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A model of the interactions among a host population, an insect-vector population, which transmits virus from hosts to hosts,
and a vector predator population is proposed based on virus-host, host-vector, and prey (vector)-enemy theories. The model is
investigated to explore the indirect effect of natural enemies on host-virus dynamics by reducing the vector densities, which shows
the basic reproduction numbers𝑅

01
(without predators) and𝑅

02
(with predators) that provide threshold conditions on determining

the uniform persistence and extinction of the disease in a host population. When the model is absent from predator, the disease is
persistent if 𝑅

01
> 1; in such a case, by introducing predators of a vector, then the insect-transmitted disease will be controlled if

𝑅
02
< 1. From the point of biological control, these results show that an additional predator population of the vector may suppress

the spread of vector-borne diseases. In addition, there exist limit cycles with persistence of the disease or without disease in presence
of predators. Finally, numerical simulations are conducted to support analytical results.

1. Introduction

In recent years there has been an increasing attention of
the importance of studying vector-host diseases, whereby
diseases are not transmitted directly from hosts to hosts, but
through a vector. For instance, human and animal diseases
such as malaria, dengue fever, West Nile virus, and Lyme
disease are transmitted by arthropod vectors. Also, plant virus
diseases such as tobaccomosaic virus, African cassavamosaic
virus, cucumber mosaic virus, potato virus Y, beet yellows
virus, and rice dwarf virus are transmitted by arthropod vec-
tors. Bailey [1] pointed out that the vector population greatly
influenced the modeling and control of infectious diseases.
Moreover, vector-host diseases cause serious public health
threat and great economic losses of agricultural production.
Consequently, some effective controlmethods should be con-
sidered to prevent diseases transmitted by insect-vectors.

Generally, pesticide is the most used method of insect-
transmitted diseases control. The abuse of pesticides

exacerbates disease incidence by selecting insecticide resist-
ant vectors [2] and heavily affects reproduction and preda-
tion behavior of the beneficial predators of the vector [3].
Moreover, the repeated use of pesticides will deteriorate
environment and human health. Therefore, it is not reason-
able to depend fully on insecticides for the control of vector
populations.

The potential for predation to reduce disease prevalence
in a host population also has implications for the biological
control of vector populations. For example, in [4–11] preda-
tors have been introduced as biological control agents of
vectors for various diseases such asmalaria, dengue fever, and
Lyme disease. Several recent studies suggested that predators
led to a decline in local cases of dengue fever in Vietnam and
Thailand [12, 13] and malaria in India [14, 15].

However, compared with biological control of herbivo-
rous pests, which has long been established as a major com-
ponent of pest management programmes and aims to direct
decrease pest densities by pest enemies [16, 17], biological
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control of vectors has been seldom investigated. The main
reason is that biological control of vectors is a complex
interaction process, mainly including the virus-host inter-
action, vector-host interaction, and vector (prey)-enemy
interaction, which is more complicated than the only pest-
enemy interaction [18–23] of biological pest control.The goal
of biological control agents of vectors is to reduce disease
incidence through the indirect action of natural enemy that
lowers the density of a target vector population and is not
necessarily to eliminate the vector [24]. The identification of
a vector population threshold density plays an important role
in determining whether predation could sufficiently reduce
the vector population density [25].Therefore, from themath-
ematical viewpoint, it is also important to investigate how
vector (prey)-predator dynamics may be influenced by the
additional vector mortality.

Previous results on vector-borne diseases mainly focused
on the vector-host dynamics [26–34] or virus-host dynamics
[35] without considering the vector-enemy dynamics. Only
several authors have studied the biological control of vector
to reduce the disease incidence. In [36, 37], different math-
ematical models are used to examine how Wolbachia affects
the transmission of dengue based on the fact that Wolbachia
reduces the lifespan of infected mosquito Aedes aegypti.
Moore et al. [25] first proposed a host-vector-predator model
and studied how the indirect effect of predators on vectors
affects prevalence of vector-borne diseases. For plant virus
diseases transmitted by arthropod vectors, Okamoto and
Amarasekare [38] compared the efficacy of three types
of biocontrol agents: predator/parasitoid, competitor, and
pathogen of the vector (Whitefly, which transmits theAfrican
cassavamosaic virus from cassavas to cassavas) to reduce dis-
ease incidence. Both papers [25] and [38], however, focused
on the indirect effect of natural enemies on the vector based
on numerical analysis, explicit mathematical analysis has not
been done in detail to obtain the threshold value determining
the prevalence or extinction of disease, and more complex
dynamics such as Hopf bifurcation in present of the vector
predators have not been considered.

Motivated by the above mentioned surveys, the main
objective of this study is to investigate the effects of predators
on the prevalence of vector-borne disease by analyzing the
stability of disease-free and disease equilibria in present
of predators. Moreover, disease control threshold and limit
cycles with persistence of disease or without disease in pre-
sent of predators will be studied.

The rest of the paper is organized as follows. Section 2,
we mainly formulate our basic mathematical model of host-
vector-predator interactions. The equilibria and the repro-
duction number are given in Section 3. In Section 4, the local
stability of the equilibria for model (2) is analyzed. In Section
5, the global stability and Hopf bifurcation of model (2) are
investigated; moreover, the control threshold is presented. In
Section 6, we use some numerical simulations to explore the
effect of predators on the persistence or eradication of virus
transmitted by vectors, the stability results, and existence
of limit cycles of our model with the predator population.
Finally, concluding remarks are given in Section 7.

2. Model Formulation

In this section we mainly formulate a mathematical model
to depict the interactions among a host population, a vector
population, and a vector predator population.

First, we will give the following assumptions.

(1) The total host population𝐾(𝑡) is divided into suscep-
tible (healthy) and infected hosts, respectively, with
densities denoted by 𝑆(𝑡) and 𝐼(𝑡), respectively, and
the total vector population is also partitioned into sus-
ceptible and infectious subclasses, with the densities
denoted by𝑋

𝑢
(𝑡) and𝑋

𝑖
(𝑡), respectively.

(2) Virus transmission is induced by vectors feeding on
infected hosts or infected vectors feeding on suscepti-
ble hosts, without considering the direct transmission
between susceptible and infected hosts.

(3) The virus in vectors may not cause vectors’ death.
(4) The new born vectors are susceptible and unable to

transmit virus from hosts to hosts.
(5) Vectors in both classes experience density-independ-

ent and density-dependent mortality in addition to
death from predation.

(6) Vectors’ predators are beneficial insects which can
prey on vectors and may not damage hosts and
environment, denoted by 𝑃(𝑡). The Holling type II
functional [39] is used for interactions between vec-
tors and predators.

(7) When there are no predators, we assume that the
dynamics of the total vector population𝑋 = 𝑋

𝑢
+ 𝑋
𝑖

is governed by equation 𝑑𝑋/𝑑𝑡 = 𝑟𝑋(1 − 𝑋/𝑀 −

𝑚𝑋/(𝑆+𝐼)), where 𝑟 is the intrinsic growth rate,𝑀 is
vector’s carrying capacity of the environment, and 𝑚
denotes the extent to which vectors are limited by the
host population, and we assume that𝑚 = 0 if the total
host population on which the vectors depend keeps
constant.

Our assumptions on the dynamical transfer of the host,
the vector, and the predator population are demonstrated in
Figure 1.

In Figure 1, 𝑓(𝑆, 𝐼) > 0 is the recruited rate of the
host (or the replanting rate for the plant host) and 𝜇 and
𝑑 are the natural death rate and disease-induced mortality
of the infected host 𝐼, respectively. 𝑏

1
(𝐾) denotes the per

capita rate of contacts on hosts by vectors. Generally, 𝑏
1
(𝐾)

is a monotonic increasing function on 𝐾. In this paper, we
assume 𝑏

1
(𝐾) = 𝑏

1
𝐾. 𝛼 and 𝛽 are the disease transmission

coefficients from infected hosts to uninfected vectors and
from infected vectors to uninfected hosts, respectively; 𝑏, 𝑤,
and 𝑟 = 𝑏−𝑤 are the natural birth rate, the natural death rate
and the intrinsic growth rate of vectors, respectively.The term
ℎ𝑋/(1 + 𝑎𝑋) denotes the Holling type II functional response
of the predator. ℎ is the capturing rate (or the attacking
rate) of predators, 𝑎 is predator’s satiety rate, and 𝛾 denotes
the conversation factor of the predator, which describes the
conversion efficiency of the consumed vectors into individual
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Figure 1: Flow chart of the host-vector-predator model.

predators. 𝑒 is the natural mortality of the predator. All the
parameters above are positive.

Using the transfer diagram, the system which depicts the
interactions among the host, the vector, and the predator
population can be derived:

𝑑𝑆

𝑑𝑡
= 𝑓 (𝑆, 𝐼) − 𝑏

1
(𝐾) 𝛽𝑋

𝑖

𝑆

𝐾
− 𝜇𝑆,

𝑑𝐼

𝑑𝑡
= 𝑏
1
(𝐾) 𝛽𝑋

𝑖

𝑆

𝐾
− (𝜇 + 𝑑) 𝐼,

𝑑𝑋
𝑢

𝑑𝑡
= 𝑏 (𝑋

𝑢
+ 𝑋
𝑖
) − 𝑏
1
(𝐾) 𝛼𝑋

𝑢

𝐼

𝐾
− 𝑤𝑋

𝑢

−
𝑟𝑋
𝑢

𝑀
(𝑋
𝑢
+ 𝑋
𝑖
) −

𝑟𝑚𝑋
𝑢

(𝑆 + 𝐼)
(𝑋
𝑢
+ 𝑋
𝑖
)

−
ℎ𝑋
𝑢

1 + 𝑎 (𝑋
𝑢
+ 𝑋
𝑖
)
𝑃,

𝑑𝑋
𝑖

𝑑𝑡
= 𝑏
1
(𝐾) 𝛼𝑋

𝑢

𝐼

𝐾
− 𝑤𝑋

𝑖
−
𝑟𝑋
𝑖

𝑀
(𝑋
𝑢
+ 𝑋
𝑖
)

−
𝑟𝑚𝑋
𝑖

(𝑆 + 𝐼)
(𝑋
𝑢
+ 𝑋
𝑖
) −

ℎ𝑋
𝑖

1 + 𝑎 (𝑋
𝑢
+ 𝑋
𝑖
)
𝑃,

𝑑𝑃

𝑑𝑡
=
𝛾ℎ (𝑋

𝑢
+ 𝑋
𝑖
)

1 + 𝑎 (𝑋
𝑢
+ 𝑋
𝑖
)
𝑃 − 𝑒𝑃.

(1)

In this paper, if we further assume that the number of total
host population keeps unchanged, that is,𝐾 is a constant [25,
35], then from assumption (7), the total vector population 𝑋
without 𝑃 can be governed by the logistic equation 𝑑𝑋/𝑑𝑡 =
𝑟𝑋(1−𝑋/𝑀). Using assumptions that 𝑆+𝐼 = 𝐾, 𝑏

1
(𝐾) = 𝑏

1
𝐾,

𝐾 is a constant, and 𝑑𝑋/𝑑𝑡 = 𝑟𝑋(1 − 𝑋/𝑀), then (1) can be
reduced as

𝑑𝐼

𝑑𝑡
= 𝑏
1
𝛽𝑋
𝑖 (𝐾 − 𝐼) − (𝜇 + 𝑑) 𝐼,

𝑑𝑋

𝑑𝑡
= 𝑟𝑋(1 −

𝑋

𝑀
) −

ℎ𝑋

1 + 𝑎𝑋
𝑃,

𝑑𝑋
𝑖

𝑑𝑡
= 𝑏
1
𝛼 (𝑋 − 𝑋

𝑖
) 𝐼 − 𝑤𝑋

𝑖
−
𝑟𝑋
𝑖

𝑀
𝑋 −

ℎ𝑋
𝑖

1 + 𝑎𝑋
𝑃,

𝑑𝑃

𝑑𝑡
=
𝛾ℎ𝑋

1 + 𝑎𝑋
𝑃 − 𝑒𝑃,

(2)

with initial conditions

𝜓 = {(𝐼 (0) , 𝑋 (0) , 𝑋
𝑖
(0) , 𝑃 (0)) | 0 ≤ 𝐼 (0) ≤ 𝐾,

0 ≤ 𝑋
𝑖 (0) ≤ 𝑋 (0) ≤ 𝑀, 𝑃 (0) ≥ 0} .

(3)

It easily follows thatmodel (2) can be studied in the positively
invariant set:

Ω = {(𝐼, 𝑋,𝑋
𝑖
, 𝑃) ∈ 𝑅

+

4
| 0 ≤ 𝐼 ≤ 𝐾,

0 ≤ 𝑋
𝑖
≤ 𝑋 ≤ 𝑀,𝑃 ≥ 0} .

(4)

Without considering the predator, model (2) can be reduced
to the following system:

𝑑𝐼

𝑑𝑡
= 𝑏
1
𝛽𝑋
𝑖
(𝐾 − 𝐼) − (𝜇 + 𝑑) 𝐼,

𝑑𝑋

𝑑𝑡
= 𝑟𝑋(1 −

𝑋

𝑀
) ,

𝑑𝑋
𝑖

𝑑𝑡
= 𝑏
1
𝛼 (𝑋 − 𝑋

𝑖
) 𝐼 − 𝑤𝑋

𝑖
−
𝑟𝑋
𝑖

𝑀
𝑋,

(5)

and the positively invariant set of system (5) is

𝑇 = {(𝐼, 𝑋,𝑋
𝑖
) ∈ 𝑅
+

3
| 0 ≤ 𝐼 ≤ 𝐾, 0 ≤ 𝑋

𝑖
≤ 𝑋 ≤ 𝑀} . (6)

Compared with model (2.1) in [25], the main differences in
our model are that (i) we assume that the vector population
dynamics is governed by the logistic equation because the
total host population on which vectors depend is a constant.
(ii) Holling type II functional responses are used in our paper
to describe the interaction between vectors and predators,
which is more logistic and realistic because Holling type II
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functional responses introduce satiety effect in the predator
population [38, 39]. (iii) The linear per capita rate of contacts
on hosts by vectors is considered.

The purpose of this paper is to investigate the effect
of predators on the prevalence of disease among hosts by
directly reducing the vector density. For this purpose, as pre-
liminaries, we first give the equilibria and the reproduction
numbers of (2) and (5) in the next section.

3. The Equilibria and
the Reproduction Number

Lemma 1. The equilibria of system (2) are as follows.

(i) If the equilibrium value of the predator is zero, then
there exist two disease-free equilibria, 𝐸

0
(0, 0, 0, 0)

and 𝐸
1
(0,𝑀, 0, 0), which always exist; equilibrium

𝐸
0
is the state of equilibrium of the uninfected host

population only, while for equilibrium 𝐸
1
, it is the

equilibria of the uninfected hosts and vectors only and
a disease equilibrium 𝐸

2
(𝐼
∗
,𝑀,𝑋

∗

𝑖
, 0) which exists if

the threshold 𝑅
01
= √𝑏
2

1
𝛼𝛽𝐾𝑀/(𝑏(𝜇 + 𝑑)) > 1.

(ii) If the equilibrium value of the predator is larger
than zero, then there exists a disease-free equilibrium
𝐸
3
(0, 𝑋, 0, �̂�) if the threshold 𝑅

1
= 𝛾ℎ𝑀/(𝑒(1 +

𝑎𝑀)) > 1; equilibrium 𝐸
3
is the vector and predator

equilibria in the absence of the pathogen and a disease
equilibrium 𝐸

4
(𝐼, 𝑋,𝑋

𝑖
, �̂�) if 𝑅

1
> 1 and 𝑅

02
=

√𝑏
2

1
𝛼𝛽𝐾𝑋/(𝑏(𝜇 + 𝑑)) > 1, where

𝐼
∗
=
𝑏
2

1
𝛼𝛽𝑀𝐾 − 𝑏 (𝜇 + 𝑑)

𝑏
2

1
𝛼𝛽𝑀 + 𝑏

1
𝛼 (𝜇 + 𝑑)

, 𝑋
∗

𝑖
=
(𝜇 + 𝑑) 𝐼

∗

𝑏
1
𝛽 (𝐾 − 𝐼

∗
)
,

𝑋 =
𝑒

𝛾ℎ − 𝑎𝑒
, �̂� =

𝑟

ℎ
(1 + 𝑎𝑋)(1 −

𝑋

𝑀
) ,

𝐼 =
𝑏
2

1
𝛼𝛽𝐾𝑋 − 𝑏 (𝜇 + 𝑑)

𝑏
2

1
𝛼𝛽𝑋 + 𝑏

1
𝛼 (𝜇 + 𝑑)

, 𝑋
𝑖
=

(𝜇 + 𝑑) 𝐼

𝑏
1
𝛽 (𝐾 − 𝐼)

.

(7)

Inequality 𝑅
1
> 1 aims to ensure �̂� > 0, and by the next

generation matrix, we find that

𝑅
01
= √

𝑏
2

1
𝛼𝛽𝐾𝑀

𝑏 (𝜇 + 𝑑)
= √𝐾

𝑏
1
𝛼

𝑏
⋅ 𝑀

𝑏
1
𝛽

(𝜇 + 𝑑)
,

𝑅
02
= √

𝑏
2

1
𝛼𝛽𝐾𝑋

𝑏 (𝜇 + 𝑑)
= √𝐾

𝑏
1
𝛼

𝑏
⋅ 𝑋

𝑏
1
𝛽

(𝜇 + 𝑑)

(8)

are the basic reproduction number of systems (5) and (2),
respectively.

The biological meaning of𝑅
01
and𝑅

02
can be interpreted as

follows. For 𝑅
01
, since the predator of vectors is not introduced

(i.e., 𝑃 = 0), then the total number of vector populations
achieves the stable state𝑀 and every vector is the susceptible
and the number of the new infected vectors produced by each

infected host over his/her expected infectious period is 𝑀 ⋅

(𝑏
1
𝛽/(𝜇 + 𝑑)), and when the total number of host population

reaches stable state 𝐾 and everyone is the susceptible, the
number of new infected hosts produced by each infected vector
(though the bite of the infected vector) over its expected infec-
tious period is𝐾 ⋅ (𝑏

1
𝛼/𝑏). The square root arises from the two

“generations” required for an infected host or vector to “repro-
duce” itself.

While for the biological meaning of 𝑅
02
, since the predator

of vectors is introduced (that is 𝑃 > 0), then the total num-
ber of vector population achieves the stable state 𝑋 = 𝑒/(𝛾ℎ −
𝑎𝑒); therefore, the number of the new infected vectors produced
by each infected host over his/her expected infectious period is
𝑋⋅(𝑏
1
𝛽/(𝜇+𝑑)), andwhen the total number of host populations

reaches stable state 𝐾 and everyone is the susceptible, the
number of new infected hosts produced by each infected vector
(though the bite of the infected vector) over its expected
infectious period is 𝐾 ⋅ (𝑏

1
𝛼/𝑏). The square root arises from

the two “generations” required for an infected host or vector to
“reproduce” itself.

In fact, by [40, 41], the basic reproduction number of (2) is
expressed as

𝑅
0
= √

𝑏
2

1
𝛼𝛽𝐾𝑋

(𝜇 + 𝑑) (𝑤 + (𝑟/𝑀)𝑋 + ℎ𝑃/ (1 + 𝑎𝑋))
, (9)

where 𝑋 and 𝑃 are the disease-free equilibrium values. From
the disease-free equilibrium 𝐸

3
(0, 𝑋, 0, �̂�), substitute 𝑋 =

𝑋, 𝑃 = �̂� into (9), and denote 𝑅
0
as 𝑅
02

yields 𝑅
02

=

√𝑏
2

1
𝛼𝛽𝐾𝑋/(𝑏(𝜇 + 𝑑)), which is the basic reproduction number

of system (2).
In particular, if 𝑃 = 0, then from the disease-free equi-

librium 𝐸
1
(0,𝑀, 0, 0), substitute 𝑋 = 𝑀, 𝑃 = 0 into (9), and

denote 𝑅
0
as 𝑅
01
yields 𝑅

01
= √𝑏
2

1
𝛼𝛽𝐾𝑀/(𝑏(𝜇 + 𝑑)), which is

the basic reproduction number of system (5).

Remark 2. Take 𝑅
0
as a function of 𝑋 (0 < 𝑋 ≤ 𝑀); then

from (9) 𝑅
01
> 𝑅
02
if 𝑅
1
> 1 (i.e.,𝑀 > 𝑋). That is, predators

result into a reduction in 𝑅
0
.

In particular, we obtain the following three possible
equilibria of (5).

Lemma 3. There exist three possible equilibria for system (5),
they are 𝐸

0
(0, 0, 0), 𝐸

1
= (0,𝑀, 0), which always exist, and

𝐸
2
= (𝐼
∗
,𝑀,𝑋

∗

𝑖
) which exists when 𝑅

01
> 1, where 𝐼∗ and𝑋∗

𝑖

are given in Lemma 1.

From (9), by adding the predator’s attack rate ℎ, then
𝑅
0
decreases and an increase in predation strength causes a

decrease in the equilibrium proportion of infected hosts and
vectors.

Now, the aim of biological control is to reduce the risk
of disease outbreaks in the host population by introducing
predators of the vector population. In other words, we need
to find the critical condition or the critical values such as
predator’s attack rate ℎ to make 𝐼(𝑡) → 0, 𝑋

𝑖
(𝑡) → 0, as

𝑡 → +∞. For this purpose, we need to study the dynamics
of models (2) and (5).
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4. Local Stability of the Equilibria for
System (2)

For analyzing the effect of predation on the prevalence of
vector-transmitted disease, we first analyze the local stability
of model (2).

Theorem 4. The local stability of equilibria for system (2) is as
follows.

(i) The disease-free equilibrium 𝐸
0
(uninfected host popu-

lation only) is unstable.
(ii) The disease-free equilibrium 𝐸

1
(only uninfected hosts

and vectors) is locally asymptotically stable if 𝑅
01
< 1

and 𝑅
1
< 1.

(iii) The disease equilibrium 𝐸
2
(without predators) is

locally asymptotically stable if 𝑅
01
> 1 and 𝑅

1
< 1.

(iv) The disease-free equilibrium 𝐸
3
(the vector and preda-

tor equilibria in absence of the pathogen) is locally
asymptotically stable if 𝑅

02
< 1 and 1 < 𝑅

1
< 1 +

𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)).
(v) The disease equilibrium 𝐸

4
(with predators) is locally

asymptotically stable if 𝑅
02
> 1 and 1 < 𝑅

1
< 1 +

𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)).

Proof. (i) Linearizing around the disease-free equilibrium 𝐸
0

(uninfected host population only), there exist four eigenval-
ues, they are 𝜆

1
= −(𝜇 + 𝑑) < 0, 𝜆

2
= 𝑟 > 0, 𝜆

3
= −𝑤 < 0,

𝜆
4
= −𝑒 < 0. Thus, 𝐸

0
is unstable.

(ii) Linearizing around the disease-free equilibrium 𝐸
1

(only uninfected hosts and vectors), two eigenvalues are
obtained, they are 𝜆

1
= −𝑟 < 0, 𝜆

2
= (𝛾ℎ𝑀/(1+𝑎𝑀))−𝑒 < 0

if𝑅
1
< 1.The other two roots are determined by the quadratic

equation

𝜆
2
+ (𝑏 + 𝜇 + 𝑑) 𝜆 + 𝑏 (𝜇 + 𝑑) − 𝑏

2

1
𝛼𝛽𝑀𝐾 = 0. (10)

The roots of (10) have negative real parts if and only if
its coefficients are positive. Coefficient (𝑏 + 𝜇 + 𝑑) is always
positive, while for coefficient 𝑏(𝜇+𝑑)−𝑏2

1
𝛼𝛽𝑀𝐾, it is positive

if and only if 𝑅
01
< 1. Therefore, disease-free equilibrium 𝐸

1

is locally asymptotically stable if 𝑅
01
< 1 and 𝑅

1
< 1.

(iii) For the disease equilibrium 𝐸
2
(without predators)

by linearizing around it, we obtain two eigenvalues, they are
𝜆
1
= −𝑟 < 0 and 𝜆

2
= 𝛾ℎ𝑀/(1 + 𝑎𝑀) − 𝑒 < 0 if 𝑅

1
< 1. The

other two roots are determined by the quadratic equation

𝜆
2
+ 𝑝
1
𝜆 + 𝑞
1
= 0, (11)

where 𝑝
1
= 𝜇 + 𝑑 + 𝑏 + 𝑏

1
𝛼𝐼
∗
+ 𝑏
1
𝛽𝑋
∗

𝑖
> 0,

𝑞
1
= (𝜇 + 𝑑 + 𝑏

1
𝛽𝑋
∗

𝑖
) (𝑏 + 𝑏

1
𝛼𝐼
∗
)

− 𝑏
2

1
𝛼𝛽 (𝑀 − 𝑋

∗

𝑖
) (𝐾 − 𝐼

∗
) .

(12)

Equation (12) has two characteristic roots with negative real
parts if and only if 𝑞

1
> 0. From the equilibrium expression

𝐼
∗
= (𝑏
2

1
𝛼𝛽𝑀𝐾 − 𝑏(𝜇 + 𝑑))/(𝑏

2

1
𝛼𝛽𝑀 + 𝑏

1
𝛼(𝜇 + 𝑑)), we have

𝑏
2

1
𝛼𝛽𝑀𝐾 = [𝑏

2

1
𝛼𝛽𝑀 + 𝑏

1
𝛼 (𝜇 + 𝑑)] 𝐼

∗
+ 𝑏 (𝜇 + 𝑑) . (13)

Substitute (13) into (12) and reduce it; yield 𝑞
1
= 𝑏𝑏
1
𝛽𝑋
∗

𝑖
+

𝑏
2

1
𝛼𝛽𝐾𝑋

∗

𝑖
> 0 if 𝑅

01
> 1, Therefore, the disease equilibrium

𝐸
2
is locally asymptotically stable for 𝑅

01
> 1 and 𝑅

1
< 1.

(iv) Linearizing system (2) about the disease-free equi-
librium 𝐸

3
(the vector and predator equilibria in absence

of the pathogen) gives the following characteristic equation
corresponding to the Jacobi matrix:



𝜆 + (𝜇 + 𝑑) 0 −𝑏1𝛽𝐾 0

0 𝜆 − 𝑟 +
2𝑟�̂�

𝑀
+

𝑟 (1 − �̂�/𝑀)

1 + 𝑎�̂�

0
ℎ�̂�

1 + 𝑎�̂�

−𝑏1𝛼�̂� 0 𝜆 + 𝑏 0

0 −

𝛾𝑟 (1 − �̂�/𝑀)

1 + 𝑎�̂�

0 𝜆



= 0.

(14)

Expanding by the last column and by further simplifying, the
above characteristic equation can be reduced to the following
equation:

[𝜆
2
+ (𝑏 + 𝜇 + 𝑑) 𝜆 + 𝑏 (𝜇 + 𝑑) − 𝑏

2

1
𝛼𝛽𝐾𝑋]

× [

[

𝜆
2
+ (

2𝑟𝑋

𝑀
+

𝑟 (1 − 𝑋/𝑀)

1 + 𝑎𝑋

− 𝑟)𝜆

+

𝛾𝑟ℎ𝑋 (1 − 𝑋/𝑀)

(1 + 𝑎𝑋)
2

]

]

= 0.

(15)

Thus, the eigenvalues can be obtained by solving

𝜆
2
+ (𝑏 + 𝜇 + 𝑑) 𝜆 + 𝑏 (𝜇 + 𝑑) − 𝑏

2

1
𝛼𝛽𝐾𝑋 = 0, (16)

𝜆
2
+ (

2𝑟𝑋

𝑀
+

𝑟 (1 − 𝑋/𝑀)

1 + 𝑎𝑋

− 𝑟)𝜆

+

𝛾𝑟ℎ𝑋 (1 − 𝑋/𝑀)

(1 + 𝑎𝑋)
2

= 0.

(17)

The roots of (16) have negative real parts if and only if
𝑅
02
< 1. On the other hand, (17) has two roots with negative

real parts if and only if its coefficients are positive. Obviously,
coefficient 𝛾𝑟ℎ𝑋(1−𝑋/𝑀)/(1+𝑎𝑋)2 is always positive if𝑅

1
>

1, while for coefficient (2𝑟𝑋/𝑀)+(𝑟(1−(𝑋/𝑀))/(1+𝑎𝑋))−𝑟,
we derive that 2𝑟𝑋/𝑀 + (𝑟(1 − (𝑋/𝑀))/(1 + 𝑎𝑋)) − 𝑟 > 0 is
equivalent to𝑅

1
< 1+𝛾ℎ/(𝑎𝑒(1+𝑎𝑀)) by somemathematical

deductions. Therefore, the disease-free equilibrium 𝐸
3
(with

predators) is locally asymptotically stable if 𝑅
02
< 1 and 1 <

𝑅
1
< 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)).
(v) Linearizing system (2) about the disease equilibrium

𝐸
4
(with predators) gives the following characteristic equa-

tion corresponding to the Jacobi matrix:
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𝜆 + (𝜇 + 𝑑) + 𝑏
1
𝛽𝑋
𝑖

0 −𝑏
1
𝛽 (𝐾 − 𝐼) 0

0 𝜆 − 𝑟 +
2𝑟𝑋

𝑀
+

𝑟 (1 − 𝑋/𝑀)

1 + 𝑎𝑋

0
ℎ𝑋

1 + 𝑎𝑋

−𝑏
1
𝛼 (𝑋 − 𝑋

𝑖
) −𝑏

1
𝛼𝐼 +

𝑟𝑋

𝑀
−

𝑎𝑟 (1 − 𝑋/𝑀)𝑋
𝑖

1 + 𝑎𝑋

𝜆 + 𝑏 + 𝑏
1
𝛼𝐼

ℎ𝑋
𝑖

1 + 𝑎𝑋

0 −

𝛾𝑟 (1 − 𝑋/𝑀)

1 + 𝑎𝑋

0 𝜆



= 0. (18)

Expanding by the first column and by further simplifying, the
above characteristic equation can be reduced to the following
equation:

[(𝜆 + 𝜇 + 𝑑 + 𝑏
1
𝛽𝑋
𝑖
) (𝜆 + 𝑏 + 𝑏

1
𝛼𝐼)

−𝑏
2

1
𝛼𝛽 (𝐾 − 𝐼) (𝑋 − 𝑋

𝑖
)]

× [𝜆
2
+ (

2𝑟𝑋

𝑀
+

𝑟 (1 − 𝑋/𝑀)

1 + 𝑎𝑋

− 𝑟)𝜆

+

𝛾𝑟ℎ𝑋 (1 − 𝑋/𝑀)

(1 + 𝑎𝑋)
2

]

]

= 0.

(19)

From the above analysis, the equation 𝜆2 + (2𝑟𝑋/𝑀 + 𝑟(1 −

𝑋/𝑀)/(1+𝑎𝑋)−𝑟)𝜆+𝛾𝑟ℎ𝑋(1−𝑋/𝑀)/(1+𝑎𝑋)
2
= 0 have two

negative real parts if and only if 1 < 𝑅
1
< 1+𝛾ℎ/(𝑎𝑒(1+𝑎𝑀)).

So, in order to determine the asymptotically stable𝐸
4
, we only

need to analyze the following equation:

(𝜆 + 𝜇 + 𝑑 + 𝑏
1
𝛽𝑋
𝑖
) (𝜆 + 𝑏 + 𝑏

1
𝛼𝐼)

− 𝑏
2

1
𝛼𝛽 (𝐾 − 𝐼) (𝑋 − 𝑋

𝑖
) = 0.

(20)

For simplicity, set

𝑝
2
= (𝑏 + 𝜇 + 𝑑 + 𝑏

1
𝛼𝐼 + 𝑏

1
𝛽𝑋
𝑖
) ,

𝑞
2
= (𝜇 + 𝑑 + 𝑏

1
𝛽𝑋
𝑖
) (𝑏 + 𝑏

1
𝛼𝐼) − 𝑏

2

1
𝛼𝛽 (𝐾 − 𝐼) (𝑋 − 𝑋

𝑖
) .

(21)
Then, (20) is equivalent to the following equation:

𝜆
2
+ 𝑝
2
𝜆 + 𝑞
2
= 0, (22)

where 𝑝
2
= (𝑏 + 𝜇 + 𝑑 + 𝑏

1
𝛼𝐼 + 𝑏

1
𝛽𝑋
𝑖
) > 0 if 𝑅

02
> 1 and

𝑅
1
> 1. For obtaining two roots of quadratic equation (22)

with negative real parts, the coefficient 𝑞
2
should satisfy 𝑞

2
>

0:
𝑞
2
= (𝜇 + 𝑑 + 𝑏

1
𝛽𝑋
𝑖
) (𝑏 + 𝑏

1
𝛼𝐼) − 𝑏

2

1
𝛼𝛽 (𝐾 − 𝐼) (𝑋 − 𝑋

𝑖
)

= (𝜇 + 𝑑) 𝑏 + (𝜇 + 𝑑) 𝑏
1
𝛼𝐼

+ 𝑏𝑏
1
𝛽𝑋
𝑖
+ 𝑏
2

1
𝛼𝛽𝐾𝑋

𝑖
+ 𝑏
2

1
𝛼𝛽𝑋𝐼 − 𝑏

2

1
𝛼𝛽𝐾𝑋.

(23)

By 𝐼 = (𝑏2
1
𝛼𝛽𝐾𝑋 − 𝑏(𝜇 + 𝑑))/(𝑏

2

1
𝛼𝛽𝑋 + 𝑏

1
𝛼(𝜇 + 𝑑)), we have

𝑏
2

1
𝛼𝛽𝑀𝐾 = [𝑏

2

1
𝛼𝛽𝑋 + 𝑏

1
𝛼 (𝜇 + 𝑑)] 𝐼 + 𝑏 (𝜇 + 𝑑) . (24)

Substitute (24) into (23) and yield 𝑞
2
= 𝑏𝑏

1
𝛽𝑋
𝑖
+

𝑏
2

1
𝛼𝛽𝐾𝑋

𝑖
> 0. Therefore, the disease equilibrium 𝐸

4
(with

predators) is locally asymptotically stable if 𝑅
02
> 1 and

1 < 𝑅
1
< 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)). This completes the proof

of Theorem 4.

5. Global Stability and Hopf Bifurcation of
System (2)

The purpose of this section is to discuss the global stability
and other dynamics for system (2) and obtain the control con-
dition under which diseases can be controlled by predators
preying on vectors. First, we give the following theorem.

Theorem 5. If the equilibrium value of the predator is zero,
then for the disease-free equilibria 𝐸

1
(0,𝑀, 0, 0) and disease

equilibrium𝐸
2
(𝐼
∗
,𝑀,𝑋

∗

𝑖
, 0) (without predators) of system (2),

the following properties hold.

(i) If 𝑅
01
≤ 1 and 𝑅

1
< 1, then lim

𝑡→+∞
(𝐼, 𝑋,𝑋

𝑖
, 𝑃) =

𝐸
1
.

(ii) If 𝑅
01
> 1 and 𝑅

1
< 1, then lim

𝑡→+∞
(𝐼, 𝑋,𝑋

𝑖
, 𝑃) =

𝐸
2
.

Proof. (i) From the second equation of system (2), 𝑑𝑋/𝑑𝑡 ≤
𝑟𝑋(1−𝑋/𝑀) and then lim

𝑡→+∞
sup𝑋(𝑡) ≤ 𝑀. Since𝑅

1
< 1,

we consider 𝜀, such that 𝛾ℎ(𝑀 + 𝜀)/(𝑒(1 + 𝑎(𝑀 + 𝜀))) < 1

and 𝛾ℎ(𝑀 + 𝜀)/(1 + 𝑎(𝑀 + 𝜀)) − 𝑒 < 0. There exists 𝑇 > 0,
such that 𝑋(𝑡) ≤ 𝑀 + 𝜀 for 𝑡 > 𝑇. Therefore, �̇� ≤ (𝛾ℎ(𝑀 +

𝜀)/(1 + 𝑎(𝑀 + 𝜀)) − 𝑒)𝑃, and lim
𝑡→+∞

𝑃(𝑡) = 0, if 𝑅
1
< 1.

So lim
𝑡→+∞

𝑋(𝑡) = 𝑀. Thus, the limit system of (2) can be
reduced to

𝑑𝐼

𝑑𝑡
= 𝑏
1
𝛽𝑋
𝑖
(𝐾 − 𝐼) − (𝜇 + 𝑑) 𝐼,

𝑑𝑋
𝑖

𝑑𝑡
= 𝑏
1
𝛼𝐼 (𝑀 − 𝑋

𝑖
) − 𝑏𝑋

𝑖
.

(25)
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Consider the Lyapunov function 𝐿 = 𝑏
1
𝛽𝐾𝑋
𝑖
+ 𝑏𝐼. Its deri-

vative along the solution of (25) is

𝐿

= 𝑏
1
𝛽𝐾 [𝑏

1
𝛼𝐼 (𝑀 − 𝑋

𝑖
) − 𝑏𝑋

𝑖
]

+ 𝑏 [𝑏
1
𝛽𝑋
𝑖 (𝐾 − 𝐼) − (𝜇 + 𝑑) 𝐼]

= 𝐼 [𝑏
2

1
𝛼𝛽𝐾 (𝑀 − 𝑋

𝑖
) − 𝑏𝑏

1
𝛽𝑋
𝑖
− 𝑏 (𝜇 + 𝑑)]

≤
𝐼

𝑏 (𝜇 + 𝑑)
[
𝑏
2

1
𝛼𝛽𝐾𝑀

𝑏 (𝜇 + 𝑑)
− 1]

=
𝐼

𝑏 (𝜇 + 𝑑)
[𝑅
2

01
− 1] .

(26)

Obviously, 𝐿 ≤ 0 if 𝑅
01
≤ 1. Moreover, the equality 𝐿 = 0

holds if and only if 𝐼 = 𝑋
𝑖
= 0. That is, the maximal compact

invariant set in {𝐼(𝑡), 𝑋(𝑡) ∈ 𝑇 : 𝐿

= 0} is {𝐸(0, 0)}. By

Lyapunov-LaSalle theorem [42], the equilibrium 𝐸(0, 0) is
globally stable if𝑅

01
≤ 1; therefore lim

𝑡→+∞
(𝐼, 𝑋,𝑋

𝑖
, 𝑃) = 𝐸

1

when 𝑅
01
≤ 1 and 𝑅

1
< 1.

(ii) From the Jacobin of (25) we can verify that system
(25) is a cooperative irreducible system in 𝑅+

2
[43]. By the

Jacobian of (25), it follows that if 𝑅
01
< 1 the origin of sys-

tem (25) is locally asymptotically stable and if 𝑅
01
> 1 the

origin of system (25) is unstable. Following Smith [44], sys-
tem (25) is strongly concave. Then it follows that if 𝑅

01
> 1

system (25) has an equilibrium 𝐸(𝐼
∗
, 𝑋
∗

𝑖
), which is globally

asymptotically stable. Since system (25) is the limiting system
of (2), it follows from Theorem 2.3 in [45] that the unique
positive equilibrium 𝐸

2
(𝐼
∗
,𝑀,𝑋

∗

𝑖
, 0) is a globally asymptot-

ically stable equilibrium of system (2).
This completes the proof of Theorem 5.

Based on Theorems 4 and 5, we have the following
corollary for system (5), which is a special case of sys-
tem (2) (without predators).

Corollary 6. For system (5), the following results hold.

(i) The disease-free equilibrium 𝐸
0
is a saddle-node with

𝑥-axis as its unstable manifold and 𝐼 − 𝑋
𝑖
plane as its

stable manifold.
(ii) If 𝑅

01
≤ 1, then lim

𝑡→+∞
(𝐼, 𝑋,𝑋

𝑖
) = 𝐸

1
, in which

case, the vector-transmitted disease will eventually die
out.

(iii) If 𝑅
01
> 1, then lim

𝑡→+∞
(𝐼, 𝑋,𝑋

𝑖
) = 𝐸

2
, in which

case, the vector-transmitted disease will persist.

Remark 7. By Corollary 6, we see the disease will persist
(stability of 𝐸

2
) or die out (stability of 𝐸

1
) in absent of

vector predators. Such results fully depend on the basic
reproduction number 𝑅

01
of system (5) which is bigger or

smaller than one.
For system (2), there exist two important equilibria: the

disease-free boundary equilibrium 𝐸
3
(0, 𝑋, 0, �̂�) and the dis-

ease equilibrium 𝐸
4
(𝐼, 𝑋,𝑋

𝑖
, �̂�) when the equilibrium value

of the predator (𝑃) is larger than zero. With the help of the
dynamics of these two equilibria, we can judge whether the

disease can be eradicated in presence of the vector predators.
For this purpose, we give the following theorem.

Theorem 8. Assume that the interior equilibrium 𝐸
2
(𝐼
∗
, 𝑋
∗
,

𝑋
∗

𝑖
) of the reduced system (5) exists and is globally stable (𝑅

01
>

1); then we have

(i) if 𝑅
02
≤ 1 and 1 < 𝑅

1
≤ 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)), then

lim
𝑡→+∞

(𝐼, 𝑋,𝑋
𝑖
, 𝑃) = 𝐸

3
, in which case, the infected

hosts and the infected vectors will die out. Therefore,
the vector-transmitted disease can be eradicated in
presence of vector predators.

(ii) if 𝑅
02
> 1 and 1 < 𝑅

1
≤ 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)), then

lim
𝑡→+∞

(𝐼, 𝑋,𝑋
𝑖
, 𝑃) = 𝐸

4
, in which case, the infected

hosts and the infected vectors will persist. Therefore,
the vector-transmitted disease will persist though in
presence of vector predators.

(iii) if 𝑅
02
< 1 and 𝑅

1
> 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)), then there

exists a stable limit cycle in (𝑋, 𝑃) plane for system (2),
in which case, despite these oscillations, predation can
still eliminate the virus from the system, while vector
densities are greater than zero.

Before giving the main proof, we need the following
lemma.

Let 𝐼 = 𝑋
𝑖
= 0 in system (5) (without considering

disease among hosts); then we have the following predator-
prey model:

𝑑𝑋

𝑑𝑡
= 𝑟 (1 −

𝑋

𝑀
)𝑋 −

ℎ𝑋

1 + 𝑎𝑋
𝑃,

𝑑𝑃

𝑑𝑡
=
𝛾ℎ𝑋

1 + 𝑎𝑋
𝑃 − 𝑒𝑃.

(27)

Lemma 9 (see [46]). For system (27), the following results
hold.

(i) There exists the unique positive equilibrium (𝑋, �̂�) =

(𝑒/(𝛾ℎ − 𝑎𝑒), (𝑟/ℎ)(1 + 𝑎𝑋)(1 − 𝑋/𝑀)) if 𝑅
1
> 1.

(ii) The positive equilibrium (𝑋, �̂�) is a globally asymptot-
ically focus if 1 < 𝑅

1
≤ 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)) and

when 𝑅
1
> 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)), (𝑋, �̂�) is an unstable

focus; moreover, there exists a stable limit cycle for (27).
This phenomenon corresponds to a supercritical Hopf
bifurcation.

System (27) is a classical predator-prey model and some
authors have studies on the dynamics of (27) or models
similar to (27). Here, we take the attack rate ℎ as bifurcation
parameter and give the proof for the occurrence of the
bifurcation when ℎ = ℎ̃ = 𝑒(1 + 𝑎𝑀)/(𝛾(𝑀 − 1/𝑎)), where
ℎ̃ satisfies equation 𝑅

1
= 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)).

Proof. For equation (27), there exists the unique positive
equilibrium (𝑋, �̂�) if𝑅

1
> 1. It is easy to get that characteristic

equation of (27) at (𝑋, �̂�) is

𝜆
2
+ 𝑝𝜆 + 𝑞 = 0, (28)
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where 𝑝 = (−𝑟 + 2𝑟𝑋/𝑀 + ℎ�̂�/(1 + 𝑎𝑋)
2
), 𝑞 = (𝛾ℎ�̂�/(1 +

𝑎𝑋)
2
)(ℎ𝑋/1 + 𝑎𝑋).

Obviously, the above characteristic equation has only two
roots and they can be expressed as

𝜆
1,2
=

−𝑝 ± √𝑝2 − 4𝑞

2
.

(29)

Note that 𝑞 > 0. Consequently, when 𝑝 > 0, that is,
𝑅
1
< 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)) (which can be obtained by some

mathematical deduction) or ℎ < ℎ̃, the above two character-
istic roots have negative real parts and the interior equilib-
rium (𝑋, �̂�) is asymptotically stable. Therefore, ℎ = ℎ̃ is
a bifurcation point of (27) about the interior equilibrium
(𝑋, �̂�).

For characteristic equation 𝜆2 +𝑝𝜆+𝑞 = 0, let 𝜆 = 𝛼(ℎ)+
𝑖𝑤(ℎ); then there exists a pair of purely imaginary roots±𝑤𝑖 =
±√𝑞𝑖 when 𝑝 = 0 (i.e., ℎ = ℎ̃). Therefore, 𝛼(ℎ̃) = 0, 𝑤(ℎ̃) > 0.
Differentiating 𝜆2 + 𝑝𝜆 + 𝑞 = 0 with respect to ℎ, we have

𝑑𝜆 (ℎ)

𝑑ℎ
= −

1

2𝜆 (ℎ) + 𝑝 (ℎ)
(𝜆 (ℎ) ⋅

𝑑𝑝 (ℎ)

𝑑ℎ
+
𝑑𝑞 (ℎ)

𝑑ℎ
) , (30)

and noticing the fact that 𝑝(ℎ̃) = −2𝛼(ℎ̃) = 0 and 𝜆 = ±𝑤𝑖 =
±√𝑞𝑖 when ℎ = ℎ̃, so

𝑑𝜆 (ℎ)

𝑑ℎ

ℎ=ℎ̃

= −
1

2𝑤𝑖
(𝑤𝑖 ⋅

𝑑𝑝 (ℎ)

𝑑ℎ

ℎ=ℎ̃

+
𝑑𝑞 (ℎ)

𝑑ℎ

ℎ=ℎ̃

) , (31)

then

𝑑𝛼 (ℎ)

𝑑ℎ

ℎ=ℎ̃

= −
1

2

𝑑𝑝 (ℎ)

𝑑ℎ

ℎ=ℎ̃

= −
1

2

𝑑 (−𝑟 + 2𝑟𝑋/𝑀 + ℎ�̂�/(1 + 𝑎𝑋)
2

)

𝑑ℎ
| ℎ = ℎ̃

=
1

2

𝑒𝛾

(𝛾ℎ − 𝑎𝑒)
2

× [((2(1 + 𝑎𝑋)
2

− 𝑟 (1 + 𝑎𝑋)

+𝑟𝑎𝑀(1 −
𝑋

𝑀
))

×(𝑀(1 + 𝑎𝑋)
2

)

−1

)] | ℎ = ℎ̃.

(32)

When ℎ = ℎ̃, we have 𝑝(ℎ̃) = 0. On the other hand, by
mathematical deducing, we obtain that 𝑝(ℎ̃) = 0 is equivalent
to𝑋 = (𝑎𝑀−1)/(2𝑎). Substitute𝑋 = (𝑎𝑀−1)/(2𝑎) into the
above equation; it follows that

𝑑𝛼 (ℎ)

𝑑ℎ

ℎ=ℎ̃

=
1

4

𝑒𝛾

(𝛾ℎ − 𝑎𝑒)
2

(𝑎𝑀 + 1)
2

𝑀(1 + 𝑎𝑋)
2
> 0. (33)

Thus, (27) will undergo a Hopf bifurcation about the interior
equilibrium (𝑋, �̂�) as ℎ passes through the value ℎ̃ (i.e., 𝑅

1
=

1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀))).
This completes the proof for the occurrence of the

bifurcation.

Based on Lemma 9, we give the proof of Theorem 8.

Proof. (i-ii) By Lemma 9, the solutions 𝑋(𝑡) and 𝑃(𝑡) of
system (2) satisfy lim

𝑡→+∞
(𝑋(𝑡), 𝑃(𝑡)) = (𝑋, �̂�) if 1 < 𝑅

1
≤

1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)). Then the limit system of (2) is reduced
to

𝑑𝐼

𝑑𝑡
= 𝑏
1
𝛽 (𝐾 − 𝐼)𝑋𝑖 − (𝜇 + 𝑑) 𝐼,

𝑑𝑋
𝑖

𝑑𝑡
= 𝑏
1
𝛼𝐼 (𝑋 − 𝑋

𝑖
) − 𝑏𝑋

𝑖
.

(34)

Similar to the proof of Theorem 5, we can prove that
lim
𝑡→+∞

(𝐼, 𝑋
𝑢
, 𝑋
𝑖
, 𝑃) = 𝐸

3
if 1 < 𝑅

1
≤ 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀))

and 𝑅
02
< 1, and lim

𝑡→+∞
(𝐼, 𝑋,𝑋

𝑖
, 𝑃) = 𝐸

4
if 𝑅
02
> 1 and

1 < 𝑅
1
≤ 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)).

(iii) From the characteristic equation (15) of equilibrium
𝐸
3
of system (2), we have lim

𝑡→+∞
(𝐼(𝑡), 𝑋

𝑖
(𝑡)) = (0, 0) if

𝑅
02
< 1. Then by Lemma 9, then there exists a stable limit

cycle of (𝑋, 𝑃) plane for system (2) if 𝑅
02
< 1 and 𝑅

1
>

1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)).
This completes the proof of Theorem 8.

Moreover, by simulation we obtain that if 𝑅
02
> 1 and

𝑅
1
> 1 + 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)), then there exists a stable limit

cycle for system (2), in which case predation cannot eliminate
the virus from the system and eventually leads to stable
oscillations (See Figure 5).

From Theorem 8, if 𝑅
02
> 1 and 𝑅

1
> 1, then 𝐼(𝑡) → 𝐼,

𝑋
𝑖
(𝑡) → 𝑋

𝑖
, as 𝑡 → +∞; thus vector-borne diseases would

persist though predators are introduced, while if 𝑅
02
< 1 and

𝑅
1
> 1, then 𝐼(𝑡) → 0, 𝑋

𝑖
(𝑡) → 0, as 𝑡 → +∞, then

vector-borne diseases will be extinct by introducing vector
predators. Thus, we have the following corollary.

Corollary 10. Assume that the vector-borne disease persists
without predators; in other words, the interior equilibrium
𝐸
3
(𝐼
∗
, 𝑋
∗

𝑢
, 𝑋
∗

𝑖
) of the system (5) exists and is globally asymp-

totically stable (𝑅
01
> 1); then by introducing vector predators

(𝑅
1
> 1 to ensure 𝑃 > 0), we have

(i) the vector-borne disease can beeliminated if 𝑅
02
≤ 1;

(ii) the existing vector-borne disease will persist if 𝑅
02
> 1.

Remark 11. From Corollary 10, the persistent disease in
absence of predators (𝑅

01
> 1) will tend to extinct if 𝑅

02
< 1

and will persist if 𝑅
02
> 1 by introducing vector predators

(𝑅
1
> 1 to ensure𝑃 > 0).Therefore, the reproductionnumber

𝑅
02

is the threshold value determining the persistence or
extinction of the existing vector-borne disease.

If we choose predator’s attack rate ℎ as parameter, then
from 𝑅

02
= 1, we have ℎ = (𝑒/𝛾)[𝑎 + 𝑏2

1
𝛼𝛽𝐾/(𝑏(𝜇 + 𝑑))].

Denote ℎ∗ = (𝑒/𝛾)[𝑎 + 𝑏2
1
𝛼𝛽𝐾/(𝑏(𝜇 + 𝑑))] and then yield the

following corollary.
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Figure 2: Numerical simulation for Case 1, with 𝑎 = 0.01, ℎ = 0.5, and other parameters fixed in Table 1. The vector-borne disease tends to
extinct in presence of vector predators.

Corollary 12. Assume that the vector-borne disease persists in
absence of vector predator (𝑅

01
> 1); then by introducing vector

predators,

(i) the vector-transmitted disease can be eliminated if
predator’s attack rate ℎ satisfies ℎ > ℎ∗;

(ii) the existing vector-borne diseasewill persist if predator’s
attack rate ℎ satisfies

𝑒

𝛾
[𝑎 +

1

𝑀
] < ℎ < ℎ

∗
. (35)

Remark 13. Corollaries 10 and 12 give the conditions to judge
when will the existing vector-borne disease be eradicated
by introducing predators to reduce vector densities, which
provides us with qualitative scheme for disease control.

Remark 14. Based on Corollary 10, other similar results can
be derived if taking other predator parameters such as the
conversation rate 𝛾 as parameter. In this paper, we mainly
investigate the persistence or extinction of disease under
different attack rate ℎ of the predator population, especially
in the following numerical simulations.

6. Numerical Simulations

In this section, we present some numerical simulations to
support the analytical results for Cases 1, 2, and 3.

Case 1 (the effects of predators on the persistence or erad-
ication of virus transmitted by arthropod vectors). Keep
values of 𝜇, 𝑑, 𝑏

1
, 𝛼, 𝛽,𝑀,𝐾, 𝑟, 𝑤, 𝑏 unchanged in Table 1. By

simple calculations, the basic reproduction number 𝑅
01
=

5.7735 > 1. By Corollary 6, without vector predators, the
vector-transmitted disease will persist. In such a case, we
introduce the predator. Take 𝑎 = 0.01, ℎ = 0.5 and keep values
𝛾 and 𝑒 fixed in Table 1 and then by direct computation, we
have 𝑅

02
= 0.9492 < 1, 𝑅

1
= 25.00 > 1, 𝑅

1
− 1 − 𝛾ℎ/(𝑎𝑒(1 +

𝑎𝑀)) = −26.00 ≤ 0; then by Theorem 8, the disease-free
equilibrium 𝐸

3
(0, 𝑋, 0, �̂�) is globally asymptotically stable,

which indicates that the existing vector-transmitted disease
will die out in presence of vector predators (see Figure 2).

Keep all the values unchanged in Figure 2 except that
ℎ = 0.2, then by simple calculations, 𝑅

01
= 5.7735 > 1,

𝑅
02
= 1.5162 > 1, 𝑅

1
= 10.00 > 1, 𝑅

1
−1−𝛾ℎ/(𝑎𝑒(1+𝑎𝑀)) =

−11.00 ≤ 0. Therefore, by Theorem 8, the disease equilib-
rium 𝐸

4
(𝐼, 𝑋,𝑋

𝑖
, �̂�) is globally asymptotically stable, which

indicates that the vector-transmitted diseasewill be persistent
though in presence of vector predators (see Figure 3).

Remark 15. By Figures 2 and 3, the disease will be persistent
or tend to be extinct in presence of predators, which greatly
depends on the predator strength. It can be easily verified that
if the attack rate ℎ satisfies ℎ = 0.2 < ℎ∗, then by Corollary 12
the diseasewill persist.While if the attack rate ℎ is added up to
0.5 and satisfies ℎ = 0.5 > 0.4511 = ℎ∗, then by Corollary 12,
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Figure 3: Numerical simulation for Case 1, with 𝑎 = 0.01, ℎ = 0.2, and other parameters fixed in Table 1.The vector-borne disease will persist
though in presence of vector predators.

the disease dies out. Moreover, from Figure 2, by enhancing
the attack rate ℎ, the reduced vector densities rather than
outright eradication can suffice to eradicate disease, which is
different to predators used in pest control where predations
aim to eradicate pests.

Case 2 (the existence of stable limit cycles). Keep values of
𝜇, 𝑑, 𝑏

1
, 𝛼, 𝛽,𝑀,𝐾, 𝑟, 𝑤, 𝑏 unchanged in Case 1; then 𝑅

01
=

5.7735 > 1; that is, the disease persists without predator. Take
𝑎 = 0.03, ℎ = 0.65, and keep values 𝛾 and 𝑒 unchanged inCase
1. By simple calculations, 𝑅

02
= 0.8399 < 1, 𝑅

1
= 19.5 > 1,

𝑅
1
−1−𝛾ℎ/(𝑎𝑒(1+𝑎𝑀)) = 5.5 > 0; then byTheorem 8, there

exists a stable limit cycle in (𝑋 − 𝑃) plane for system (2), but
the infected host and vector population level tend to zero (see
Figure 4).

Keep all values of system (2) unchanged in Figure 4 except
that ℎ = 0.12; then by simple calculations, 𝑅

01
= 5.7735 > 1,

𝑅
02
= 2.1082 > 1, 𝑅

1
= 3.6 > 1, 𝑅

1
− 1 − 𝛾ℎ/(𝑎𝑒(1 + 𝑎𝑀)) =

0.2 > 0. By numerical simulation, there exists a stable limit
cycle for system (2) (see Figure 5).

Remark 16. From Figures 4 and 5, we can see that periodic
solutions exist in presence of vector predators, suggesting the
occurrence of supercritical Hopf bifurcation. From Figure 5,
the infected hosts, the vectors including infected and sus-
ceptible ones, and the predators oscillate, leading to the per-
sistence of the vector-transmitted disease though predators

are introduced. By enhancing predators’ attack rate ℎ such
that ℎ = 0.65 > 0.4644 = ℎ

∗, then by Corollary 12, we
find that predation can lead to extinction of the disease,
despite the oscillations of the predator and the vector (see Fig-
ure 4.).

Case 3 (the comparing outcomes between models with
and without the predator population). Keep values of
𝜇, 𝑑, 𝑏

1
, 𝛼, 𝛽,𝑀,𝐾, 𝑟, 𝑤, 𝑏 unchanged in Case 1; then 𝑅

01
=

5.7735 > 1; that is, the disease persists without predator.
Take predator’s attack rate ℎ as parameter and keep 𝛾, 𝑒,
and 𝑐 unchanged in Case 1; we study how different values of
ℎ affect the disease prevalence. In absence of the predator,
that is, ℎ = 0, then the disease persists (see the above
curve of Figure 6(a)). By introducing predators of the vector
population, we find that the equilibrium infection levels have
been reduced and also the onset of an epidemic has been
delayed if the predator attack rate ℎ = 0.2. However, the
disease has not been eradicated (see the below curve of
Figure 6(a)). By increasing the attack rate of predators ℎ, such
that ℎ = 0.5, then from the below curve of Figure 6(b), we
can see that the vector-borne disease can be eradicated by
introducing vector predators.

Remark 17. From Figure 6, we conclude that an increase
in predator’s attack rate can not only reduce equilibrium
infection levels, but also delay the onset of an epidemic (see
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Figure 4: Numerical simulation for Case 2, with 𝑎 = 0.03, ℎ = 0.65, and other parameters fixed in Table 1. A stable limit cycle occurs in 𝑋𝑃
plane of system (2). (a) Temporal plots for system variables. (b) Phase portrait in𝑋𝑃 plane. (c) Phase portrait in 𝑡𝑋𝑃 space.

Figure 6(a)). Moreover, predation can eradicate virus if the
attack rate ℎ satisfies ℎ > ℎ∗ (see Figure 6(b)).

7. Concluding Remarks

In this paper, we mainly propose a host, vector, and predator
model to investigate the impact of the predator on the
outbreak and extinction of vector-transmitted disease. Some
sufficient conditions ensuring the globally asymptotically
stability for the disease-free and disease equilibria are derived
in absence and presence of predators. Moreover, complex
dynamical phenomena such as Hopf bifurcation appear due

to the stable focus losing stability. Taking the attack rate
ℎ as the bifurcation parameter, we derive the threshold
condition ℎ∗ based on the stability results such that the
vector-transmitted disease can be eradicated by introducing
vector predators when ℎ > ℎ∗. Some numerical simulations
are illustrated to support the theoretical analysis of research,
also used for better comparison of the disease prevalence
with or without predators. Moreover, since the viewpoint
of pest control, multipredators have been testified more
effectively on a single prey than one predator and another
possible extension would be coupling our host-vector model
with the prey and multipredator model studied in [22, 23].
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Figure 5: Numerical simulation for Case 2, with 𝑎 = 0.03, ℎ = 0.12, and other parameters fixed in Table 1. A stable limit cycle occurs for
system (2).
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Figure 6: The population densities of the infected hosts with and without vector predators.

Therefore, we can further continue our work about the
effect of multipredator on the prevalence of vector-borne dis-
ease.
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Table 1: Definition of parameters and values used in simulations (time unit is selected as day).

Parameter Description Estimated value/range Resource

𝜇 Natural death rate of plants 0.003 [38]

𝑑 Disease-induced mortality rate of plants 0.003 [38]

𝑏
1

Per capita rate of contacts on plant hosts by vectors 1 Assumed

𝛼
The disease transmission probability from infected plant hosts to uninfected vectors
(=the acquisition rate of virus)

0.008 [38]

𝛽
The disease transmission probability from infected vectors to uninfected plants
(=the inoculation rate of virus)

0.008 [38]

𝑀 Vector carrying capacity 50 Assumed

𝐾 Total plant population 20 Assumed

𝑟 Intrinsic birth rate of vectors 0.2 [38]

𝑤 Natural death rate of vectors 0.12 [38]

𝑏 Natural birth rate of vectors 0.32 [38]

ℎ Prey searching rate 0.1–0.65 Assumed

𝑎 Predator’s satiety rate 0.01–0.03 Assumed

𝛾 Predator’s conversation factor 0.15 [46]

𝑒 Predator’s mortality rate 0.1 [46]
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