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We study a class of fractional predator-prey systems with Holling II functional response. A unique positive solution of this system is
obtained. In order to prove the asymptotical stability of positive equilibrium for this system, we study the Lyapunov stability theory
of a fractional system.

1. Introduction

We consider the following fractional predator-prey model
with Holling Type II functional response:

𝑑
𝛼

𝑥 (𝑡) = 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡) −
𝛾𝑦 (𝑡)

1 + 𝛽𝑥 (𝑡)
) 𝑑𝑡
𝛼

,

𝑑
𝛼

𝑦 (𝑡) = 𝑦 (𝑡) (−𝑒 +
𝑘𝛾𝑥 (𝑡)

1 + 𝛽𝑥 (𝑡)
) 𝑑𝑡
𝛼

, (0 < 𝛼 ≤ 1) ,

(1)

where 𝑥(𝑡) and𝑦(𝑡) represent the population densities of prey
and predator at time 𝑡, respectively. The parameters 𝑎, 𝑏/𝑎, 𝛾,
𝛽, 𝑒, and 𝑘 are positive constants that stand for prey intrinsic
growth rate, carrying capacity, the maximum ingestion rate,
half-saturation constant, predator death rate, and the conver-
sion factor, respectively. One of the most popular predator-
prey models with Holling Type II functional response is
established in [1, 2]. The asymptotic behavior of a stochas-
tic predator-prey system with Holling Type II functional
response is studied in [3].The existence and asymptotical sta-
bility of equilibria and limit cycles for predator-prey systems
with Holling II are obtained in [4]. A more complicated
case about predator-prey systems is studied in [5, 6]. White
noise is always present in natural world; Liu et al. studied the
asymptotic behavior of a stochastic predator-prey system
with Holling II functional response.

However, in the real world, there are still many problems
that cannot be solved by usual prey-predator model. Some
complexity on multiscale analysis can be simplified by the

fractional order calculus. Fractional differential equations
have been studied in many other fields, for example, eco-
nomic [7], physics [8–10], material [11], and so forth. In this
paper, we present a fractional prey-predator model (1) to
describe the ecosystem which performs well in the practical
problem.

We will study long time behavior of system (1). If 𝑎𝑘𝛾 >

𝑎𝑒𝛽 + 𝑏𝑒, then system (1) has a unique positive equilibrium:

𝑥
∗

=
𝑒

𝑘𝛾 − 𝑒𝛽
, 𝑦

∗

=
𝑘𝛾 (𝑎𝑘𝛾 − 𝑎𝑒𝛽 − 𝑏𝑒)

(𝑘𝛾 − 𝑒𝛽)
2

. (2)

The positive equilibrium is asymptotically stable, which is
proved in Section 5. The fractional derivative of (1) is mod-
ified Riemann-Liouville derivative, which is established in
[12, 13]. There are some good properties on the fractional
derivative to study fractional system, such as the chain rule
and fractional Taylor series.Thedetails ofmodifiedRiemann-
Liouville derivative are given in Section 2. We show that
there is a unique nonnegative solution of (1) in Section 3.
In order to prove that the positive equilibrium is stable, we
give a Lyapunov stability theorem of the fractional system in
Section 4.

2. Preliminaries

2.1. Fractional Derivative via Fractional Difference. For an
introduction to the classical fractional calculus we refer the
reader to [14–17].
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2 Abstract and Applied Analysis

Definition 1. Let 𝑓 : R → R, 𝑥 → 𝑓(𝑥), be a continuous
function, and let ℎ > 0 be a constant discretization span.
Define the forward operator 𝐹𝑊(ℎ); that is, (the symbol :=
means that the left side is defined by the right one)

𝐹𝑊(ℎ) ⋅ 𝑓 (𝑥) := 𝑓 (𝑥 + ℎ) . (3)

Then the fractional difference of order 𝛼, 0 < 𝛼 < 1, of 𝑓(𝑥)
is defined by the expression

Δ
𝛼

𝑓 (𝑥) := (𝐹𝑊 − 1)
𝛼

𝑓 (𝑥)

=

∞

∑

𝑘=0

(−1)
𝑘

(
𝛼

𝑘
)𝑓 (𝑥 + (𝛼 − 𝑘) ℎ) ,

(4)

and its derivative of fractional order is defined by the
expression

𝑓
(𝛼)

(𝑥) = lim
ℎ↓0

Δ
𝛼

𝑓 (𝑥)

ℎ𝛼
, 0 < 𝛼 ≤ 1. (5)

2.2. Modified Riemann-Liouville Derivative. In this section
we briefly review themain notions and results from the recent
fractional calculus proposed by Jumarie [12, 18, 19].

Definition 2 (Riemann-Liouville definition revisited). Refer
to the function of Definition 1. Then its fractional derivative
of order 𝛼 is defined by the expression

𝑓
(𝛼)

(𝑥) :=
1

Γ (−𝛼)
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼−1

(𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉,

𝛼 < 0.

(6)

For positive 𝛼, one will set

𝑓
(𝛼)

(𝑥) = (𝑓
(𝛼−1)

(𝑥))
󸀠

, 0 < 𝛼 < 1

=
1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼

(𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉,

𝑓
(𝛼)

(𝑥) := (𝑓
(𝑛)

(𝑥))
(𝛼−𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1.

(7)

2.3. Useful Relations. Here we give some properties of the
modified Riemann-Liouville derivative (see [13]) which are
used further in this paper.

(i) Consider

Γ (1 + 𝛼𝑘) =: (𝛼𝑘)!. (8)

(ii) Useful differential relation:

𝑑
𝛼

𝑓 ≅ Γ (1 + 𝛼) 𝑑𝑓, 0 < 𝛼 ≤ 1. (9)

(iii) Consider

𝐷
𝛼

𝑥
𝛾

= Γ (1 + 𝛾) Γ
−1

(𝛾 + 1 − 𝛼) 𝑥
𝛾−𝛼

, 𝛾 > 0. (10)

(iv) The chain rule:

(𝑢 (𝑥) V (𝑥))(𝛼) = 𝑢(𝛼) (𝑥) V (𝑥) + 𝑢 (𝑥) V(𝛼) (𝑥) ,

(𝑓 [𝑢 (𝑥)])
(𝛼)

= 𝑓
󸀠

𝑢
(𝑢) 𝑢
(𝛼)

(𝑥) .

(11)

2.4. Integration with respect to 𝑑𝑡
𝛼. The solution of the

equation

𝑑
𝛼

𝑥 = 𝑓 (𝑡) 𝑑𝑡
𝛼

, 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
,

(12)

is defined by the following result (see [13]).

Lemma 3. Let 𝑓(𝑥) denote a continuous function; then the
solution of (12) is defined by the equality

∫

𝑡

0

𝑓 (𝜉) 𝑑𝜉
𝛼

= 𝛼∫

𝑡

0

(𝑡 − 𝜉)
𝛼−1

𝑓 (𝜉) 𝑑𝜉, 0 < 𝜉 ≤ 1. (13)

3. Existence and Uniqueness of
the Nonnegative Solution

Theorem 4. For any initial value (𝑥(0), 𝑦(0)) ∈ 𝑅2
+
, there is a

unique global solution (𝑥(𝑡), 𝑦(𝑡)) of system (1) on 𝑡 ≥ 0.

Proof. Note that the coefficients of system (1) are locally Lip-
schitz continuous for the given initial value (𝑥(0), 𝑦(0)) ∈ 𝑅2;
there is a unique local solution (𝑥(𝑡), 𝑦(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
),

where 𝜏
𝑒
is the explosion time. Hence, we know that (𝑥(𝑡),

𝑦(𝑡)), 𝑡 ∈ [0, 𝜏
𝑒
) is a unique positive local solution of system

(1). To show that this solution is global, we need to show that
𝜏
𝑒
= ∞. Let 𝑚

0
≥ 1 be sufficiently large so that 𝑥(0), 𝑦(0) all

lie within the interval [1/𝑚
0
, 𝑚
0
]. For each integer 𝑚 ≥ 𝑚

0
,

define

𝜏
𝑚
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑥 (𝑡) , 𝑦 (𝑡)}

≤
1

𝑚
or max {𝑥 (𝑡) , 𝑦 (𝑡)} ≥ 𝑚} .

(14)

Clearly, 𝜏
𝑚

is increasing as 𝑚 → ∞. Set 𝜏
∞

=

lim
𝑚→∞

𝜏
𝑚
, where 𝜏

∞
≤ 𝜏
𝑒
. If we can show that 𝜏

∞
= ∞,

then 𝜏
𝑒
= ∞ and (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝑅2

+
for all 𝑡 ≥ 0. In otherwords,

to complete the proof all we need to show is that 𝜏
∞
= ∞. If

this statement is false, then there is a constant𝑇 > 0 such that

𝜏
∞
≤ 𝑇. (15)

Hence there is an integer𝑚
1
≥ 𝑚
0
such that

𝜏
𝑚
≤ 𝑇, ∀𝑚 ≥ 𝑚

1
. (16)

Define a 𝐶2-function 𝑉 : 𝑅2
+
→ 𝑅
+
by

𝑉 (𝑥, 𝑦) = (𝑥 − 𝑐 − 𝑐 log 𝑥
𝑐
) +

1

𝑘
(𝑦 − 1 − log𝑦) , (17)

where 𝑐 is a positive constant to be determined later. Using
the chain rule, we get

𝑑
𝛼

𝑉

𝑑𝑡𝛼
=
𝜕𝑉

𝜕𝑥

𝑑
𝛼

𝑥

𝑑𝑡𝛼
+
𝜕𝑉

𝜕𝑦

𝑑
𝛼

𝑦

𝑑𝑡𝛼

= (𝑥 − 𝑐) (𝑎 − 𝑏𝑥 −
𝛾𝑦

1 + 𝛽𝑥
)
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+
1

𝑘
(𝑦 − 1) (−𝑒 +

𝑘𝛾𝑥

1 + 𝛽𝑥
)

≤ −𝑎𝑐 +
𝑒

𝑘
+ (𝑎 + 𝑏𝑐) 𝑥 − 𝑏𝑥

2

− (
𝑒

𝑘
− 𝛾𝑐) 𝑦.

(18)

Choose 𝑐 = 𝑒/𝑘𝛾 such that (𝑒/𝑘) − 𝛾𝑐 = 0; then

𝑑
𝛼

𝑉

𝑑𝑡𝛼
≤ −𝑎𝑐 +

𝑒

𝑘
+ (𝑎 + 𝑏𝑐) 𝑥 − 𝑏𝑥

2

= −𝑏(𝑥 −
𝑎 + 𝑏𝑐

2𝑏
)

2

+
(𝑎 + 𝑏𝑐)

2

4𝑏
+
𝑒

𝑘
− 𝑎𝑐

≤
(𝑎 + 𝑏𝑐)

2

4𝑏
+
𝑒

𝑘
= 𝐾,

(19)

where𝐾 is a positive constant. Then

𝑑
𝛼

𝑉 ≤ 𝐾𝑑𝑡
𝛼

. (20)

Therefore, on the one hand,

∫

𝜏
𝑚
∧𝑇

0

𝑑
𝛼

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) ≤ ∫

𝜏
𝑚
∧𝑇

0

𝐾𝑑𝑡
𝛼

≤ 𝐾∫

𝑇

0

𝑑𝑡
𝛼

.

(21)

Using the equality (13), we have

∫

𝑇

0

𝑑𝑡
𝛼

= 𝛼∫

𝑇

0

(𝑇 − 𝑡)
𝛼−1

𝑑𝑡, 0 < 𝛼 ≤ 1, (22)

which implies that

∫

𝜏
𝑚
∧𝑇

0

𝑑
𝛼

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) ≤ 𝐾𝛼∫

𝑇

0

(𝑇 − 𝑡)
𝛼−1

𝑑𝑡

= 𝐾𝑇
𝛼

.

(23)

On the other hand, using the differential relation (9),

∫

𝜏
𝑚
∧𝑇

0

𝑑
𝛼

𝑉

= ∫

𝜏
𝑚
∧𝑇

0

Γ (1 + 𝛼) 𝑑𝑉 = Γ (1 + 𝛼)

× [𝑉 (𝑥 (𝜏
𝑚
∧ 𝑇) , 𝑦 (𝜏

𝑚
∧ 𝑇)) − 𝑉 (𝑥 (0) , 𝑦 (0))] .

(24)

Therefore,

𝑉 (𝑥 (𝜏
𝑚
∧ 𝑇) , 𝑦 (𝜏

𝑚
∧ 𝑇)) ≤ 𝑉 (𝑥 (0) , 𝑦 (0)) +

𝐾𝑇
𝛼

Γ (1 + 𝛼)
.

(25)

SetΩ
𝑚
= {𝜏
𝑚
≤ 𝑇} for𝑚 ≥ 𝑚

1
. Note that there is at least one

of 𝑥(𝜏
𝑚
) and 𝑦(𝜏

𝑚
) that equals either𝑚 or 1/𝑚; then

𝑉 (𝑥 (𝜏
𝑚
) , 𝑦 (𝜏

𝑚
))

≥ (𝑚 − 𝑐 − 𝑐 log 𝑚
𝑐
) ∧ (

1

𝑚
− 𝑐 + 𝑐 log (𝑐𝑚))

∧
1

𝑘
(𝑚 − 1 − log𝑚) ∧ 1

𝑘
(
1

𝑚
− 1 + log𝑚) .

(26)

Hence,

𝑉 (𝑥 (0) , 𝑦 (0)) +
1

Γ (1 + 𝛼)
𝐾𝑇
𝛼

≥ (𝑚 − 𝑐 − 𝑐 log 𝑚
𝑐
) ∧ (

1

𝑚
− 𝑐 + 𝑐 log (𝑐𝑚))

∧
1

𝑘
(𝑚 − 1 − log𝑚) ∧ 1

𝑘
(
1

𝑚
− 1 + log 𝑚) .

(27)

Let 𝑚 → ∞ lead to the contradiction that ∞ > 𝑉(𝑥(0),
𝑦(0))+(1/Γ(1+𝛼))𝐾𝑇

𝛼

= ∞. Sowemust therefore have 𝜏
∞
=

∞.

4. Lyapunov Stability Theory

Consider the equation

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝑓 (𝑥) . (28)

Here, 𝑥 and𝑓(𝑥) are 𝑛-dimensional column vectors. Suppose
that 𝑓(0) = 0 and 𝑓(𝑥) is continuous in 𝐺 : |𝑥| < 𝐻 and
satisfies local Lipschitz condition.

Definition 5 (Lyapunov Stability). 𝑥 = 𝜑(𝑡, 𝜏, 𝜉
0
) is said to be

stable (or Lyapunov stable) if, given 𝜀 > 0, there exists a 𝛿 > 0
such that, for any 𝜉 satisfying |𝜉−𝜉

0
| < 𝛿, the solution of (28) is

defined for 𝑡 ≥ 𝜏 and has the following inequality:

󵄨󵄨󵄨󵄨𝜑 (𝑡, 𝜏, 𝜉) − 𝜑 (𝑡, 𝜏, 𝜉0)
󵄨󵄨󵄨󵄨 < 𝜀, 𝑡 ≥ 𝜏. (29)

We remark that a solution which is not stable is said to be
unstable.

Definition 6 (asymptotic stability). 𝑥 = 𝜑(𝑡, 𝜏, 𝜉
0
) is said to

be asymptotically stable if it is Lyapunov stable and there
exists 𝛿

0
> 0 such that, for any 𝜉 satisfying |𝜉 − 𝜉

0
| ≤ 𝛿

0
,

lim
𝑡→∞

(𝜑(𝑡, 𝜏, 𝜉) − 𝜑(𝑡, 𝜏, 𝜉
0
)) = 0.

Define a 𝐶1-scalar function 𝑉(𝑥) in

|𝑥| ≤ ℎ < 𝐻. (30)

Using the chain rule, we have

𝑑
𝛼

𝑉

𝑑𝑡𝛼
=

𝑛

∑

𝑖=1

𝜕𝑉

𝜕𝑥
𝑖

𝑑
𝛼

𝑥
𝑖

𝑑𝑡𝛼
=

𝑛

∑

𝑖=1

𝜕𝑉

𝜕𝑥
𝑖

𝑓
𝑖
(𝑥) . (31)

Theorem 7. Let 𝑉(𝑥) be 𝐶1 function satisfying 𝑉(0) = 0,
𝑉(𝑥) > 0.

(i) If 𝑑𝛼𝑉/𝑑𝑡𝛼 ≤ 0, then system (28) has a stable null
solution;

(ii) if 𝑑𝛼𝑉/𝑑𝑡𝛼 < 0, then system (28) has an asymptotically
stable null solution;

(iii) the null solution of system (28) is unstable provided that
𝑑
𝛼

𝑉/𝑑𝑡
𝛼

> 0.
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Proof. Consider the following.

Case 1 ((𝑑𝛼𝑉/𝑑𝑡𝛼) ≤ 0). Consider

∀𝜀 > 0 (𝜀 ≤ ℎ) , let 𝑟
𝜀
= min
𝜀≤|𝑥|≤ℎ

𝑉 (𝑥) , 𝑟
𝜀
> 0. (32)

Obviously,

∃𝛿 = 𝛿 (𝜀) > 0, s.t. |𝑉 (𝑥) − 𝑉 (0)| = 𝑉 (𝑥) < 𝜀,

for |𝑥| < 𝛿.

(33)

Let 𝜀 = 𝑟
𝜀
; then 𝑉(𝑥) < 𝑟

𝜀
.

Let |𝜉| < 𝛿(𝜀); the right maximal interval of existence of
𝑥 = 𝜑(𝑡, 𝜏, 𝜉) for (30) is 𝜏 ≤ 𝑡 < 𝑡

1
.

That is to say, for 𝜏 ≤ 𝑡 < 𝑡
1
,

𝑑
𝛼

𝑉

𝑑𝑡𝛼
(𝜑 (𝑡, 𝜏, 𝜉)) =

𝑛

∑

𝑖=1

𝜕𝑉

𝜕𝑥
𝑖

(𝜑 (𝑡, 𝜏, 𝜉)) ⋅ 𝑓
𝑖
(𝜑 (𝑡, 𝜏, 𝜉)) ≤ 0.

(34)

Then 𝑑𝛼𝑉 ≤ 0.
Using (9),

𝑑
𝛼

𝑉

𝑑𝑡𝛼
= Γ (1 + 𝛼)

𝑑𝑉

𝑑𝑡
≤ 0. (35)

Therefore,

𝑉 (𝜑 (𝑡, 𝜏, 𝜉)) ≤ 𝑉 (𝜉) < 𝑟
𝜀
, 𝜏 ≤ 𝑡 < 𝑡

1
. (36)

Thus, from (32), we obtain
󵄨󵄨󵄨󵄨𝜑 (𝑡, 𝜏, 𝜉)

󵄨󵄨󵄨󵄨 < 𝜀, 𝜏 ≤ 𝑡 < 𝑡
1
. (37)

Case 2 ((𝑑𝛼𝑉/𝑑𝑡𝛼) < 0).We can easily know that the system
(28) has a stable null solution. We will consider that there
exists 𝛿

0
> 0 such that for any 𝜉 satisfying |𝜉| < 𝛿

0
then

lim
𝑡→+∞

𝜑(𝑡, 𝜏, 𝜉) = 0.
Let 𝛿
0
> 0; then |𝜑(𝑡, 𝜏, 𝜉)| < 𝜀 ≤ ℎ for |𝜉| < 𝛿

0
, 𝑡 ≥ 𝜏.

𝜑(𝑡, 𝜏, 𝜉) is bounded for 𝑡 ≥ 𝜏; then there exists increasing 𝑡
𝑘

which converges to +∞ such that

lim
𝑘→+∞

𝜑 (𝑡
𝑘
, 𝜏, 𝜉) = 𝜉. (38)

Suppose 𝜉 ̸= 0. One obtains

𝜑 (𝑡, 𝜏, 𝜉) ̸= 0, 𝑡 ≥ 𝜏. (39)

Since 𝑑𝛼𝑉/𝑑𝑡𝛼 < 0, then

𝑑
𝛼

𝑉(𝜑 (𝑡, 𝜏, 𝜉))

𝑑𝑡𝛼
< 0, 𝑡 ≥ 𝜏. (40)

Using (9) yields

𝑑
𝛼

𝑉(𝜑 (𝑡, 𝜏, 𝜉))

𝑑𝑡𝛼
= Γ (1 + 𝛼)

𝑑𝑉 (𝜑 (𝑡, 𝜏, 𝜉))

𝑑𝑡
< 0. (41)

Therefore, we have

𝑉(𝜑 (𝑡, 𝜏, 𝜉)) < 𝑉 (𝜉) , 𝑡 > 𝜏. (42)

Besides, for any 𝑡 satisfying 𝑡 > 𝜏,

𝑑
𝛼

𝑉

𝑑𝑡𝛼
< 0, (43)

which implies that

𝑉 (𝜑 (𝑡
𝑘
, 𝜏, 𝜉)) < 𝑉 (𝜑 (𝑡, 𝜏, 𝜉)) , 𝑡

𝑘
> 𝑡. (44)

Then according to (38),

lim
𝑘→∞

𝑉 (𝜑 (𝑡
𝑘
, 𝜏, 𝜉)) = 𝑉 (𝜉) < 𝑉 (𝜑 (𝑡, 𝜏, 𝜉)) , 𝑡 > 𝜏.

(45)

It is easy to verify that, for any 𝑘,

𝜑 (𝑡 + 𝑡
𝑘
, 𝜏, 𝜉) = 𝜑 (𝑡 + 𝜏, 𝜏, 𝜑 (𝑡

𝑘
, 𝜏, 𝜉)) . (46)

Note that

𝜑 (1 + 𝑡
𝑘
, 𝜏, 𝜉) = 𝜑 (1 + 𝜏, 𝜏, 𝜑 (𝑡

𝑘
, 𝜏, 𝜉)) , (47)

when 𝑡 = 1, which implies that

𝑉 (𝜑 (1 + 𝑡
𝑘
, 𝜏, 𝜉)) = 𝑉 (𝜑 (1 + 𝜏, 𝜏, 𝜑 (𝑡

𝑘
, 𝜏, 𝜉))) . (48)

Let 𝑘 → +∞ and note that 𝑉(𝑥) is continuous and 𝜑(𝑡, 𝜏, 𝜉)
is continuous for initial value; we have

𝑉 (𝜑 (1 + 𝑡
𝑘
, 𝜏, 𝜉)) = 𝑉 (𝜑 (1 + 𝜏, 𝜏, 𝜑 (𝑡

𝑘
, 𝜏, 𝜉))) < 𝑉 (𝜉) ,

(49)

which contradicts (45).
Thus, 𝜉 = 0.

Case 3 ((𝑑𝛼𝑉/𝑑𝑡𝛼) > 0). Suppose system (28) has a stable
null solution; then ∀𝜀 > 0, ∃𝛿(𝜀) > 0, |𝜉| < 𝛿(𝜀); we have
|𝜑(𝑡, 𝜏, 𝜉)| < 𝜀, 𝑡 ≥ 𝜏.

Let 𝜉 ̸= 0, |𝜉| < 𝛿(𝜀); according to condition (iii) in
Theorem 7, we know

𝑉 (𝜑 (𝑡, 𝜏, 𝜉)) > 𝑉 (𝜉) > 0, 𝑡 > 𝜏. (50)

Then there exists 𝛼 > 0 satisfying |𝜑(𝑡, 𝜏, 𝜉)| ≥ 𝛼.
Next, we show 𝑑

𝛼

𝑉(𝜑(𝑡, 𝜏, 𝜉))/𝑑𝑡
𝛼

> 0; then there exists
𝑀 > 0, such that

𝑑
𝛼

𝑉 (𝜑 (𝑡, 𝜏, 𝜉))

𝑑𝑡𝛼
≥ 𝑀. (51)

Thus,

𝑉 (𝜑 (𝑡, 𝜏, 𝜉))

> 𝑉 (𝜑 (𝑡, 𝜏, 𝜉)) − 𝑉 (𝜑 (𝜏, 𝜏, 𝜉))

= 𝑉 (𝜑 (𝑡, 𝜏, 𝜉)) − 𝑉 (𝜉)

>
𝑀

Γ (1 + 𝛼)
(𝑡 − 𝜏)

𝛼

, 𝑡 ≥ 𝜏.

(52)

Noting that𝑉(𝜑(𝑡, 𝜏, 𝜉)) is bounded and (𝑀/Γ(1+𝛼))(𝑡−𝜏)
𝛼 is

unboundedwhen 𝑡 ≥ 𝜏, this contradiction shows that the null
solution of system (28) is unstable when 𝑑𝛼𝑉/𝑑𝑡𝛼 > 0.
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Example 8. Consider the stability of the null solution of
system:

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 𝑦
2𝑝−1

,
𝑑
𝛼

𝑦

𝑑𝑡𝛼
= −𝑥
2𝑝−1

, (53)

where 𝑝 ∈ 𝑁. Define a function 𝑉(𝑥, 𝑦) = (𝑥
2𝑝

/2𝑝) +

(𝑦
2𝑝

/2𝑝). Then 𝑉(0, 0) = 0, 𝑉(𝑥, 𝑦) > 0, (𝑥, 𝑦) ̸= (0, 0),
𝑑
𝛼

𝑉/𝑑𝑡
𝛼

= 0. Here by Theorem 7 the system has a stable
solution.

Example 9. Consider the stability of the null solution of
system:

𝑑
𝛼

𝑥

𝑑𝑡𝛼
= 2𝑦 + 𝑦𝑧 − 𝑥

3

,

𝑑
𝛼

𝑦

𝑑𝑡𝛼
= −𝑥 − 𝑥𝑧 − 𝑦

3

,

𝑑
𝛼

𝑧

𝑑𝑡𝛼
= 𝑥𝑦 − 𝑧

3

.

(54)

Define a function𝑉(𝑥, 𝑦, 𝑧) = 𝑝𝑥2+𝑞𝑦2+𝑟𝑧2, where 𝑝, 𝑞, 𝑟 >
0. Obviously,𝑉(0, 0, 0) = 0,𝑉(𝑥, 𝑦, 𝑧) > 0, (𝑥, 𝑦, 𝑧) ̸= (0, 0, 0),
𝑑
𝛼

𝑉/𝑑𝑡
𝛼

= 2(2𝑝−𝑞)𝑥𝑦+2(𝑝−𝑞+𝑟)𝑥𝑦𝑧−2(𝑝𝑥
4

+𝑞𝑦
4

+𝑟𝑧
4

);
we can choose the constants 𝑝, 𝑞, 𝑟 such that (2𝑝 − 𝑞) = 0,
𝑝 − 𝑞 + 𝑟 = 0. Then 𝑑

𝛼

𝑉/𝑑𝑡
𝛼

< 0 and by Theorem 7 the
system has an asymptotically stable null solution.

5. The Stability of the Solution

Since 𝑎𝑘𝛾 > 𝑎𝑒𝛽 + 𝑏𝑒, then there is a positive equilibrium
(𝑥
∗

, 𝑦
∗

) of system (1), and

𝑎 = 𝑏𝑥
∗

+
𝛾𝑦
∗

1 + 𝛽𝑥∗
, 𝑒 =

𝑘𝛾𝑥
∗

1 + 𝛽𝑥∗
. (55)

Let

𝑉
1
(𝑥, 𝑦) = (𝑥 − 𝑥

∗

− 𝑥
∗ log 𝑥

𝑥∗
)

+ 𝑎
1
(𝑦 − 𝑦

∗

− 𝑦
∗ log

𝑦

𝑦∗
) ,

(56)

where 𝑎
1
is a positive constant to be determined later. Then

using the chain rule, we have

𝑑
𝛼

𝑉
1

𝑑𝑡𝛼
=
𝜕𝑉
1

𝜕𝑥

𝑑
𝛼

𝑥

𝑑𝑡𝛼
+
𝜕𝑉
1

𝜕𝑦

𝑑
𝛼

𝑦

𝑑𝑡𝛼
= (𝑥 − 𝑥

∗

) (𝑎 − 𝑏𝑥 −
𝛾𝑦

1 + 𝛽𝑥
)

+ 𝑎
1
(𝑦 − 𝑦

∗

) (−𝑒 +
𝑘𝛾𝑥

1 + 𝛽𝑥
)

= −𝑏(𝑥 − 𝑥
∗

)
2

+
𝛾𝛽𝑦
∗

(1 + 𝛽𝑥∗) (1 + 𝛽𝑥)
(𝑥 − 𝑥

∗

)
2

−
𝛾

1 + 𝛽𝑥
(𝑥 − 𝑥

∗

) (𝑦 − 𝑦
∗

)

+
𝑎
1
𝑘𝛾

(1 + 𝛽𝑥∗) (1 + 𝛽𝑥)
(𝑥 − 𝑥

∗

) (𝑦 − 𝑦
∗

)

≤ −(𝑏 −
𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
) (𝑥 − 𝑥

∗

)
2

−
𝛾

1 + 𝛽𝑥
(1 −

𝑎
1
𝑘

1 + 𝛽𝑥∗
) (𝑥 − 𝑥

∗

) (𝑦 − 𝑦
∗

) .

(57)

Choose 𝑎
1
= (1 + 𝛽𝑥

∗

)/𝑘 such that 1 − (𝑎
1
𝑘/(1 + 𝛽𝑥

∗

)) = 0

yields

𝑑
𝛼

𝑉
1

𝑑𝑡𝛼
≤ −(𝑏 −

𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
) (𝑥 − 𝑥

∗

)
2

. (58)

Let

𝑉
2
(𝑥, 𝑦) =

1

2
[(𝑥 − 𝑥

∗

) +
1

𝑘
(𝑦 − 𝑦

∗

)]

2

,

𝑉
2
(𝑥, 𝑦) = (𝑥 − 𝑥

∗

) +
1

𝑘
(𝑦 − 𝑦

∗

) .

(59)

Note that

𝑑
𝛼

𝑉
2

𝑑𝑡𝛼
=
𝜕𝑉
2

𝜕𝑥

𝑑
𝛼

𝑥

𝑑𝑡𝛼
+
𝜕𝑉
2

𝜕𝑦

𝑑
𝛼

𝑦

𝑑𝑡𝛼

= 𝑥(𝑎 − 𝑏𝑥 −
𝛾𝑦

1 + 𝛽𝑥
) +

𝑦

𝑘
(−𝑒 +

𝑘𝛾𝑥

1 + 𝛽𝑥
)

= −𝑏𝑥 (𝑥 − 𝑥
∗

) + 𝛾
𝑦
∗

(𝑥 − 𝑥
∗

) − 𝑥
∗

(𝑦 − 𝑦
∗

)

1 + 𝛽𝑥∗
.

(60)

Then

𝑑
𝛼

𝑉
2

𝑑𝑡𝛼
= [(𝑥 − 𝑥

∗

) +
1

𝑘
(𝑦 − 𝑦

∗

)]
𝑑
𝛼

𝑉
2

𝑑𝑡𝛼

= [(𝑥 − 𝑥
∗

) +
1

𝑘
(𝑦 − 𝑦

∗

)]

× [−𝑏𝑥 (𝑥 − 𝑥
∗

) + 𝛾
𝑦
∗

(𝑥 − 𝑥
∗

) − 𝑥
∗

(𝑦 − 𝑦
∗

)

1 + 𝛽𝑥∗
]

= −𝑏𝑥(𝑥 − 𝑥
∗

)
2

+ (
𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
) (𝑥 − 𝑥

∗

)
2

−
𝑏

𝑘
(𝑥 − 𝑥

∗

)
2

𝑦 −
𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

+ [
𝛾𝑦
∗

𝑘 (1 + 𝛽𝑥∗)
−

𝛾𝑥
∗

1 + 𝛽𝑥∗
−
𝑏𝑥
∗

𝑘
]

× (𝑥 − 𝑥
∗

) (𝑦 − 𝑦
∗

)

≤ (
𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
) (𝑥 − 𝑥

∗

)
2

−
𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

+ [
𝛾𝑦
∗

𝑘 (1 + 𝛽𝑥∗)
−

𝛾𝑥
∗

1 + 𝛽𝑥∗
−
𝑏𝑥
∗

𝑘
]

× (𝑥 − 𝑥
∗

) (𝑦 − 𝑦
∗

) .

(61)
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Note that

[
𝛾𝑦
∗

𝑘 (1 + 𝛽𝑥∗)
−

𝛾𝑥
∗

1 + 𝛽𝑥∗
−
𝑏𝑥
∗

𝑘
] (𝑥 − 𝑥

∗

) (𝑦 − 𝑦
∗

)

≤
[(𝛾𝑦
∗

/𝑘 (1 + 𝛽𝑥
∗

)) − (𝛾𝑥
∗

/ (1 + 𝛽𝑥
∗

)) − (𝑏𝑥
∗

/𝑘)]
2

2 (𝛾𝑥∗/𝑘 (1 + 𝛽𝑥∗))

× (𝑥 − 𝑥
∗

)
2

+
1

2

𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

:= 𝛿(𝑥 − 𝑥
∗

)
2

+
1

2

𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

.

(62)

Then

𝑑
𝛼

𝑉
2

𝑑𝑡𝛼
≤ (

𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
+ 𝛿) (𝑥 − 𝑥

∗

)
2

−
1

2

𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

.

(63)

Consider a Lyapunov function 𝑉(𝑥, 𝑦) defined by

𝑉 (𝑥, 𝑦) = 𝑉
1
(𝑥, 𝑦) + 𝑎

2
𝑉
2
(𝑥, 𝑦) , (64)

where 𝑎
2
is a positive constant to be determined later. Then

𝑑
𝛼

𝑉

𝑑𝑡𝛼
=
𝑑
𝛼

𝑉
1

𝑑𝑡𝛼
+ 𝑎
2

𝑑
𝛼

𝑉
2

𝑑𝑡𝛼
≤ −(𝑏 −

𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
) (𝑥 − 𝑥

∗

)
2

+ 𝑎
2
(

𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
+ 𝛿) (𝑥 − 𝑥

∗

)
2

−
𝑎
2

2

𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

= −[𝑏 −
𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
− 𝑎
2
(

𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
+ 𝛿)]

× (𝑥 − 𝑥
∗

)
2

−
𝑎
2

2

𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

.

(65)

Choose 𝑎
2
> 0 such that

𝑏 −
𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
− 𝑎
2
(

𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
+ 𝛿)

=
1

2
(𝑏 −

𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
) .

(66)

Then it follows from (65) that

𝑑
𝛼

𝑉

𝑑𝑡𝛼
≤ −

1

2
(𝑏 −

𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
) (𝑥 − 𝑥

∗

)
2

−
𝑎
2

2

𝛾𝑥
∗

𝑘 (1 + 𝛽𝑥∗)
(𝑦 − 𝑦

∗

)
2

.

(67)

According to (66),

𝑏 −
𝛾𝛽𝑦
∗

1 + 𝛽𝑥∗
= 2𝑎
2
(

𝛾𝑦
∗

1 + 𝛽𝑥∗
+
𝑏𝑦
∗

𝑘
+ 𝛿) > 0. (68)

Thus,

𝑑
𝛼

𝑉

𝑑𝑡𝛼
< 0. (69)

Hence, from these arguments, we get the following result.

Theorem 10. If 𝑎𝑘𝛾 > 𝑎𝑒𝛽+𝑏𝑒 such that system (1) has a posi-
tive equilibrium (𝑥

∗

, 𝑦
∗

) and 𝑎
2
is defined as in the proof, then

system (1) is asymptotically stable.
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