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In this paper we point out some corrections needed in [1].
Recently, a geometric notion of seminormal structure has been introduced as follows.
Definition 1 (see [1]). A convex pair 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 in a Banach space 
	
		
			

				𝑋
			

		
	
 is said to have seminormal structure if, for any bounded, closed, and convex pair 
	
		
			
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				)
				⊆
				(
				𝐴
				,
				𝐵
				)
			

		
	
 with 
	
		
			
				𝛿
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				)
				>
				0
			

		
	
, there exits 
	
		
			
				(
				𝑝
				,
				𝑞
				)
				∈
				𝐾
			

			

				1
			

			
				×
				𝐾
			

			

				2
			

		
	
 such that
					
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				𝛿
				m
				a
				x
			

			

				𝑝
			

			
				
				𝐾
			

			

				2
			

			
				
				,
				𝛿
			

			

				𝑞
			

			
				
				𝐾
			

			

				1
			

			
				
				𝐾
				
				
				<
				𝛿
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				
				.
			

		
	

				It has been remarked in [1] that the pair 
	
		
			
				(
				𝐴
				,
				𝐴
				)
			

		
	
 has seminormal structure if and only if 
	
		
			

				𝐴
			

		
	
 has normal structure in the sense of Brodskiĭ and Mil’man [2]. We revise this remark as follows. If the pair 
	
		
			
				(
				𝐴
				,
				𝐴
				)
			

		
	
 has seminormal structure, then 
	
		
			

				𝐴
			

		
	
 has normal structure in the sense of Brodskiĭ and Mil’man. Indeed, if the set 
	
		
			

				𝐴
			

		
	
 has normal structure, then 
	
		
			
				(
				𝐴
				,
				𝐴
				)
			

		
	
 may not have seminormal structure. We illustrate this with the following example.
Example 2. Let 
	
		
			
				𝑋
				∶
				=
				ℝ
			

		
	
 with the usual metric and let 
	
		
			
				𝐴
				∶
				=
				[
				0
				,
				1
				]
			

		
	
. Then 
	
		
			

				𝐴
			

		
	
 has normal structure because 
	
		
			

				𝐴
			

		
	
 is a nonempty, bounded, closed, and convex subset of the uniformly convex Banach space 
	
		
			

				𝑋
			

		
	
. Suppose 
	
		
			

				𝐾
			

			

				1
			

			
				∶
				=
				{
				0
				}
			

		
	
 and 
	
		
			

				𝐾
			

			

				2
			

			
				∶
				=
				{
				1
				}
			

		
	
. Then 
	
		
			
				m
				a
				x
				{
				𝛿
			

			

				𝑝
			

			
				(
				𝐾
			

			

				2
			

			
				)
				,
				𝛿
			

			

				𝑞
			

			
				(
				𝐾
			

			

				1
			

			
				)
				}
				=
				𝛿
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			

				)
			

		
	
; that is, 
	
		
			
				(
				𝐴
				,
				𝐴
				)
			

		
	
 does not have seminormal structure.The following notion has also been given in [1].
Definition 3 (see [1]). A nonempty, bounded, closed, and convex pair 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 of a normed linear space is said to have property (D) provided that for each nonempty, closed, and convex pair 
	
		
			
				(
				𝐸
				,
				𝐹
				)
				⊆
				(
				𝐴
				,
				𝐵
				)
			

		
	
 one has
					
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				m
				i
				n
				{
				d
				i
				a
				m
				(
				𝐸
				)
				,
				d
				i
				a
				m
				(
				𝐹
				)
				}
				≤
				𝛿
				(
				𝐸
				,
				𝐹
				)
				.
			

		
	

				In [1], the following proposition has been obtained to derive Corollary 5 (see Corollary  12 in [1]).
Proposition 4 (see Proposition  11 in [1]).  Let 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 be a nonempty, bounded, closed, and convex pair in a uniformly convex Banach space 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 has the property (D). Then 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 has seminormal structure.
Corollary 5 (see Corollary  12 in [1]).  Let 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 be a nonempty, bounded, closed, and convex pair in a uniformly convex Banach space 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 has the property (D). Assume that 
	
		
			
				𝑇
				∶
				𝐴
				∪
				𝐵
				→
				𝐴
				∪
				𝐵
			

		
	
 is a cyclic relatively nonexpansive mapping. Then 
	
		
			

				𝑇
			

		
	
 has a fixed point.
In the following, we give a counterexample to Proposition 4 which suggests that the result of Corollary 5 should be revised.
Example 6. Let 
	
		
			
				𝑋
				∶
				=
				ℝ
			

		
	
 with the usual metric and let 
	
		
			
				𝐴
				∶
				=
				[
				0
				,
				1
				]
			

		
	
 and 
	
		
			
				𝐵
				∶
				=
				[
				2
				,
				3
				]
			

		
	
. It is clear that 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 has the property (D). Now, consider 
	
		
			

				𝐾
			

			

				1
			

			
				∶
				=
				{
				0
				}
			

		
	
 and 
	
		
			

				𝐾
			

			

				2
			

			
				∶
				=
				{
				3
				}
			

		
	
 and suppose 
	
		
			
				(
				𝑝
				,
				𝑞
				)
				=
				(
				0
				,
				3
				)
			

		
	
. Then
					
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				𝛿
				m
				a
				x
			

			

				𝑝
			

			
				
				𝐾
			

			

				2
			

			
				
				,
				𝛿
			

			

				𝑞
			

			
				
				𝐾
			

			

				1
			

			
				
				𝐾
				
				
				=
				𝛿
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				
				;
			

		
	

				that is, 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 does not have seminormal structure.Using an argument similar to that in the proof of Proposition  11 in [1], we are able to correct Corollary 5 as follows.
Corollary 7.  Let 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 be a nonempty, bounded, closed, and convex pair in a uniformly convex Banach space 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				(
				𝐴
				,
				𝐵
				)
			

		
	
 has the property (D). If  
	
		
			
				𝑇
				∶
				𝐴
				∪
				𝐵
				→
				𝐴
				∪
				𝐵
			

		
	
 is a cyclic relatively nonexpansive mapping, then either 
	
		
			
				𝐴
				∩
				𝐵
			

		
	
 is nonempty and 
	
		
			

				𝑇
			

		
	
 has a fixed point in 
	
		
			
				𝐴
				∩
				𝐵
			

		
	
 or 
	
		
			

				𝑇
			

		
	
 has a best proximity point.
Proof. Suppose 
	
		
			

				ℱ
			

		
	
 denotes the collection of all nonempty, closed, and convex pairs 
	
		
			
				(
				𝐸
				,
				𝐹
				)
				⊆
				(
				𝐴
				,
				𝐵
				)
			

		
	
 such that 
	
		
			

				𝑇
			

		
	
 is cyclic on 
	
		
			
				𝐸
				∪
				𝐹
			

		
	
 and there exists a pair 
	
		
			
				(
				𝑝
				,
				𝑞
				)
				∈
				𝐸
				×
				𝐹
			

		
	
 for which 
	
		
			
				‖
				𝑝
				−
				𝑞
				‖
				=
				d
				i
				s
				t
				(
				𝐴
				,
				𝐵
				)
			

		
	
. Note that 
	
		
			
				(
				𝐴
			

			

				0
			

			
				,
				𝐵
			

			

				0
			

			
				)
				∈
				ℱ
			

		
	
. By using Zorn’s lemma we can see that 
	
		
			

				ℱ
			

		
	
 has a minimal element, say 
	
		
			
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			

				)
			

		
	
. If 
	
		
			
				𝛿
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				)
				=
				0
			

		
	
, then 
	
		
			
				𝐴
				∩
				𝐵
			

		
	
 is a nonempty, bounded, closed, and convex subset of a uniformly convex Banach space 
	
		
			

				𝑋
			

		
	
 and 
	
		
			
				𝑇
				∶
				𝐴
				∩
				𝐵
				→
				𝐴
				∩
				𝐵
			

		
	
 is a nonexpansive mapping. Thus 
	
		
			

				𝑇
			

		
	
 has a fixed point and we are finished. So, we assume that 
	
		
			
				𝛿
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				)
				>
				0
			

		
	
. We now consider the following cases.Case  1. If 
	
		
			
				m
				i
				n
				{
				d
				i
				a
				m
				(
				𝐾
			

			

				1
			

			
				)
				,
				d
				i
				a
				m
				(
				𝐾
			

			

				2
			

			
				)
				}
				=
				0
			

		
	
, we may assume that 
	
		
			

				𝐾
			

			

				1
			

			
				=
				{
				𝑥
			

			

				∗
			

			

				}
			

		
	
. Consequently, there exists 
	
		
			

				𝑦
			

			

				∗
			

			
				∈
				𝐾
			

			

				2
			

		
	
 such that 
	
		
			
				‖
				𝑥
			

			

				∗
			

			
				−
				𝑦
			

			

				∗
			

			
				‖
				=
				d
				i
				s
				t
				(
				𝐴
				,
				𝐵
				)
			

		
	
. Since 
	
		
			

				𝑇
			

		
	
 is a cyclic relatively nonexpansive mapping, we have
					
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				‖
				𝑥
			

			

				∗
			

			
				−
				𝑇
				𝑥
			

			

				∗
			

			
				‖
				=
				‖
				𝑇
				𝑦
			

			

				∗
			

			
				−
				𝑇
				𝑥
			

			

				∗
			

			
				‖
				≤
				‖
				𝑦
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				=
				d
				i
				s
				t
				(
				𝐴
				,
				𝐵
				)
				.
			

		
	

				This implies that 
	
		
			

				𝑇
			

		
	
 has a best proximity point.Case  2. If 
	
		
			
				m
				i
				n
				{
				d
				i
				a
				m
				(
				𝐾
			

			

				1
			

			
				)
				,
				d
				i
				a
				m
				(
				𝐾
			

			

				2
			

			
				)
				}
				>
				0
			

		
	
, by an argument similar to that in Proposition  11 of [1], we conclude that there exists a pair 
	
		
			
				(
				𝑝
				,
				𝑞
				)
				∈
				𝐾
			

			

				1
			

			
				×
				𝐾
			

			

				2
			

		
	
 such that 
	
		
			
				m
				a
				x
				{
				𝛿
			

			

				𝑝
			

			
				(
				𝐾
			

			

				2
			

			
				)
				,
				𝛿
			

			

				𝑞
			

			
				(
				𝐾
			

			

				1
			

			
				)
				}
				<
				𝛿
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			

				)
			

		
	
. By analogous proof of Theorem  8 in [1], we obtain that 
	
		
			
				𝛿
				(
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				)
				=
				0
			

		
	
, which is a contradiction.
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