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A class of nonlinear neutral delay differential equations is considered. Some new oscillation criteria of all solutions are derived.The
obtained results generalize and extend some of well known previous results in the literature.

1. Introduction and Preliminaries

Consider the nonlinear neutral delay differential equation of
the form

(𝑎 (𝑡) 𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))


+ 𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑥 (𝑡 − 𝜎𝑖)

𝛼𝑖 sign𝑥 (𝑡 − 𝜎

𝑖
) = 0,

(E)

where
𝑎 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) ∈ 𝐶 ([𝑡

0
,∞) ,R+) , 𝜏, 𝜎

𝑖
> 0,

𝛼
𝑖
≥ 0,

𝑛

∑
𝑖=1

𝛼
𝑖
= 1,

𝑖 = 1, 2, . . . , 𝑛.

(1)

Let 𝑚 = max{𝜏, 𝜎
𝑖
, 1 ≤ 𝑖 ≤ 𝑛}. By a solution of (E) we

mean a function 𝑥 ∈ 𝐶[[�̃� − 𝑚,∞),R] for some �̃� ≥ 𝑡
0
such

that 𝑎(𝑡)𝑥(𝑡) − 𝑝(𝑡)𝑥(𝑡 − 𝜏) is continuously differentiable for
𝑡 ≥ �̃� and such that (E) is satisfied for 𝑡 ≥ �̃�. Let �̃� ≥ 𝑡

0
be

a given initial point and let Φ ∈ 𝐶[[�̃� − 𝑚, �̃�],R] be a given
initial function. Then, one can show by using the method of
steps that (E) has a unique solution on [�̃�,∞) satisfying the
initial function

𝑥 (𝑡) = Φ (𝑡) , �̃� − 𝑚 ≤ 𝑡 ≤ �̃�. (2)

As usual, a solution of (E) is said to be oscillatory if it
has arbitrarily large zeros and nonoscillatory if it is either
eventually positive or eventually negative. Equation (E) is said
to be oscillatory if all its solutions are oscillatory.

In the sequel, unless otherwise specified, when we write
a functional inequality, we assume that it holds for all
sufficiently large 𝑡.

In the case where 𝑛 = 1, 𝑎(𝑡) ≡ 1, and 𝑝 and 𝑞 are
constants, Karpuz and Öcalan [1] improved the result of
Ladas and Sficas [2] holding 0 ≤ 𝑝 ≤ 1, 𝑞 ≥ 0, and 𝑞(𝜏 − 𝜎) >
(1/𝑒)(1−𝑝) conditions for oscillation. Also, the case including
continuous functions as coefficients

(𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡
0
, (3)

has been studied by many authors; see, for example, Kubi-
aczyk and Saker [3], Karpuz and Öcalan [1], Ahmed at al. [4],
Chuanxi et al. [5], and Yu et al. [6]. In particular, Chen et al.
[7] succeeded in getting some oscillation theorems for (3)
which involve joint behaviour of 𝑝 and 𝑞 using the condition

𝑝 (𝑡 − 𝜎) 𝑞 (𝑡) ≤ 𝑞 (𝑡 − 𝜏) . (4)

Some further results on the oscillation for neutral delay
differential equations can be found in the excellent paper of
Saker and Kubiaczyk [8] and the recent paper of Ahmed et al.
[9]. See also Shen and Debnath [10] and Wang [11].
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Li [12] extended results of Chen et al. [7] for (E) in the case
when 𝑎(𝑡) ≡ 1 and introduced some new oscillation criteria
under the hypothesis

∫
∞

𝑡0

𝑞 (𝑠) exp{1
𝜏
∫
∞

𝑠

𝑢𝑞 (𝑢) 𝑑𝑢}𝑑𝑠 = ∞. (5)

Kubiaczyk et al. [13] have given some several sufficient
conditions for oscillation of all solutions depending on the
functions 𝑝 and 𝑞 when 𝑝(𝑡) − 1 is allowed to oscillate, while
Zhou [14] has established some new sufficient conditions for
oscillation depending on an additional constant 𝜆.

Here, in this paper, we continue in this direction of
finding some sufficient conditions for (E) to oscillate in the
case when ∫

∞

𝑡0

𝑞(𝑠)𝑑𝑠 < ∞. To this end, let us site the next
two results which will enable us to complete the proofs of our
main results.

Lemma 1 (see [8]). Assume that there exists 𝑡∗ ≥ 𝑡
0
> 0 such

that

𝑝 (𝑡∗ + 𝑛∗𝜏)

𝑎 (𝑡∗ + (𝑛∗ − 1) 𝜏)
≤ 1 𝑓𝑜𝑟 𝑛∗ = 0, 1, 2, . . . . (6)

Let 𝑥(𝑡) be an eventually positive solution of (E). Let

𝑧 (𝑡) = 𝑎 (𝑡) 𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (7)

Then

𝑧 (𝑡) > 0, 𝑧 (𝑡) ≤ 0. (8)

Theorem 2 (see [15]). Assume that 𝑝(𝑡) ≡ 1; then every
solution of (3) oscillates if

∫
∞

𝑡0

𝑠𝑞 (𝑠) ∫
∞

𝑠

𝑞 (𝑢) 𝑑𝑢 𝑑𝑠 = ∞. (9)

2. Main Results

Theorem 3. Assume that condition (6) holds and either

𝑝 (𝑡) + 𝜏𝑞 (𝑡) > 0, (10)

or

𝜏 > 0,

𝑞 (𝑠) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜 𝑓𝑜𝑟 𝑠 ∈ [𝑡, 𝑡 + 𝜏] .
(11)

Thenall solutions of (E) oscillate if and only if the corresponding
differential inequality

(𝑎 (𝑡) 𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))


+ 𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑥 (𝑡 − 𝜎𝑖)

𝛼𝑖 sign𝑥 (𝑡 − 𝜎

𝑖
) ≤ 0

(12)

has no eventually positive solution.

Proof. The sufficiency is obvious. To prove necessity, assume
that 𝑥(𝑡) is an eventually positive solution of (12). We plan to
show that (E) has a nonoscillatory solution. Set 𝑧(𝑡) as in (7).
Then, from (E) we have

𝑧 (𝑡) = −𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑥 (𝑡 − 𝜎𝑖)

𝛼𝑖 sign𝑥 (𝑡 − 𝜎

𝑖
) . (13)

Integrating the last equation from 𝑡 to∞, and using Lemma 1,
we have

𝑧 (𝑡) ≥ ∫
∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑥(𝑡 − 𝜎
𝑖
)
𝛼𝑖𝑑𝑠. (14)

That is,

𝑎 (𝑡) 𝑥 (𝑡) ≥ 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) + ∫
∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑥(𝑡 − 𝜎
𝑖
)
𝛼𝑖𝑑𝑠, (15)

which leads to

𝑥 (𝑡) ≥
1

𝑎 (𝑡)
(𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) + ∫

∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑥(𝑡 − 𝜎
𝑖
)
𝛼𝑖𝑑𝑠) .

(16)

Let 𝑇 > 𝑡
0
be fixed so that (16) holds for all 𝑡 ≥ 𝑇. Set 𝑇

0
=

max{𝜏, 𝜎
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} and consider the set of functions

𝑋 = {𝑢 ∈ 𝐶 ([𝑇 − 𝑇
0
,∞) ,R+) ; 0 ≤ 𝑢 (𝑡) ≤ 1, 𝑡 ≥ 𝑇 − 𝑇

0
} .
(17)

Define a mapping 𝐹 on𝑋 as

(𝐹𝑢) (𝑡)

=

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

1

𝑎 (𝑡) 𝑥 (𝑡)
(𝑝 (𝑡) 𝑢 (𝑡 − 𝜏) 𝑥 (𝑡 − 𝜏)

+∫
∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑥(𝑠 − 𝜎
𝑖
)
𝛼𝑖𝑢(𝑠 − 𝜎

𝑖
)
𝛼𝑖𝑑𝑠) ,

𝑡 ≥ 𝑇,
𝑡 − 𝑇 + 𝑇

0

𝑇
0

(𝐹𝑢) (𝑇) + (1 −
𝑡 − 𝑇 + 𝑇

0

𝑇
0

) ,

𝑇 − 𝑇
0
≤ 𝑡 ≤ 𝑇.

(18)

It is easy to see, by using (16), that 𝐹 maps 𝑋 into itself.
Moreover, for any 𝑢 ∈ 𝑋 we have (𝐹𝑢)(𝑡) > 0 for 𝑇−𝑇

0
≤ 𝑡 ≤

𝑇.
Next, define the sequence 𝑢

𝑖
(𝑡) in𝑋 as follows:

𝑢
0
(𝑡) = 1, 𝑡 ≥ 𝑇 − 𝑇

0
,

𝑢
𝑗+1

(𝑡) = (𝐹𝑢
𝑗
) (𝑡) , 𝑗 = 0, 1, 2, . . . .

(19)

Therefore, by using (16) and a simple induction, we can easily
see that

0 ≤ 𝑢
𝑗+1

(𝑡) ≤ 𝑢
𝑗
(𝑡) ≤ 1, 𝑡 ≥ 𝑇 − 𝑇

0
, 𝑗 = 0, 1, 2, . . . . (20)
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Set

𝑢 (𝑡) = lim
𝑗→∞

𝑢
𝑗
(𝑡) ; 𝑡 ≥ 𝑇 − 𝑇

0
. (21)

Then from Lebesgue’s Dominated Convergence Theorem, it
follows that 𝑢(𝑡) satisfies

𝑢 (𝑡) =
1

𝑎 (𝑡) 𝑥 (𝑡)

× (𝑝 (𝑡) 𝑢 (𝑡 − 𝜏) 𝑥 (𝑡 − 𝜏)

+∫
∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑥(𝑠 − 𝜎
𝑖
)
𝛼𝑖𝑢(𝑠 − 𝜎

𝑖
)
𝛼𝑖𝑑𝑠) , 𝑡 ≥ 𝑇,

𝑢 (𝑡) =
𝑡 − 𝑇 + 𝑇

0

𝑇
0

(𝐹𝑢) (𝑇) + (1 −
𝑡 − 𝑇 + 𝑇

0

𝑇
0

) ,

𝑇 − 𝑇
0
≤ 𝑡 ≤ 𝑇.

(22)

Again set

𝜔 (𝑡) = 𝑢 (𝑡) 𝑎 (𝑡) 𝑥 (𝑡) . (23)

Then

𝜔 (𝑡) > 0, 𝑇 − 𝑇
0
≤ 𝑡 < 𝑇 (24)

and satisfies, for 𝑡 ≥ 𝑇,

𝜔 (𝑡)

= [
1

𝑎 (𝑡) 𝑥 (𝑡)

× (𝑝 (𝑡) 𝑢 (𝑡 − 𝜏) 𝑥 (𝑡 − 𝜏)

+∫
∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑥(𝑠 − 𝜎
𝑖
)
𝛼𝑖𝑢(𝑠 − 𝜎

𝑖
)
𝛼𝑖𝑑𝑠)]

× 𝑎 (𝑡) 𝑥 (𝑡) .

(25)

This implies that

𝜔 (𝑡) = 𝑝 (𝑡) 𝜔 (𝑡 − 𝜏) + ∫
∞

𝑡

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝜔(𝑠 − 𝜎
𝑖
)
𝛼𝑖𝑑𝑠, 𝑡 ≥ 𝑇,

(26)

where

𝑞 (𝑠) =
𝑞 (𝑠)

∏𝑛
𝑖=1
𝑎(𝑠 − 𝜎

𝑖
)
𝛼𝑖
, 𝑝 (𝑡) =

𝑝 (𝑡)

𝑎 (𝑡 − 𝜏)
. (27)

Clearly, 𝜔(𝑡) is continuous on 𝑡 ≥ 𝑇−𝑇
0
. To show that 𝜔(𝑡) is

positive for all 𝑡 ≥ 𝑇−𝑇
0
, assume that there exists 𝑡∗ ≥ 𝑇−𝑇

0

such that 𝜔(𝑡) > 0 for 𝑇 − 𝑇
0
≤ 𝑡 < 𝑡∗ and 𝜔(𝑡∗) = 0. Then

𝑡∗ ≥ 𝑇 and by (26) we obtain

0 = 𝜔 (𝑡∗) = 𝑝 (𝑡∗) 𝜔 (𝑡∗ − 𝜏) + ∫
∞

𝑡
∗

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝜔(𝑠 − 𝜎
𝑖
)
𝛼𝑖𝑑𝑠,

𝑡 ≥ 𝑇.
(28)

Then

𝑝 (𝑡∗) ≡ 0, 𝑞 (𝑠)
𝑛

∏
𝑖=1

𝜔𝛼𝑖 (𝑡 − 𝜎
𝑖
) ≡ 0, ∀𝑡 ≥ 𝑡∗. (29)

This is a contradiction with (10) or (11). Therefore, 𝜔(𝑡∗) is
positive on [𝑇−𝑇

0
,∞). Furthermore, it is easy to see that𝜔(𝑡)

is a positive solution of (E), which implies that the inequality
(12) having no eventually positive solution is a necessary
condition for the oscillation of all solutions of (E). The proof
is complete.

Remark 4. Theorem 3 is an extent of Theorem 2.1 due to
Lalli and Zhang [16], Theorem 1 due to Chen et al. [7], and
Theorem 1 due to Li [12].

Now we give an application of Theorem 3.

Theorem 5. Consider (E) with 𝑛 = 1. Suppose that condition
(6) holds with

∫
∞

𝑡0

𝑠𝑞 (𝑠) ∫
𝑠

𝑡0

𝑞 (𝑢) 𝑑𝑢 𝑑𝑠 = ∞, (30)

𝑝 (𝑡 − 𝜎) 𝑞 (𝑡) ≥ 𝑞 (𝑡 − 𝜏) , (31)

where

𝑞 (𝑡) =
𝑞 (𝑡)

𝑎 (𝑡 − 𝜎)
. (32)

Then all solutions of (E) are oscillatory.

Proof. Suppose that (E) has an eventually positive solution
𝑥(𝑡). Set 𝑧(𝑡) as in (7). Then, by Lemma 6, we have

𝑧 (𝑡) > 0, 𝑧 (𝑡) ≤ 0. (33)

From (7), we have

𝑥 (𝑡) =
1

𝑎 (𝑡)
(𝑧 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏)) , (34)

𝑥 (𝑡 − 𝜎) =
1

𝑎 (𝑡 − 𝜎)
(𝑧 (𝑡 − 𝜎) + 𝑝 (𝑡 − 𝜎) 𝑥 (𝑡 − 𝜎 − 𝜏)) .

(35)

Hence, from (E), (31), and (35), respectively, we have

𝑧 (𝑡) = −𝑞 (𝑡) 𝑥 (𝑡 − 𝜎)

= −𝑞 (𝑡) (
1

𝑎 (𝑡 − 𝜎)
(𝑧 (𝑡 − 𝜎) + 𝑝 (𝑡 − 𝜎) 𝑥 (𝑡 − 𝜎 − 𝜏)))

= −
𝑞 (𝑡)

𝑎 (𝑡 − 𝜎)
𝑧 (𝑡 − 𝜎) − 𝑞 (𝑡 − 𝜏) 𝑥 (𝑡 − 𝜎 − 𝜏) .

(36)
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That is,

𝑧 (𝑡) ≤ −
𝑞 (𝑡)

𝑎 (𝑡 − 𝜎)
𝑧 (𝑡 − 𝜎) + 𝑧 (𝑡 − 𝜏) (37)

or

𝑧 (𝑡) − 𝑧 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≤ 0, (38)

where

𝑞 (𝑡) =
𝑞 (𝑡)

𝑎 (𝑡 − 𝜎)
. (39)

In view of Theorem 3, we have that the equation

𝑧 (𝑡) − 𝑧 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) = 0 (40)

has an eventually positive solution. On the other hand, in
view of Theorem 2, condition (30) implies that (40) cannot
have an eventually positive solution. This is a contradiction.
The proof is complete.

Lemma 6. Suppose that

0 < 𝑎 (𝑡) ≤ 1; (41)

𝑝 (𝑡) ≥ 1, (42)

∫
∞

𝑡0

𝑞 (𝑠) exp(1
𝜏
∫
𝑠

𝑡0

𝑢𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 = ∞. (43)

Let 𝑥(𝑡) be an eventually positive solution of (E) and 𝑧(𝑡)
defined by (7). Then

𝑧 (𝑡) < 0, 𝑧 (𝑡) ≤ 0. (44)

Proof. From (E) and (7), we have

𝑧 (𝑡) = −𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑥(𝑡 − 𝜎
𝑖
)
𝛼𝑖 ≤ 0. (45)

Therefore, if (44) does not hold, then we have eventually that
𝑧(𝑡) > 0; that is,

𝑎 (𝑡) 𝑥 (𝑡) ≥ 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) (46)

which together with (41) and (42) yields

𝑥 (𝑡) ≥ 𝑥 (𝑡 − 𝜏) . (47)

Let 𝑡
1
≥ 𝑡
0
be such that

𝑥 (𝑡 − 𝜏) > 0, for 𝑡
1
≥ 𝑡
0
, (48)

and also such that (16) holds for 𝑡
1
≥ 𝑡
0
. Define

𝜅 = min {𝑥 (𝑡) : 𝑡 ∈ [𝑡
1
− 𝜏, 𝑡
1
]} . (49)

Then, 𝑥(𝑡) ≥ 𝜅 for 𝑡 ≥ 𝑡
1
. Set 𝜎∗ = max{𝜏, 𝜎

1
, . . . , 𝜎

𝑛
}, and we

have

𝑥 (𝑡) ≥ 𝜅 for 𝑡 ≥ 𝑡
1
+ 𝜎∗ = 𝑡

2
. (50)

For convenience, we denote

𝑁(𝑡) = [
𝑡 − 𝑡
2

𝜏
] , (51)

where [(𝑡 − 𝑡
2
)/𝜏] is the greatest integer parts of (𝑡 − 𝑡

2
)/𝜏.

Then from (7), (41), and (42), we obtain

𝑥 (𝑡) ≥ 𝑎 (𝑡) 𝑥 (𝑡) = 𝑧 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) ≥ 𝑧 (𝑡) + 𝑥 (𝑡 − 𝜏) .
(52)

Thus, we have

𝑥 (𝑡) ≥ 𝑧 (𝑡) + 𝑥 (𝑡 − 𝜏)

≥ 𝑧 (𝑡) + 𝑧 (𝑡 − 𝜏) + ⋅ ⋅ ⋅ + 𝑧 (𝑡 − (𝑁 (𝑡) − 1) 𝜏)

+ 𝑥 (𝑡 − 𝑁 (𝑡) 𝜏) , 𝑡 ≥ 𝑡
2
.

(53)

But 𝑧(𝑡) is decreasing, and 𝑥(𝑡 − 𝑁(𝑡)𝜏) ≥ 𝜅 for 𝑡 ≥ 𝑡
1
.

Therefore, from (53), we get

𝑥 (𝑡) ≥ 𝑁 (𝑡) 𝑧 (𝑡) + 𝜅, 𝑡 ≥ 𝑡
1
. (54)

Substituting in (E), we obtain

𝑧 (𝑡) + 𝑞 (𝑡)
𝑛

∏
𝑖=1

[𝑁 (𝑡 − 𝜎
𝑖
) 𝑧 (𝑡 − 𝜎

𝑖
) + 𝜅]

𝛼𝑖 ≤ 0,

𝑡 ≥ 𝑡
3
≥ 𝑡
2
.

(55)

By Holder’s inequality, we have
𝑛

∏
𝑖=1

[𝑁 (𝑡 − 𝜎
𝑖
) 𝑧 (𝑡 − 𝜎

𝑖
) + 𝜅]

𝛼𝑖

≥
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑡 − 𝜎
𝑖
)
𝑛

∏
𝑖=1

𝑧𝛼𝑖 (𝑡 − 𝜎
𝑖
) + 𝜅.

(56)

Then, from (55), we get

𝑧 (𝑡) + 𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑡 − 𝜎
𝑖
) 𝑧 (𝑡) + 𝑞 (𝑡) 𝜅 ≤ 0, 𝑡 ≥ 𝑡

3
.

(57)

Hence,

[𝑧 (𝑡) exp(∫
𝑡

𝑡3

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑠 − 𝜎
𝑖
) 𝑑𝑠)]



+ 𝜅𝑞 (𝑡) exp(∫
𝑡

𝑡3

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑠 − 𝜎
𝑖
) 𝑑𝑠) ≤ 0.

(58)

Integrating (58) from 𝑡
3
to 𝑡 ≥ 𝑡

3
, we have

𝑧 (𝑡) exp(∫
𝑡

𝑡3

𝑞 (𝑠)
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑠 − 𝜎
𝑖
) 𝑑𝑠) − 𝑦 (𝑡

3
) + 𝜅

× ∫
𝑡

𝑡3

𝑞 (𝑠) exp(∫
𝑠

𝑡3

𝑞 (𝑢)
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑢 − 𝜎
𝑖
) 𝑑𝑢)𝑑𝑠 ≤ 0.

(59)
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Also we have

∫
∞

𝑡3

𝑞 (𝑠) 𝑑𝑠 < ∞. (60)

Now, by noting that

(
∏𝑛
𝑖=1
𝑁𝛼𝑖 (𝑠 − 𝜎

𝑖
)

𝑡
) →

1

𝜏
as 𝑡 → ∞, (61)

we see that

∫
∞

𝑡3

𝑞 (𝑠) (
𝑠

𝜏
−
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑠 − 𝜎
𝑖
))𝑑𝑠 < ∞. (62)

Thus, we have eventually that

lim
𝑠→∞

exp (∫𝑠
𝑡3

𝑞 (𝑢)∏𝑛
𝑖=1
𝑁𝛼𝑖 (𝑠 − 𝜎

𝑖
) 𝑑𝑢)

exp ((1/𝜏) ∫𝑠
𝑡3

𝑢𝑞 (𝑢) 𝑑𝑢)
(63)

exists. Then, from condition (43), we have

∫
∞

𝑡3

𝑞 (𝑠) exp(∫
𝑠

𝑡3

𝑞 (𝑢)
𝑛

∏
𝑖=1

𝑁𝛼𝑖 (𝑢 − 𝜎
𝑖
) 𝑑𝑢)𝑑𝑠 = ∞. (64)

Letting 𝑡 → ∞ in (59), we obtain a contradiction with (64).
The proof is complete.

Remark 7. Lemma 6 extends Lemma 2 in Li [12] where 𝑎(𝑡) ≡
1.

Theorem 8. Suppose that condition (6) holds with

∫
∞

𝑡0

𝑞 (𝑠) exp(1
𝜏
∫
𝑠

𝑡0

𝑢𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 = ∞, (65)

𝑛

∏
𝑖=1

𝑝
1

𝛼𝑖 (𝑡 − 𝜎
𝑖
) 𝑞 (𝑡) ≥ 𝑞 (𝑡 − 𝜏) , (66)

where 𝑞 is defined as in Theorem 3 and

𝑛

∏
𝑖=1

𝑝
1

𝛼𝑖 (𝑡 − 𝜎
𝑖
) =

∏𝑛
𝑖=1
𝑝𝛼𝑖 (𝑡 − 𝜎

𝑖
)

∏𝑛
𝑖=1
𝑎𝛼𝑖 (𝑡 − 𝜎

𝑖
)
. (67)

Then, all solutions of (E) are oscillatory.

Proof. Suppose that (E) has an eventually positive solution
𝑥(𝑡). Set 𝑧(𝑡) as in (7). Then by Lemma 6 we have

𝑧 (𝑡) > 0, 𝑧 (𝑡) ≤ 0. (68)

From (7), we have

𝑥 (𝑡 − 𝜎
𝑖
) =

1

𝑎 (𝑡 − 𝜎
𝑖
)
(𝑧 (𝑡 − 𝜎

𝑖
) + 𝑝 (𝑡 − 𝜎

𝑖
) 𝑥 (𝑡 − 𝜎

𝑖
− 𝜏)) ;

𝑖 = 1, 2, . . . , 𝑛.
(69)

Hence, from (E) and (69), we have

𝑧 (𝑡)

= −𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑥𝛼𝑖 (𝑡 − 𝜎
𝑖
)

= −𝑞 (𝑡)
𝑛

∏
𝑖=1

(
1

𝑎 (𝑡 − 𝜎
𝑖
)

× [𝑧 (𝑡 − 𝜎
𝑖
) + 𝑝 (𝑡 − 𝜎

𝑖
) 𝑥 (𝑡 − 𝜎

𝑖
− 𝜏)] )

𝛼𝑖

= −𝑞 (𝑡)
𝑛

∏
𝑖=1

([
𝑧 (𝑡 − 𝜎

𝑖
)

𝑎 (𝑡 − 𝜎
𝑖
)
+
𝑝 (𝑡 − 𝜎

𝑖
)

𝑎 (𝑡 − 𝜎
𝑖
)
𝑥 (𝑡 − 𝜎

𝑖
− 𝜏)])

𝛼𝑖

.

(70)

Applying Holder’s inequality, we obtain

𝑧 (𝑡) ≤ −𝑞 (𝑡)
𝑛

∏
𝑖=1

(
𝑧 (𝑡 − 𝜎

𝑖
)

𝑎 (𝑡 − 𝜎
𝑖
)
)
𝛼𝑖

− 𝑞 (𝑡)
𝑛

∏
𝑖=1

(
𝑝 (𝑡 − 𝜎

𝑖
)

𝑎 (𝑡 − 𝜎
𝑖
)
𝑥 (𝑡 − 𝜎

𝑖
− 𝜏))

𝛼𝑖

(71)

which implies that

𝑧 (𝑡) ≤ −
𝑞 (𝑡)

∏𝑛
𝑖=1
𝑎𝛼𝑖 (𝑡 − 𝜎

𝑖
)

𝑛

∏
𝑖=1

𝑧𝛼𝑖 (𝑡 − 𝜎
𝑖
) − 𝑞 (𝑡)

×
𝑛

∏
𝑖=1

[
𝑝 (𝑡 − 𝜎

𝑖
)

𝑎(𝑡 − 𝜎
𝑖
)
]
𝛼𝑖 𝑛

∏
𝑖=1

𝑥𝛼𝑖 (𝑡 − 𝜎
𝑖
− 𝜏)

≤ −
𝑞 (𝑡)

∏𝑛
𝑖=1
𝑎𝛼𝑖 (𝑡 − 𝜎

𝑖
)

𝑛

∏
𝑖=1

𝑧𝛼𝑖 (𝑡 − 𝜎
𝑖
) + 𝑧 (𝑡 − 𝜏) ,

(72)

where we have used condition (66) to obtain the last inequal-
ity.This implies that 𝑧(𝑡) is a positive solution of the inequality

𝑧 (𝑡) − 𝑧 (𝑡 − 𝜏) +
𝑞 (𝑡)

∏𝑛
𝑖=1
𝑎𝛼𝑖 (𝑡 − 𝜎

𝑖
)

𝑛

∏
𝑖=1

𝑧𝛼𝑖 (𝑡 − 𝜎
𝑖
) ≤ 0; (73)

that is,

𝑧 (𝑡) − 𝑧 (𝑡 − 𝜏) + 𝑞 (𝑡)
𝑛

∏
𝑖=1

𝑧𝛼𝑖 (𝑡 − 𝜎
𝑖
) ≤ 0, (74)

where

𝑞 (𝑡) =
𝑞 (𝑡)

∏𝑛
𝑖=1
𝑎𝛼𝑖 (𝑡 − 𝜎

𝑖
)
. (75)

As we see, (74) satisfies all conditions of Lemma 6; hence,
𝑍(𝑡) = 𝑧(𝑡) − 𝑧(𝑡 − 𝜏) > 0 eventually. On the other hand,
since (74) satisfies all conditions of Lemma 6, then 𝑍(𝑡) =
𝑧(𝑡) − 𝑧(𝑡 − 𝜏) < 0 eventually, which is a contradiction. The
proof is complete.

Remark 9. Theorem 8 improves and extends Theorem 2 in
Chen et al. [7] and Theorem 4 in Li [12], where 𝑎(𝑡) ≡ 1. See
also Theorem 3.4 in Yu et al. [6].
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