𝑛 ≥ 2 and 𝐾 is the field of
real or complex numbers. A real valued function ‖⋅, . . . , ⋅‖ on
𝑋
𝑛 satisfies the following four conditions:

(1) ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ = 0 if and only if 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
are

linearly dependent in 𝑋;
(2) ‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ is invariant under permutation;

(3) ‖𝛼𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ = |𝛼|‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ for any 𝛼 ∈ 𝐾;

(4) ‖𝑥 + 𝑥

, 𝑥
2
, . . . , 𝑥

𝑛
‖ ≤ ‖𝑥, 𝑥

2
, . . . , 𝑥

𝑛
‖ + ‖𝑥


, 𝑥
2
, . . . , 𝑥

𝑛
‖

is called an 𝑛-norm on 𝑋, and the pair (𝑋; ‖⋅, . . . , ⋅‖) is
called an 𝑛-normed space over the field 𝐾.
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Definition 14. A probability distribution function is a func-
tion 𝐹 that is nondecreasing, left continuous on (0, ∞) such
that 𝐹(0) = 0 and 𝐹(∞) = 1. The family of all probability
distribution functions will be denoted by Δ

+. The space Δ
+ is

partially ordered by the usual pointwise ordering of functions
and has both a maximal element 𝜀

0
and a minimal element

𝜀
∞
; these are given, respectively, by

𝜀
0 (𝑡) = {

0, 𝑡 ≤ 0,

1, 𝑡 > 0,

𝜀
∞ (𝑡) = {

0, 𝑡 < ∞,

1, 𝑡 = ∞.

(6)

There is a natural topology on Δ
+ that is induced by the

modified Lévy metric 𝑑
𝐿
[39, 40]; that is,

𝑑
𝐿 (𝐹, 𝐺) = inf {ℎ : both [𝐹, 𝐺; ℎ] and [𝐺, 𝐹; ℎ] hold} (7)

for all 𝐹, 𝐺 ∈ Δ
+ and ℎ ∈ (0, 1], where [𝐹, 𝐺, ℎ] denote the

condition

𝐺 (𝑡) ≤ 𝐹 (𝑡 + ℎ) + ℎ, for 𝑡 ∈ (0,
1

ℎ
) . (8)

Convergence with respect to this metric is equivalent to weak
convergence of distribution functions; that is, (𝐹

𝑛
) in Δ

+

converges weakly to 𝐹 (written as 𝐹
𝑛

𝜔

→ 𝐹) if and only if
𝐹
𝑛
(𝑡) converges to𝐹(𝑡) at every point of continuity of the limit

function 𝐹. Therefore, one has

𝐹
𝑛

𝜔

→ 𝐹 iff 𝑑
𝐿

(𝐹
𝑛
, 𝐹) → 0,

𝐹 (𝑥) > 1 − 𝑥 iff 𝑑
𝐿

(𝐹, 𝜀
0
) < 𝑥 for every 𝑥 > 0.

(9)

Moreover, the metric space (Δ
+
, 𝑑
𝐿
) is compact.

Definition 15. A binary operation ⋆ : [0, 1] × [0, 1] → [0, 1]

is said to be a continuous 𝑡-norm if the following conditions
are satisfied:

(1) ⋆ is associative and commutative,
(2) ⋆ is continuous,
(3) 𝑎 ⋆ 1 = 𝑎 for all 𝑎 ∈ [0, 1],
(4) 𝑎 ⋆ 𝑏 ≤ 𝑐 ⋆ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for each

𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].

Definition 16. Abinary operation⬦ : [0, 1]×[0, 1] → [0, 1] is
said to be a continuous 𝑡-conorm if the following conditions
are satisfied:

(1) ⬦ is associative and commutative,
(2) ⬦ is continuous,
(3) 𝑎 ⬦ 0 = 𝑎 for all 𝑎 ∈ [0, 1],
(4) 𝑎 ⬦ 𝑏 ≤ 𝑐 ⬦ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for each

𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].

Definition 17. Let 𝑋 be a linear space of dimension greater
than one, ⋆ a continuous 𝑡-norm, and 𝜌 a mapping from 𝑋

2

into 𝐷
+. If the following conditions are satisfied:

(1) 𝜌
𝑥,𝑦

= 𝜀
0
if 𝑥 and 𝑦 are linearly dependent,

(2) 𝜌
𝑥,𝑦

= 𝜌
𝑦,𝑥

for every 𝑥 and 𝑦 in 𝑋,
(3) 𝜌
𝛼𝑥,𝑦

(𝑡) = 𝜌
𝑥,𝑦

(𝑡/|𝛼|) for every 𝑡 > 0; 𝛼 ̸= 0 and 𝑥; 𝑦 ∈

𝑋,
(4) 𝜌
𝑥+𝑦,𝑧

(𝑡) ≥ 𝜌
𝑥,𝑧

(𝑡) ⋆ 𝜌
𝑦,𝑧

(𝑡),

then 𝜌 is called a random 2-norm on 𝑋 and (𝑋; 𝜌; ⋆) is called
a random 2-normed space.

Definition 18. Let 𝑋 be a linear space of dimension greater
than one over a real field, ⋆ a continuous 𝑡-norm, and 𝜌 a
mapping from 𝑋

𝑛 into 𝐷
+. If the following conditions are

satisfied:

(1) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

= 𝜀
0

⇔ 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are linearly depen-

dent,
(2) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

is invariant under any permutation of
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
,

(3) 𝜌
𝛼𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) = 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡/|𝛼|) for every 𝑡 > 0; 𝛼 ̸= 0,
(4) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛+𝑥


𝑛
(𝑡 + 𝑠) ≥ 𝜌

𝑥1 ,𝑥2,...,𝑥𝑛
(𝑡) ⋆ 𝜌

𝑥1 ,𝑥2,...,𝑥

𝑛
(𝑠),

then 𝜌 is called a random 𝑛-norm on 𝑋 and (𝑋; 𝜌; ⋆) is called
a random 𝑛-normed space.

3. Generalized Random 𝑛-Normed Space

Throughout the paper let 𝐼 be an admissible ideal of N.
By generalizing Definition 18, we obtain a new notion of
generalized random 𝑛-normed space as follows.

Definition 19. The five-tuple (𝑋, 𝜌, , ⋆, ⬦) is said to be gener-
alized random 𝑛-normed linear space or in short GR𝑛NLS if
𝑋 is a linear space over the field of complex numbersC, ⋆ is a
continuous 𝑡-norm, ⬦ is a continuous 𝑡-conorm, and 𝜌,  are
two mappings on 𝑋

𝑛
× (0, ∞) into 𝐷

+
× (0, ∞) satisfying the

following conditions for every 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 and
for each 𝑠, 𝑡 ∈ (0, ∞):

(1) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

+ 
𝑥1 ,𝑥2,...,𝑥𝑛

≤ 𝜀
0
,

(2) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

≥ 𝜀
∞
,

(3) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

= 𝜀
0
if and only if 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
are linearly

dependent,
(4) 𝜌
𝛼𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) = 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡/|𝛼|) for each 𝛼 ∉ C \ 0,
(5) 𝜌
𝑥1 ,𝑥2,...,𝑥


𝑛
(𝑡) ⋆ 𝜌

𝑥1 ,𝑥2,...,𝑥𝑛
(𝑠) ≤ 𝜌

𝑥1 ,𝑥2,...,𝑥

𝑛+𝑥𝑛

(𝑡 + 𝑠),
(6) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(⋅) : (0, ∞) → [0, 1] is continuous,
(7) 𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) is invariant under any permutation of
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
),

(8) 
𝑥1 ,𝑥2 ,...,𝑥𝑛

(𝑡) ≥ 𝜀
∞
,

(9) 
𝑥1 ,𝑥2 ,...,𝑥𝑛

= 𝜀
∞
if and only if 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
are linearly

dependent,
(10) 

𝛼𝑥1 ,𝑥2 ,...,𝑥𝑛
(𝑡) = 

𝑥1 ,𝑥2 ,...,𝑥𝑛
(𝑡/|𝛼|) for each 𝛼 ∉ C \ 0,
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(11) (𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛
, 𝑡) ⬦ (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑠) ≥

(𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛
+ 𝑥
𝑛
, 𝑡 + 𝑠),

(12) 
𝑥1 ,𝑥2,...,𝑥𝑛

(⋅) : (0, ∞) → [0, 1] is continuous,
(13) 𝜌

𝑥1,𝑥2 ,...,𝑥𝑛
(𝑡) is invariant under any permutation of

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

In this case, (𝜌, ) is called generalized random 𝑛-norm on 𝑋

and we denote it by (𝜌, )
𝑛
.

Example 20. Let (𝑋, ‖⋅, . . . , ⋅‖) be an 𝑛-normed linear space.
Put 𝑎⋆𝑏 = min{𝑎, 𝑏} and 𝑎⬦𝑏 = max{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0, 1],
𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) = 𝑡/(𝑡 + ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖), and 

𝑥1 ,𝑥2 ,...,𝑥𝑛
(𝑡) =

‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖/(𝑡 + ‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖). Then, (𝑋, 𝜌, , ⋆, ⬦) is

GR𝑛NLS.

Proof. For all 𝑡, 𝑠 ∈ (0, ∞), we have the following.
(1) Evidently, 𝜌

𝑥1,𝑥2 ,...,𝑥𝑛
(𝑡) + 

𝑥1 ,𝑥2 ,...,𝑥𝑛
(𝑡) ≤ 1.

(2) Visibly, 𝜌
𝑥1,𝑥2 ,...,𝑥𝑛

(𝑡) ≥ 0.
(3) And

𝜌
𝑥1,𝑥2 ,...,𝑥𝑛

(𝑡) = 1 ⇐⇒
𝑡

𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



= 1

⇐⇒ 𝑡 = 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



⇐⇒
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 = 0

⇐⇒ 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are linearly dependent.

(10)

(4) While ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ is invariant under any permu-

tation of (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), then 𝜌

𝑥1 ,𝑥2,...,𝑥𝑛
(𝑡) is invariant

under any permutation of (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

(5) Consider

𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(
𝑡

|𝛼|
) =

𝑡/ |𝛼|

𝑡/ |𝛼| +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



=
𝑡

𝑡 + |𝛼|
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



=
𝑡

𝑡 +
𝛼𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



= 𝜌
𝑥1,𝑥2 ,...,𝑥𝑛

(
𝑡

|𝛼|
) .

(11)

(6) Suppose that, without loss of generality,

𝜌
𝑥1 ,𝑥2,...,𝑥


𝑛
(𝑡) ≤ 𝜌

𝑥1 ,𝑥2,...,𝑥𝑛
(𝑠) .

⇒
𝑡

𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



≤
𝑠

𝑠 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



⇒ 𝑡 (𝑠 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

)

≤ 𝑠 (𝑡 +

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


)

⇒ 𝑡 (
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

) ≤ 𝑠 (

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


)

⇒
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 =
𝑠

𝑡


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


.

(12)

As a result,

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 +

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



≤
𝑠

𝑡


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


+


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



=
𝑠 + 𝑡

𝑡


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


.

(13)

However,


𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



≤
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 +

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



≤
𝑠 + 𝑡

𝑡


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


,

⇒


𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



𝑠 + 𝑡
≤


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡

⇒ 1 +


𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



𝑠 + 𝑡
≤ 1 +


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡

⇒

𝑠 + 𝑡 +

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



𝑠 + 𝑡

≤

𝑡 +

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡

⇒
𝑠 + 𝑡

𝑠 + 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥
𝑛



≥
𝑡

𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



⇒ 𝜌
𝑥1,𝑥2 ,...,𝑥𝑛+𝑥


𝑛
(𝑠 + 𝑡)

≥ min {𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑠) , 𝜌
𝑥1 ,𝑥2,...,𝑥


𝑛
(𝑡)} .

(14)

(7) Evidently, 𝜌
𝑥1,𝑥2 ,...,𝑥𝑛

(⋅) : (0, ∞) → [0, 1] is continu-
ous.

(8) 
𝑥1 ,𝑥2 ,...,𝑥𝑛

(𝑡) ≥ 0.

(9) And


𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) = 0 ⇐⇒

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



= 0

⇐⇒
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 = 0

⇐⇒ 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are linearly dependent.

(15)

(10) As ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ is invariant under any permutation

of (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), then 

𝑥1 ,𝑥2,...,𝑥𝑛
(𝑡) is invariant under

any permutation of (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).
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(11) Consider


𝛼𝑥1 ,𝑥2 ,...,𝑥𝑛

(𝑡) =

𝛼𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



𝑡 +
𝛼𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



=
|𝛼|

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



𝑡 + |𝛼|
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



=

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



𝑡/ |𝛼| +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



= 
𝑥1 ,𝑥2 ,...,𝑥𝑛

(
𝑡

|𝛼|
) .

(16)

(12) Presume, without loss of generality, that


𝑥1 ,𝑥2,...,𝑥𝑛

(𝑠) ≤ 𝜌
𝑥1 ,𝑥2,...,𝑥


𝑛
(𝑡) .

⇒

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



𝑠 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



≤


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



⇒
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 (𝑡 +

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


)

≤

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


(𝑠 +

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

)

⇒ 𝑡
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 ≤ 𝑠

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛


.

(17)

Currently,

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



𝑠 + 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥
𝑛



−


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



≤

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 +

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑠 + 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥
𝑛



−


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



=

𝑡
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

 − 𝑠

𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



(𝑠 + 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥
𝑛

) (𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

)
.

(18)

By (17),

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



𝑠 + 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥
𝑛



≤


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



. (19)

In the same way,

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥


𝑛



𝑠 + 𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
+ 𝑥
𝑛



≤


𝑥
1
, 𝑥
2
, . . . , 𝑥



𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



.

⇒ 
𝑥1 ,𝑥2 ,...,𝑥𝑛+𝑥


𝑛
(𝑠 + 𝑡)

≤ max {
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑠) , 𝜌
𝑥1 ,𝑥2,...,𝑥


𝑛
(𝑡)} .

(20)

(13) Clearly, 𝜌
𝑥1,𝑥2,...,𝑥𝑛

(⋅) : (0, ∞) → [0, 1] is continuous.

Remark 21. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. Since ⋆ is a
continuous 𝑡-norm and ⬦ is a continuous 𝑡-conorm, the
system (𝑟, 𝑡)-neighborhoods of 𝜃 (the null vector in 𝑋) with
respect to 𝑡 is

{𝐵 (𝜃, 𝑟, 𝑡) : 𝑡 > 0, 0 < 𝑟 < 1} , (21)

where

𝐵 (𝜃, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝜌
𝑦,𝑥1,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝑟,


𝑦,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) < 𝑟, for 𝑡 > 0}

(22)

defined a first countable Hausdorff topology on 𝑋, called
the (𝜌, )

𝑛
-topology. Hence, the (𝜌, )

𝑛
-topology can be

completely specified by means of (𝜌, )
𝑛
-convergence of

sequences.

Definition 22. Let (𝑋, 𝜌, , ⋆, ⬦) beGR𝑛NLS, and let 𝑟 ∈ (0, 1)

and 𝑥 ∈ 𝑋. The set

𝐵 (𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝜌
𝑦−𝑥,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝑟,


𝑦−𝑥,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝑟, for 𝑡 > 0}

(23)

is called open ball with center 𝑥 and radius 𝑟 with respect to
𝑡.

Definition 23. Let (𝑋, 𝜌, , ∗, ⬦) be GR𝑛NLS. A sequence 𝑥 =

(𝑥
𝑘
) in 𝑋 is (𝜌, )

𝑛
-convergent to ℓ ∈ 𝑋 with respect to the

generalized random 𝑛-norm (𝜌, )
𝑛
if, for 𝑟 ∈ (0, 1) and every

𝑡 > 0, there exists 𝑘
0
such that

𝜌
𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 1 − 𝑟,


𝑥𝑘−ℓ,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≤ 𝑟

∀𝑘 ≥ 𝑘
0
.

(24)

In this case, one writes (𝜌, )
𝑛

− lim𝑥 = ℓ.

Theorem 24. Let (𝑋, ‖⋅, . . . , ⋅‖) be an 𝑛-normed linear space.
Put 𝑎⋆𝑏 = min{𝑎, 𝑏} and 𝑎⬦𝑏 = max{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0, 1],
𝜌
𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) = 𝑡/(𝑡 + ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖), and 

𝑥1 ,𝑥2 ,...,𝑥𝑛
(𝑡) =

‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖/(𝑡+‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖).Then, for every sequence

𝑥 = (𝑥
𝑘
) and nonzero 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ 𝑋, one has

lim
𝑘→∞

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑘

− ℓ
 = 0 ⇒ (𝜌, )

𝑛
− lim𝑥

𝑘
= ℓ.

(25)

Proof. Assume that lim
𝑘→∞

‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑘

− ℓ‖ = 0.
Then, for every 𝜀 > 0 and for every 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ 𝑋, there

exists a positive integer 𝑘
0
such that

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑘

− ℓ
 < 𝜀 for each 𝑘 ≥ 𝑘

0
, (26)
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and, therefore, for any given 𝑡 > 0,

𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑘

− ℓ


𝑡
<

𝑡 + 𝜀

𝑡

(27)

which is the same as

𝑡

𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑥
𝑘

− ℓ


>
𝑡

𝑡 + 𝜀
= 1 −

𝜀

𝑡 + 𝜀
. (28)

By letting 𝑟 = 𝜀/(𝑡 + 𝜀) ∈ (0, 1), we have

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 1 − 𝑟 ∀𝑘 ≥ 𝑘
0
. (29)

And since 𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) = 1 − 
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡), then we
have


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 𝑟 ∀𝑘 ≥ 𝑘
0
. (30)

This means (𝜌, )
𝑛

− lim𝑥
𝑘

= ℓ.

4. 𝐼
(𝜌,)𝑛

𝐿
-Cauchy and Convergence in GR𝑛NLS

Remark 25. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. Since ⋆ is a
continuous 𝑡-norm and ⬦ is a continuous 𝑡-conorm, the
system (𝑟, 𝑡)

𝐿

𝑛
-neighborhoods of 𝜃 with respect to 𝑡 are

{𝐵
𝐿 (𝜃, 𝑟, 𝑡) : 𝑡 > 0, 0 < 𝑟 < 1} , (31)

where

𝐵
𝐿 (𝜃, 𝑟, 𝑡) =

{

{

{

𝑦 ∈ 𝑋 :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑦𝑘,𝑥1,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝑟,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑦𝑘,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝑟, for 𝑡 > 0

}

}

}

(32)

determines a first countable Hausdorff topology on 𝑋,
called the (𝜌, )

𝐿

𝑛
-topology. Thus, the (𝜌, )

𝐿

𝑛
-topology can

be completely specified by means of (𝜌, )
𝐿

𝑛
-convergence of

sequences.

Definition 26. Let (𝑋, 𝜌, , ⋆, ⬦) beGR𝑛NLS, and let 𝑟 ∈ (0, 1)

and 𝑥 ∈ 𝑋. The set

𝐵
𝐿 (𝑥, 𝑟, 𝑡) =

{

{

{

𝑦 ∈ 𝑋 :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑦𝑘−𝑥,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝑟,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑦𝑘−𝑥,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝑟, for 𝑡 > 0

}

}

}

(33)

is called open ball with center 𝑥 and radius 𝑟 with respect to
𝑡.

Definition 27. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. A sequence 𝑥 =

(𝑥
𝑘
) in 𝑋 is 𝐿-convergent to ℓ ∈ 𝑋 with respect to the

generalized random 𝑛-norm (𝜌, )
𝑛
if, for 𝜀 ∈ (0, 1) and every

𝑡 > 0, there exists 𝑗
0
such that

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 𝜀

∀𝑗 ≥ 𝑗
0
.

(34)

In this case, one writes (𝜌, )
𝐿

𝑛
− lim𝑥 = ℓ.

Definition 28. Let 𝐼 ⊂ 2
N and let (𝑋, 𝜌, , ⋆, ⬦) beGR𝑛NLS. A

sequence𝑥 = (𝑥
𝑘
) of elements in𝑋 is said to be 𝐼

𝐿
-convergent

to ℓ ∈ 𝑋 with respect to the generalized random 𝑛-norm
(𝜌, )
𝑛
if, for every 𝜀 ∈ (0, 1) and 𝑡 > 0, the set

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀 or

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

∈ 𝐼.

(35)

Then, one writes 𝐼
(𝜌,)𝑛

𝐿
− lim𝑥 = ℓ.

Example 29. Let (C, ‖⋅, . . . , ⋅‖) be an 𝑛-normed linear space;
take 𝑎 ⋆ 𝑏 = 𝑎𝑏 and 𝑎 ⬦ 𝑏 = min{𝑎 + 𝑏, 1} for all 𝑎, 𝑏 ∈ [0, 1].
For all 𝑥 ∈ C and every 𝑡 > 0, consider

𝜌
𝑥1,𝑥2 ,...,𝑥𝑛

(𝑡) =
𝑡

𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



,


𝑥1 ,𝑥2,...,𝑥𝑛

(𝑡) =

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



𝑡 +
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛



.

(36)

Then, (C, 𝜌, , ⋆, ⬦) is GR𝑛NLS. If we take 𝐼 = 𝐼
𝛿
, define a

sequence 𝑥 = (𝑥
𝑘
) as follows:

𝑥
𝑘

= {
1, if 𝑘 = 𝑖

8
, 𝑖 ∈ N,

0, otherwise.
(37)

Hence, for every 𝜀 ∈ (0, 1) and 𝑡 > 0, we have

𝛿 (

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀

or 1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

) = 0.

(38)

So 𝐼
(𝜌,)𝑛

𝐿
− lim𝑥 = 0.

Definition 30. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. A sequence
𝑥 = (𝑥

𝑘
) in 𝑋 is said to be a Cauchy sequence with respect
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to the generalized random 𝑛-norm (𝜌, )
𝐿

𝑛
if, for every 𝑡 > 0

and 𝜀 ∈ (0, 1), there exists 𝑗
0

∈ N satisfying

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−𝑥𝑚 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−𝑥𝑚 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) < 𝜀

∀𝑗, 𝑚 ≥ 𝑘
0
.

(39)

Definition 31. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. A sequence 𝑥 =

(𝑥
𝑘
) in 𝑋 is said to be an 𝐼

𝐿
-Cauchy sequence with respect to

the generalized random 𝑛-norm (𝜌, )
𝐿

𝑛
if, for every 𝑡 > 0 and

𝜀 ∈ (0, 1), there exists 𝑗
0

∈ N satisfying

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−𝑥𝑚 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−𝑥𝑚 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀

}

}

}

∈ 𝐹 (𝐼) .

(40)

Theorem 32. Let 𝐼 ⊂ 2
N, let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS, and

let 𝑥 = (𝑥
𝑘
) be a sequence in 𝑋; then, for every 𝜀 > 0 and 𝑡 > 0,

one has the following:

(1) 𝐼
(𝜌,)𝑛

𝐿
− lim𝑥 = ℓ,

(2) {𝑗 ∈ N : (1/ℎ
𝑗
) ∑
𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀} ∈ 𝐼

and {𝑗 ∈ N : (1/ℎ
𝑗
) ∑
𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 𝜀} ∈ 𝐼,

(3) {𝑗 ∈ N : (1/ℎ
𝑗
) ∑
𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 1 − 𝜀 and
(1/ℎ
𝑗
) ∑
𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 𝜀} ∈ 𝐹(𝐼),

(4) {𝑗 ∈ N : (1/ℎ
𝑗
) ∑
𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 1 − 𝜀} ∈

𝐹(𝐼) and {𝑗 ∈ N : (1/ℎ
𝑗
) ∑
𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤

𝜀} ∈ 𝐹(𝐼),
(5) 𝐼
𝐿

− lim
𝑘
𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) = 1 and
𝐼
𝐿

− lim
𝑘

𝑥𝑘−ℓ,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) = 0.

The proof is easy, so it is omitted.

Theorem 33. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS and let 𝑥 = (𝑥
𝑘
)

be a sequence in 𝑋. If (𝜌, )
𝐿

𝑛
− lim𝑥 exists, then it is unique.

Proof. Suppose that (𝜌, )
𝐿

𝑛
−lim𝑥 = ℓ

1
and (𝜌, )

𝐿

𝑛
−lim𝑥 = ℓ

2

with ℓ
1

̸= ℓ
2
. Give 𝜀 ∈ (0, 1) and choose 𝜆 ∈ (0, 1) such that

(1 − 𝜆) ⋆ (1 − 𝜆) > 1 − 𝜀 and 𝜆 ⬦ 𝜆 < 𝜀. Then, for each 𝑡 > 0,
there exists 𝑗

1
∈ N such that

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ1 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ1 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) < 𝜀

∀𝑗 ≥ 𝑗
1
.

(41)

Also, there exists 𝑗
2

∈ N such that

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ2 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ2 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀

∀𝑗 ≥ 𝑗
2
.

(42)

Now, consider 𝑗
0

= max{𝑗
1
, 𝑗
2
}. Then, for 𝑗 ≥ 𝑗

0
, we find a

𝑠 ∈ N such that

𝜌
𝑥𝑠−ℓ1 ,𝑥1,𝑥2,...,𝑥𝑛−1

(
𝑡

2
) >

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ1 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(
𝑡

2
) ≥ 1 − 𝜆,

𝜌
𝑥𝑠−ℓ2 ,𝑥1,𝑥2,...,𝑥𝑛−1

(
𝑡

2
) >

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ2 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(
𝑡

2
) ≥ 1 − 𝜆.

(43)

Then, we get

𝜌
ℓ1−ℓ2 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 𝜌
𝑥𝑠−ℓ1 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(
𝑡

2
)

⋆ 𝜌
𝑥𝑠−ℓ2 ,𝑥1,𝑥2,...,𝑥𝑛−1

(
𝑡

2
)

> (1 − 𝜆) ⋆ (1 − 𝜆) > 1 − 𝜀.

(44)

Since 𝜀 > 0 is arbitrary, we have 𝜌
ℓ1−ℓ2 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) = 1 for
all 𝑡 > 0. By using a similar technique, it can be proved that

ℓ1−ℓ2 ,𝑥1,𝑥2,...,𝑥𝑛−1

(𝑡) = 0 for all 𝑡 > 0; hence, ℓ
1

= ℓ
2
.

Theorem 34. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS and let 𝑥 = (𝑥
𝑘
)

be a sequence in 𝑋. Then, one has

(𝜌, )
𝐿

𝑛
− lim𝑥 = ℓ ⇒ 𝐼

(𝜌,)𝑛

𝐿
− lim𝑥 = ℓ. (45)

Proof. Let (𝜌, )
𝐿

𝑛
−lim𝑥 = ℓ, and, then, for all 𝑡 > 0 and given

𝜀 ∈ (0, 1), there exists 𝑗
0

∈ N such that

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀

∀𝑗 ≥ 𝑗
0
.

(46)

Since 𝐼 is an admissible ideal and

𝐺 =

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀 or

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

⊆ {1, 2, 3, . . . , 𝑗
0

− 1} ,

(47)

we get 𝐺 ∈ 𝐼. So 𝐼
(𝜌,)𝑛

𝐿
− lim𝑥 = ℓ.
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Theorem 35. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS and let 𝑥 = (𝑥
𝑘
)

be a sequence in 𝑋. If 𝐼
(𝜌,)𝑛

𝐿
− lim𝑥 exists, then it is unique.

The proof follows by usingTheorems 33 and 34.

Theorem 36. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS and let 𝑥 = (𝑥
𝑘
)

be a sequence in 𝑋. If (𝜌, )
𝐿

𝑛
− lim𝑥 = ℓ, then there exists a

subsequence (𝑥
𝑚𝑘

) of 𝑥 = (𝑥
𝑘
) such that (𝜌, )

𝑛
− lim𝑥

𝑚𝑘
= ℓ.

Proof. Let (𝜌, )
𝐿

𝑛
− lim𝑥 = ℓ. Then, for all 𝑡 > 0 and given

𝜀 ∈ (0, 1), there exists 𝑗
0

∈ N such that

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) < 𝜀

∀𝑗 ≥ 𝑗
0
.

(48)

Observably, for each 𝑗 ≥ 𝑗
0
, we can take an𝑚

𝑘
∈ Λ
𝑗
such that

𝜌
𝑥𝑚𝑘
−𝐿,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) >
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ1 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,


𝑥𝑚𝑘
−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) <
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀.

(49)

It follows that (𝜌, )
𝑛

− lim𝑥
𝑚𝑘

= ℓ.
We create the following two results without proofs, since

they can be easily recognized.

Theorem 37. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. If a sequence 𝑥 =

(𝑥
𝑘
) in 𝑋 is Cauchy sequence with respect to the generalized

random 𝑛-norm (𝜌, )
𝐿

𝑛
, then it is 𝐼

𝐿
-Cauchy sequence with

respect to the same norm.

Theorem 38. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. If a sequence 𝑥 =

(𝑥
𝑘
) in 𝑋 is Cauchy sequence with respect to the generalized

random 𝑛-norm (𝜌, )
𝐿

𝑛
, then there is a subsequence of 𝑥 = (𝑥

𝑘
)

which is ordinary Cauchy sequence with respect to the norm
(𝜌, )
𝑛
.

5. 𝐼
𝐿

-Limit Point, 𝐼
𝐿

-Cluster Point, and
𝐼
𝐿

-Cauchy Sequence in GR𝑛NLS

Definition 39. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS, and if a
sequence 𝑥 = (𝑥

𝑘
) in 𝑋, then one has the following.

(1) An element ℓ ∈ 𝑋 is said to be 𝐼
𝐿
-limit point of 𝑥 =

(𝑥
𝑘
) if there is a set

M = {𝑚
1

< 𝑚
2

< ⋅ ⋅ ⋅ < 𝑚
𝑘

< ⋅ ⋅ ⋅ } ⊂ N

with M


= {𝑗 ∈ N : 𝑚
𝑘

∈ Λ
𝑗
} ∈ 𝐹 (𝐼) ,

(𝜌, )
𝐿

𝑛
− lim𝑥

𝑚𝑘
= ℓ.

(50)

(2) An element ℓ ∈ 𝑋 is said to be 𝐼
𝐿
-cluster point of 𝑥 =

(𝑥
𝑘
) if, for every 𝑡 > 0 and 𝜀 ∈ (0, 1), one has

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀

}

}

}

∈ 𝐹 (𝐼) .

(51)

By ⋀
(𝜌,)
𝐿
𝑛
(𝑥) we denote the set of all 𝐼

𝐿
-limit points and

⋁
(𝜌,)
𝐿
𝑛
(𝑥) the set of all 𝐼

𝐿
-cluster points in 𝑋, respectively.

Definition 40. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. A sequence 𝑥 =

(𝑥
𝑘
) in𝑋 is said to be 𝐼

∗

𝐿
-Cauchy sequence with respect to the

generalized random 𝑛-norm (𝜌, )
𝐿

𝑛
if

(i) there exists a setM = {𝑚
1

< 𝑚
2

< ⋅ ⋅ ⋅ < 𝑚
𝑘
, . . .} ⊂ N

such thatM = {𝑗 ∈ N : 𝑚
𝑘

∈ Λ
𝑗
} ∈ 𝐹(𝐼);

(ii) the subsequence (𝑥
𝑚𝑘

) of 𝑥 = (𝑥
𝑘
) is a Cauchy

sequence with respect to the generalized random 𝑛-
norm (𝜌, )

𝐿

𝑛
.

Theorem41. Let (𝑋, 𝜌, , ⋆, ⬦) beGR𝑛NLS. For each sequence
𝑥 = (𝑥

𝑘
) in 𝑋, one has

⋀

(𝜌,)
𝐿

𝑛

(𝑥) ⊂ ⋁

(𝜌,)
𝐿

𝑛

(𝑥) . (52)

Proof. Let ℓ ∈ ⋀
(𝜌,)
𝐿
𝑛
(𝑥); then there exists a set M ⊂ N such

that M ∈ 𝐹(𝐼), where M and M are as in Definition 39,
satisfies (𝜌, )

𝐿

𝑛
− lim𝑥

𝑚𝑘
= ℓ. Thus, for every 𝑡 > 0 and

𝜀 ∈ (0, 1), there exists 𝑗
0

∈ N such that
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑚𝑘
−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑚𝑘
−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀

∀𝑗 ≥ 𝑗
0
.

(53)

Thus, we have

𝐺 =

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑚𝑘
−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑚𝑘
−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) < 𝜀

}

}

}

⊇ M

\ {𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑗0
} .

(54)

Since 𝐼 is an admissible ideal, we have

M

\ {𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑗0
} ∈ 𝐹 (𝐼)

and so 𝐺 ∈ 𝐹 (𝐼) . Hence ℓ ∈ ⋁

(𝜌,)
𝐿

𝑛

(𝑥) .
(55)
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Theorem 42. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. For each
sequence 𝑥 = (𝑥

𝑘
) in 𝑋, the set ⋀

(𝜌,)
𝐿
𝑛
(𝑥) is closed set in 𝑋

with respect to the usual topology induced by the generalized
random 𝑛-norm (𝜌, )

𝐿

𝑛
.

Proof. Let 𝑦 ∈ ⋀
(𝜌,)
𝐿
𝑛
(𝑥). Take 𝑡 > 0 and 𝜀 ∈ (0, 1). Then,

there exists ℓ
0

∈ ⋀
(𝜌,)
𝐿
𝑛
(𝑥) ∩ 𝐵

𝐿
(𝑦, 𝜀, 𝑡). Choose 𝛿 > 0 such

that 𝐵
𝐿
(ℓ
0
, 𝛿, 𝑡) ⊂ 𝐵

𝐿
(𝑦, 𝜀, 𝑡). We have

𝐺 =

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−𝑦,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−𝑦,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) < 𝜀

}

}

}

⊇

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ0 ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) > 1 − 𝛿,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ0 ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) < 𝛿

}

}

}

= 𝐻.

(56)

Thus, 𝐻 ∈ 𝐹(𝐼) and so 𝐺 ∈ 𝐹(𝐼). Hence, 𝑦 ∈ ⋀
(𝜌,)
𝐿
𝑛
(𝑥).

Theorem 43. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS and 𝑥 = (𝑥
𝑘
) in

𝑋. Then, the following statements are equivalent:

(1) ℓ is a 𝐼
𝐿
-limit point of 𝑥;

(2) there exist two sequences 𝑦 and 𝑧 in 𝑋 such that

𝑥 = 𝑦 + 𝑧, (𝜌, )
𝐿

𝑛
− lim𝑦 = ℓ,

{𝑗 ∈ N : 𝑘 ∈ Λ
𝑗
, 𝑧
𝑘

̸= 𝜃} ∈ 𝐼,

(57)

where 𝜃 is the zero element in 𝑋.

Proof. Let (1) hold; then, there exist sets M and M as in
Definition 39 such that

M


∉ 𝐼, (𝜌, )
𝐿

𝑛
− lim𝑥

𝑚𝑘
= ℓ. (58)

Define the sequences 𝑦 and 𝑧 as follows:

𝑦
𝑘

= {
𝑥
𝑘
, if 𝑘 ∈ Λ

𝑗
; 𝑗 ∈ M,

ℓ, otherwise,

𝑧
𝑘

= {
𝜃, if 𝑘 ∈ Λ

𝑗
; 𝑗 ∈ M,

𝑥
𝑘

− ℓ, otherwise.

(59)

Consider the case 𝑘 ∈ Λ
𝑗
such that 𝑗 ∈ N−M.Then, for each

𝜀 ∈ (0, 1) and 𝑡 > 0, we get

𝜌
𝑦𝑘−ℓ,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) = 1 > 1 − 𝜀,


𝑦𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) = 0 < 𝜀.

(60)

Thus, in this case,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑦𝑘−ℓ,𝑥1 ,𝑥2 ,...,𝑥𝑛−1

(𝑡) = 1 > 1 − 𝜀,

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑦𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) = 0 < 𝜀.

(61)

For that, (𝜌, )
𝐿

𝑛
− lim𝑦 = ℓ. Now, we have

{𝑗 ∈ N : 𝑘 ∈ Λ
𝑗
, 𝑍
𝑘

̸= 𝜃} ⊂ N − M


and so {𝑗 ∈ N : 𝑘 ∈ Λ
𝑗
, 𝑍
𝑘

̸= 𝜃} ∈ 𝐼.

(62)

Now, suppose that (2) holds. LetM = {𝑗 ∈ N : 𝑘 ∈ Λ
𝑗
, 𝑍
𝑘

=

𝜃}.Then, obviouslyM ∈ 𝐹(𝐼) and so it is an infinite set. Form
the set

M = {𝑚
1

< 𝑚
2

< ⋅ ⋅ ⋅ < 𝑚
𝑘

< ⋅ ⋅ ⋅ } ⊂ N

such that𝑚
𝑘

∈ Λ
𝑗
, 𝑧
𝑚𝑘

= 𝜃.

(63)

Since 𝑥
𝑚𝑘

= 𝑦
𝑚𝑘

and (𝜌, )
𝐿

𝑛
− lim𝑦 = ℓ, we find that (𝜌, )

𝐿

𝑛
−

lim𝑥
𝑚𝑘

= ℓ. This completes the proof.

Theorem 44. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS and let 𝑥 = (𝑥
𝑘
)

be a sequence in 𝑋. Let 𝐼 be a nontrivial ideal. If there is a
𝐼
(𝜌,)𝑛

𝐿
-convergent sequence 𝑦 = (𝑦

𝑘
) in 𝑋 such that {𝑘 ∈ N :

𝑦
𝑘

̸= 𝑥
𝑘
} ∈ 𝐼, then 𝑥 is also 𝐼

(𝜌,)𝑛

𝐿
-convergent.

Proof. Suppose that {𝑘 ∈ N : 𝑦
𝑘

̸= 𝑥
𝑘
} ∈ 𝐼 and 𝐼

(𝜌,)𝑛

𝐿
− lim𝑦 =

ℓ. Then, for every 𝜀 ∈ (0, 1) and 𝑡 > 0, the set

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑦𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀 or

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑦𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

∈ 𝐼.

(64)

For every 0 < 𝜀 < 1 and 𝑡 > 0, we have

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀 or

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

⊆ {𝑘 ∈ N : 𝑦
𝑘

̸= 𝑥
𝑘
}

∪

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑦𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀 or

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑦𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

.

(65)
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As both of the sets of the right-hand side are in 𝐼, we have that

{

{

{

𝑗 ∈ N :
1

ℎ
𝑗

∑

𝑘∈Λ 𝑗

𝜌
𝑥𝑘−ℓ,𝑥1 ,𝑥2,...,𝑥𝑛−1

(𝑡) ≤ 1 − 𝜀 or

1

ℎ
𝑗

∑

𝑘∈Λ 𝑗


𝑥𝑘−ℓ,𝑥1,𝑥2 ,...,𝑥𝑛−1

(𝑡) ≥ 𝜀

}

}

}

∈ 𝐼.

(66)

And the proof of the theorem follows.
The proof of the following result can be easily reputable

from the definitions.

Theorem 45. Let (𝑋, 𝜌, , ⋆, ⬦) be GR𝑛NLS. If a sequence 𝑥 =

(𝑥
𝑘
) in𝑋 is 𝐼

∗

𝐿
-Cauchy sequence with respect to the generalized

random 𝑛-norm (𝜌, )
𝐿

𝑛
, then it is 𝐼

𝐿
-Cauchy sequence also.
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dell’Universitá di Ferrara, vol. 58, no. 2, pp. 331–339, 2012.

[35] I. H. Jebril and H. Dutta, “Generalization of n-Normed space,”
General Mathematics Notes, vol. 1, no. 1, pp. 8–19, 2010.

[36] B. C. Tripathy, B. Hazarika, and B. Choudhary, “Lacunary 𝐼-
convergent sequences,” Kyungpook Mathematical Journal, vol.
52, no. 4, pp. 473–482, 2012.

[37] B. Hazarika, “Lacunary I-convergent sequence of fuzzy real
numbers,”The Pacific Journal of Science and Technology, vol. 10,
no. 2, pp. 203–206, 2009.

[38] B. Hazarika, “Fuzzy real valued lacunary 𝐼-convergent
sequences,” Applied Mathematics Letters, vol. 25, no. 3, pp.
466–470, 2012.

[39] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-
Holland Series in Probability and AppliedMathematics, North-
Holland, New York, NY, USA, 1983.

[40] D. A. Sibley, “A metric for weak convergence of distribution
functions,” The Rocky Mountain Journal of Mathematics, vol. 1,
no. 3, pp. 427–430, 1971.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


