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Some common fixed point theorems for JH-operator pairs are proved. As an application, the existence and uniqueness of the
common solution for systems of functional equations arising in dynamic programming are discussed. Also, an example to validate
all the conditions of the main result is presented.

1. Introduction and Preliminaries

Jungck [1] introduced compatible mappings as a general-
ization of weakly commuting mappings. Jungck and Pathak
[2] defined the concept of the biased mappings in order to
generalize the concept of compatible mappings. Also, several
authors [3–6] studied various classes of compatible mappings
and proved common fixed point theorems for these classes.
Recently, Hussain et al. [7] introduced JH-operator pairs
as a new class of noncommuting self-mappings that contains
the occasionally weakly compatible, and Sintunavarat and
Kumam [8] introduced generalized JH-operator pairs that
contain JH-operator pairs. On the other hand, fixed point
theory has various applications in other fields, for instance,
obtaining a solution of several classes of functional equations
(or a system of functional equations) arising in dynamic
programming (see [9–12]). Bellman and Lee [13], Zhang [14],
and Chang and Ma [15] point out that the basic form of
the functional equations of dynamic programming and the
system of functional equations of dynamic programming are
as follows:

𝑓 (𝑥) = sup
𝑦∈𝐷

𝐻(𝑥, 𝑦, 𝑓 (𝑇 (𝑥, 𝑦))) , ∀𝑥 ∈ 𝑆,

𝑓 (𝑥) = sup
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑔 (𝑇 (𝑥, 𝑦)))} , ∀𝑥 ∈ 𝑆,

𝑔 (𝑥) = sup
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑓 (𝑇 (𝑥, 𝑦)))} , ∀𝑥 ∈ 𝑆.

(1)

In this presented work, JH-operator pairs are compared
with the various type of compatible mappings and it is
shown that the JH-operator pairs reduce to symmetric
Banach operator pairs under relaxed conditions.We omit the
completeness condition of the space. Then some common
fixed point theorems are proved for JH-operator pairs.
Eventually, the results are used to show the existence and
uniqueness of common solution for systems of functional
equations without completeness of the space.

The set of fixed points of 𝑇 is denoted by 𝐹(𝑇). A point
𝑥 ∈ 𝑀 is a coincidence point (common fixed point) of 𝑆 and
𝑇 if 𝑆𝑥 = 𝑇𝑥(𝑥 = 𝑆𝑥 = 𝑇𝑥). Let 𝐶(𝑆, 𝑇), 𝑃𝐶(𝑆, 𝑇) denote
the sets of all coincidence points and points of coincidence,
respectively, of the pair (𝑆, 𝑇). The pair (𝑆, 𝑇) is called a
Banach operator pair if the set 𝐹(𝑇) is 𝑆-invariant, namely,
𝑆(𝐹(𝑇)) ⊆ 𝐹(𝑇). If (𝑆, 𝑇) is a Banach operator pair, then (𝑇, 𝑆)
need not be a Banach operator pair. Let (𝑋, 𝑑) be a metric
space and 𝑓, 𝑆 self-mappings on 𝑋; the pair (𝑓, 𝑆) is called as
follows:

(0) symmetric Banach operator if both (𝑓, 𝑆) and (𝑆, 𝑓)
are Banach operator pairs [16];
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(1) compatible if 𝑑(𝑓𝑆𝑥𝑛, 𝑆𝑓𝑥𝑛) → 0, whenever {𝑥𝑛} is a
sequence in𝑋 such that 𝑓𝑥𝑛 and 𝑆𝑥𝑛 → 𝑡 ∈ 𝑋 [1];

(2) P-operator pair if 𝑑(𝑥, 𝑆𝑥) ≤ diam(𝐶(𝑓, 𝑆)), for some
𝑥 ∈ 𝐶(𝑓, 𝑆) [17];

(3) JH-operator pair if there exists a point𝑤 = 𝑓𝑥 = 𝑆𝑥
in 𝑃𝐶(𝑓, 𝑆) such that

𝑑 (𝑤, 𝑥) ≤ diam (𝑃𝐶 (𝑓, 𝑆)) ; (2)

see [7];
(4) compatible of type (𝐴) if

𝑑 (𝑓𝑆𝑥𝑛, 𝑆𝑆𝑥𝑛) → 0, 𝑑 (𝑆𝑓𝑥𝑛, 𝑓𝑓𝑥𝑛) → 0, (3)

whenever {𝑥𝑛} is a sequence in 𝑋 such that 𝑓𝑥𝑛 and
𝑆𝑥𝑛 → 𝑡 ∈ 𝑋 [6];

(5) weakly 𝑆-biased of type (𝐴) if 𝑓𝑝 = 𝑆𝑝 implies that

𝑑 (𝑆𝑆𝑝, 𝑓𝑝) ≤ 𝑑 (𝑓𝑆𝑝, 𝑆𝑝) ; (4)

see [18];
(6) compatible of type (𝐵) if

lim
𝑛→∞

𝑑 (𝑆𝑓𝑥𝑛, 𝑓𝑓𝑥𝑛)

≤
1

2
[ lim
𝑛→∞

𝑑 (𝑆𝑓𝑥𝑛, 𝑆𝑡) + lim
𝑛→∞

𝑑 (𝑆𝑡, 𝑆𝑆𝑥𝑛)] ,

lim
𝑛→∞

𝑑 (𝑓𝑆𝑥𝑛, 𝑆𝑆𝑥𝑛)

≤
1

2
[ lim
𝑛→∞

𝑑 (𝑓𝑆𝑥𝑛, 𝑓𝑡) + lim
𝑛→∞

𝑑 (𝑓𝑡, 𝑓𝑓𝑥𝑛)] ,

(5)

whenever {𝑥𝑛} is a sequence in 𝑋 such that
lim𝑛→∞𝑓𝑥𝑛 = lim𝑛→∞𝑆𝑥𝑛 = 𝑡 ∈ 𝑋 [3];

(7) compatible of type (𝑃) if

lim
𝑛→∞

𝑑 (𝑓𝑓𝑥𝑛, 𝑆𝑆𝑥𝑛) = 0, (6)

whenever {𝑥𝑛} is a sequence in 𝑋 such that
lim𝑛→∞𝑓𝑥𝑛 = lim𝑛→∞𝑆𝑥𝑛 = 𝑡 ∈ 𝑋 [4];

(8) compatible of type (𝐶) if

lim
𝑛→∞

𝑑 (𝑆𝑓𝑥𝑛, 𝑓𝑓𝑥𝑛)

≤
1

3
[ lim
𝑛→∞

𝑑 (𝑆𝑓𝑥𝑛, 𝑆𝑡) + lim
𝑛→∞

𝑑 (𝑆𝑡, 𝑆𝑆𝑥𝑛)

+ lim
𝑛→∞

𝑑 (𝑆𝑡, 𝑓𝑓𝑥𝑛)] ,

lim
𝑛→∞

𝑑 (𝑓𝑆𝑥𝑛, 𝑆𝑆𝑥𝑛)

≤
1

3
[ lim
𝑛→∞

𝑑 (𝑓𝑆𝑥𝑛, 𝑓𝑡) + lim
𝑛→∞

𝑑 (𝑓𝑡, 𝑓𝑓𝑥𝑛)

+ lim
𝑛→∞

𝑑 (𝑓𝑡, 𝑆𝑆𝑥𝑛)] ,

(7)

whenever {𝑥𝑛} is a sequence in 𝑋 such that
lim𝑛→∞𝑓𝑥𝑛 = lim𝑛→∞𝑆𝑥𝑛 = 𝑡 ∈ 𝑋 [5].

2. JH-Operator Pair

Proposition 1. Let 𝑓 and 𝑆 be self-mappings of metric space
(𝑋, 𝑑), and𝐶(𝑓, 𝑆) ̸= 0. If𝑓 and 𝑆 are compatible, or compatible
of type (𝐴), or compatible of type (𝑃), or compatible of type (𝐵),
or compatible of type (𝐶), then (𝑓, 𝑆) is aJH-operator pair.

Proof. If 𝑓 and 𝑆 are one of the assumptions listed, then 𝑓
and 𝑆 are weakly compatible and, hence, they are occasionally
weakly compatible; then (𝑓, 𝑆) is aJH-operator pair.

Notation 1. The following example shows that the converse of
Proposition 1 is not true, in general.

Example 2. Suppose that (𝑋 = [0, 1], 𝑑) is ametric space with
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| and 𝑓, 𝑆 are defined by

𝑓𝑥 = {
𝑥2, if 𝑥 ̸= 0,

1, if 𝑥 = 0,

𝑆𝑥 =
{
{
{

𝑥

2
, if 𝑥 ̸= 0,

1, if 𝑥 = 0.

(8)

Then,𝐶(𝑓, 𝑆) = {0, 1/2},𝑃𝐶(𝑓, 𝑆) = {1, 1/4}. On the other
hand, for 𝑤 = 1/4 ∈ 𝑃𝐶(𝑓, 𝑆) we have 𝑓(1/2) = 𝑆(1/2) = 1/4
and

𝑑(
1

2
,
1

4
) =



1

2
−

1

4


≤ diam (𝑃𝐶 (𝑓, 𝑆)) =


1 −

1

4


. (9)

Thus, (𝑓, 𝑆) is aJH-operator pair.
Now, suppose that {𝑥𝑛} is a sequence in [0, 1] defined by

𝑥𝑛 = 1/2. Then, lim𝑛→∞𝑓𝑥𝑛 = lim𝑛→∞𝑆𝑥𝑛 = 𝑡 = 1/4, 𝑓𝑥𝑛 =
𝑆𝑥𝑛 = 1/4, and 𝑓𝑆𝑥𝑛 = 1/16, 𝑆𝑓𝑥𝑛 = 1/8. Since

lim
𝑛→∞

𝑓𝑆𝑥𝑛 − 𝑆𝑓𝑥𝑛
 =

1

16
̸= 0, (10)

so (𝑓, 𝑆) is not compatible.
𝑆𝑆𝑥𝑛 = 1/8, 𝑓𝑓𝑥𝑛 = 1/16. Since

lim
𝑛→∞

𝑓𝑆𝑥𝑛 − 𝑆𝑆𝑥𝑛
 =

1

16
̸= 0, (11)

thus (𝑓, 𝑆) is not compatible of type (𝐴).
Since

lim
𝑛→∞

𝑓𝑆𝑥𝑛 − 𝑆𝑆𝑥𝑛


=
1

16
>

1

2
[ lim
𝑛→∞

𝑓𝑆𝑥𝑛 − 𝑓𝑡
 + lim
𝑛→∞

𝑓𝑡 − 𝑓𝑓𝑥𝑛
] = 0,

(12)

then (𝑓, 𝑆) is not compatible of type (𝐵).
Since

lim
𝑛→∞

𝑆𝑆𝑥𝑛 − 𝑓𝑓𝑥𝑛
 =

1

16
̸= 0, (13)

thus (𝑓, 𝑆) is not compatible of type (𝑃).
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Since
lim
𝑛→∞

𝑓𝑆𝑥𝑛 − 𝑆𝑆𝑥𝑛


=
1

16
>

1

3
[ lim
𝑛→∞

𝑓𝑆𝑥𝑛 − 𝑓𝑡
 + lim
𝑛→∞

𝑓𝑡 − 𝑓𝑓𝑥𝑛


+ lim
𝑛→∞

𝑓𝑡 − 𝑆𝑆𝑥𝑛
] =

1

48
,

(14)

therefore, (𝑓, 𝑆) is not compatible of type (𝐶).

Proposition 3. Let 𝑓 and 𝑆 be self-mappings of metric space
(𝑋, 𝑑). If (𝑓, 𝑆) is a JH-operator pair such that 𝑃𝐶(𝑓, 𝑆) is
singleton, then (𝑓, 𝑆) is symmetric Banach operator pair.

Proof. By hypothesis, there is a point𝑓𝑥 = 𝑆𝑥 = 𝑤 ∈ 𝑃𝐶(𝑓, 𝑆)
such that 𝑑(𝑥, 𝑤) ≤ diam(𝑃𝐶(𝑓, 𝑆)) = 0. Thus, 𝑥 = 𝑤 = 𝑓𝑥 =
𝑆𝑥 and 𝑥 is a unique point of 𝐶(𝑓, 𝑆). Also, by Proposition
2.4 [19] (𝑓, 𝑆) is weakly compatible and hence, by Lemma 2.1
[19], 𝑤 = 𝑥 is a unique common fixed point of 𝑓 and 𝑆. Now,
since the sets 𝑃𝐶(𝑓, 𝑆) and 𝐶(𝑓, 𝑆) are singleton, then 𝐹(𝑓) =
𝐹(𝑆) = {𝑥}, 𝑓(𝐹(𝑆)) ⊆ 𝐹(𝑆) and 𝑆(𝐹(𝑓)) ⊆ 𝐹(𝑓); that is, (𝑓, 𝑆)
is symmetric Banach operator pair.

Example 4. Suppose that (𝑋 = [0, 5], 𝑑) is ametric space with
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| and 𝑓, 𝑆 are defined by

𝑓𝑥 =
{{
{{
{

0, if 𝑥 = 0,

𝑥 + 4, if 𝑥 ∈ (0, 1] ,

𝑥 − 1, if 𝑥 ∈ (1, 5] ,

𝑆𝑥 = {
2, if 𝑥 ∈ (0, 1] ,

0, if 𝑥 ∈ {0} ∪ (1, 5] .

(15)

Then 𝐶(𝑓, 𝑆) = 𝑃𝐶(𝑓, 𝑆) = {0}. Clearly (𝑓, 𝑆) is JH-
operator pair and symmetric Banach operator pair.

Proposition 5. Let 𝑓 and 𝑆 be self-mappings of metric space
(𝑋, 𝑑). If (𝑓, 𝑆) is a JH-operator pair and for all 𝑥, 𝑦 ∈ 𝑋 we
have

𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑓𝑥) , 𝑑 (𝑓𝑦, 𝑆𝑦) ,

1

2
(𝑑 (𝑆𝑥, 𝑓𝑦) + 𝑑 (𝑆𝑦, 𝑓𝑥))}) ,

(16)

where 𝜙 : [0,∞) → [0,∞) is a nondecreasing function
satisfying the condition 𝜙(𝑡) < 𝑡 for 𝑡 > 0, then (𝑓, 𝑆) is
symmetric Banach operator pair.

Proof. Since (𝑓, 𝑆) is aJH-operator pair, there is a point𝑓𝑥 =
𝑆𝑥 = 𝑤 in 𝑃𝐶(𝑓, 𝑆) such that 𝑑(𝑥, 𝑤) ≤ diam(𝑃𝐶(𝑓, 𝑆)). Now,
if there is another point 𝑓𝑦 = 𝑆𝑦 = 𝑧 in 𝑃𝐶(𝑓, 𝑆) and 𝑧 ̸=𝑤,
then, by (16),

𝑑 (𝑤, 𝑧) = 𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝜙 (max {𝑑 (𝑤, 𝑧) , 0, 0,
1

2
(𝑑 (𝑤, 𝑧) + 𝑑 (𝑤, 𝑧))}) ;

(17)

therefore, 𝑑(𝑤, 𝑧) ≤ 𝜙(𝑑(𝑤, 𝑧)) < 𝑑(𝑤, 𝑧) which is a
contradiction. Then 𝑤 = 𝑧, that is, 𝑃𝐶(𝑓, 𝑆) is singleton and,
hence, by Proposition 3 (𝑓, 𝑆) is symmetric Banach operator
pair.

Proposition 6. Let 𝑓 and 𝑆 be self-mappings of metric space
(𝑋, 𝑑). If (𝑓, 𝑆) is a P-operator pair such that 𝐶(𝑓, 𝑆) is
singleton, then (𝑓, 𝑆) is symmetric Banach operator pair.

Corollary 7. Let (𝑓, 𝑆) be an occasionally weakly compatible
pair of self-mappings on𝑋 that 𝐶(𝑓, 𝑆) is singleton; then (𝑓, 𝑆)
is symmetric Banach operator pair.

Proof. Clearly, occasionally weakly compatible mappings are
P-operators; then by Proposition 6 the result is obtained.

3. Common Fixed Point

Definition 8 (see [20]). A function 𝜓 : [0,∞] → [0,∞] is
called an altering distance function if

(i) 𝜓 is monotone increasing and continuous;
(ii) 𝜓(𝑡) = 0 if and only if 𝑡 = 0.

Theorem 9. Suppose that 𝑆 and 𝑇 are self-mappings of metric
space (𝑋, 𝑑). The pair (𝑆, 𝑇) is aJH-operator pair and, for all
𝑥, 𝑦 ∈ 𝑋,

𝜓 (𝑑 (𝑆𝑥, 𝑇𝑦))

≤ 𝜓(max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑆𝑦, 𝑇𝑥)]})

− 𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑇𝑥, 𝑆𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)}) ,

(18)

where 𝜓 is an altering distance function and 𝜙 : [0,∞] →
[0,∞] is a continuous function with 𝜙(𝑡) = 0 if and only if 𝑡 =
0. Then 𝑆 and 𝑇 have a unique common fixed point. Moreover,
any fixed point of 𝑆 is a fixed point of 𝑇 and conversely.

Proof. By hypothesis, there exists a point 𝑤 ∈ 𝑋 such that
𝑤 = 𝑆𝑥 = 𝑇𝑥 and

𝑑 (𝑤, 𝑥) ≤ diam (𝑃𝐶 (𝑆, 𝑇)) . (19)

Suppose that there exists another point 𝑧 ∈ 𝑋 and 𝑧 ̸=𝑤, for
which 𝑧 = 𝑆𝑦 = 𝑇𝑦. Then, from (18), we get

𝜓 (𝑑 (𝑤, 𝑧))

≤ 𝜓(max {𝑑 (𝑤, 𝑧) , 0, 0,
1

2
[𝑑 (𝑤, 𝑧) + 𝑑 (𝑧, 𝑤)]})

− 𝜙 (max {𝑑 (𝑤, 𝑧) , 0, 0}) ;

(20)

accordingly, 𝜓(𝑑(𝑤, 𝑧)) ≤ 𝜓(𝑑(𝑤, 𝑧)) − 𝜙(𝑑(𝑤, 𝑧)), which is
a contradiction with definition of 𝜙. Therefore, 𝑃𝐶(𝑆, 𝑇) is
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singleton so diam(𝑃𝐶(𝑆, 𝑇)) = 0. By using (19), 𝑑(𝑤, 𝑥) ≤
diam(𝑃𝐶(𝑆, 𝑇)) = 0; thus, 𝑤 = 𝑥; that is, 𝑥 is a unique
common fixed point of 𝑆 and 𝑇.

Now, suppose that 𝑢 is a fixed point of 𝑆 but 𝑢 ̸= 𝑇𝑢, from
(18),

𝜓 (𝑑 (𝑢, 𝑇𝑢))

= 𝜓 (𝑑 (𝑆𝑢, 𝑇𝑢))

≤ 𝜓(max {0, 𝑑 (𝑇𝑢, 𝑢) , 𝑑 (𝑢, 𝑇𝑢) ,
1

2
[0 + 𝑑 (𝑢, 𝑇𝑢)]})

− 𝜙 (max {0, 𝑑 (𝑢, 𝑇𝑢) , 𝑑 (𝑢, 𝑇𝑢)}) ;

(21)

thus, 𝜓(𝑑(𝑢, 𝑇𝑢)) ≤ 𝜓(𝑑(𝑢, 𝑇𝑢)) − 𝜙(𝑑(𝑢, 𝑇𝑢)), which is a
contradiction with definition of 𝜙. Hence, 𝑢 = 𝑇𝑢. By using a
similar argument, the conclusion will be obtained.

Example 10. Suppose that𝑋 = {0, 2, 4, 6, . . .} and𝑑 : 𝑋×𝑋 →
R is given by

𝑑 (𝑥, 𝑦) = {
𝑥 + 𝑦, if 𝑥 ̸= 𝑦,

0, if 𝑥 = 𝑦.
(22)

Then (𝑋, 𝑑) is a metric space.
Let 𝜓 : [0,∞) → [0,∞) be defined as

𝜓 (𝑡) = 2𝑡2, for 𝑡 ∈ [0,∞) . (23)

Suppose that 𝜙 : [0,∞) → [0,∞) is defined as

𝜙 (𝑠) = {
𝑠, if 𝑠 ≤ 1,

1, if 𝑠 > 1.
(24)

Then 𝜓 : [0,∞) → [0,∞) is an altering distance function
and 𝜙 : [0,∞) → [0,∞) is a continuous function with
𝜙(𝑡) = 0 if and only if 𝑡 = 0. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be defined as

𝑆𝑥 = {
2𝑥, if 𝑥 ̸= 0,

0, if 𝑥 = 0,

𝑇𝑥 = {
2𝑥 − 2, if 𝑥 ̸= 0,

0, if 𝑥 = 0.

(25)

Now, we have the following cases for 𝑥, 𝑦 ∈ 𝑋.

Case 1. 𝑥 ̸= 𝑦.

(i) If 𝑦 ̸= 0 and 𝑥 > 𝑦, then

𝜓 (𝑑 (𝑆𝑥, 𝑇𝑦))

= 𝜓 (𝑑 (2𝑥, 2𝑦 − 2)) = 𝜓 (2𝑥 + 2𝑦 − 2)

= 8(𝑥 + 𝑦 − 1)
2
,

𝜓 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑆𝑦, 𝑇𝑥)]})

= 𝜓 (max {2𝑥 + 2𝑦, 4𝑥 − 2, 4𝑦 − 2,

2𝑥 + 2𝑦 − 3})

= 𝜓 (4𝑥 − 2) = 2(4𝑥 − 2)
2,

𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑇𝑥, 𝑆𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)})

= 𝜙 (max {2𝑥 + 2𝑦, 4𝑥 − 2, 4𝑦 − 2})

= 𝜙 (4𝑥 − 2) = 1.

(26)

Since, 8(𝑥 + 𝑦 − 1)2 ≤ 2(4𝑥 − 2)2 − 1, then relation (18) is
established.

(ii) If 𝑥 ̸= 0 and 𝑦 > 𝑥, then

𝜓 (𝑑 (𝑆𝑥, 𝑇𝑦))

= 𝜓 (𝑑 (2𝑥, 2𝑦 − 2)) = 𝜓 (2𝑥 + 2𝑦 − 2) = 8(𝑥 + 𝑦 − 1)
2
,

𝜓 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑆𝑦, 𝑇𝑥)]})

= 𝜓 (max {2𝑥 + 2𝑦, 4𝑥 − 2, 4𝑦 − 2, 2𝑥 + 2𝑦 − 3})

= 𝜓 (4𝑦 − 2) = 2(4𝑦 − 2)
2
,

𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑇𝑥, 𝑆𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)})

= 𝜙 (max {2𝑥 + 2𝑦, 4𝑥 − 2, 4𝑦 − 2})

= 𝜙 (4𝑦 − 2) = 1.

(27)

Since, 8(𝑥 + 𝑦 − 1)2 ≤ 2(4𝑦 − 2)2 − 1, then relation (18) is
established.

(iii) 𝑦 = 0; then

𝜓 (𝑑 (𝑆𝑥, 𝑇𝑦)) = 𝜓 (𝑑 (2𝑥, 0)) = 𝜓 (2𝑥) = 8𝑥2,

𝜓 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑆𝑦, 𝑇𝑥)]})

= 𝜓 (max {2𝑥, 4𝑥 − 2, 0, 2𝑥 − 2})

= 𝜓 (4𝑥 − 2) = 2(4𝑥 − 2)
2,

𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑇𝑥, 𝑆𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)})

= 𝜙 (max {2𝑥, 4𝑥 − 2, 0}) = 𝜙 (4𝑥 − 2) = 1.

(28)

Since, 8𝑥2 ≤ 2(4𝑥 − 2)2 − 1, then relation (18) is established.
(iv) 𝑥 = 0; then

𝜓 (𝑑 (𝑆𝑥, 𝑇𝑦))

= 𝜓 (𝑑 (0, 2𝑦 − 2)) = 𝜓 (2𝑦 − 2) = 2(2𝑦 − 2)
2
,
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𝜓(max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑆𝑦, 𝑇𝑥)]})

= 𝜓 (max {2𝑦, 0, 4𝑦 − 2, 2𝑦 − 1})

= 𝜓 (4𝑦 − 2) = 2(4𝑦 − 2)
2
,

𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑇𝑥, 𝑆𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)})

= 𝜙 (max {2𝑦, 0, 4𝑦 − 2}) = 𝜙 (4𝑦 − 2) = 1.

(29)

Since, 2(2𝑦 − 2)2 ≤ 2(4𝑦 − 2)2 − 1, then relation (18) is
established.

Case 2. 𝑥 = 𝑦.
In this case, it is easy to see that the relation (18) is hold.
Therefore, for all 𝑥, 𝑦 ∈ 𝑋,

𝜓 (𝑑 (𝑆𝑥, 𝑇𝑦))

≤ 𝜓(max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝑇𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑆𝑦, 𝑇𝑥)]})

− 𝜙 (max {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑇𝑥, 𝑆𝑥) , 𝑑 (𝑆𝑦, 𝑇𝑦)}) .

(30)

Accordingly, the conditions of Theorem 9 are satisfied and 0
is the unique common fixed point of 𝑆 and 𝑇.

Suppose that Φ is the collection of mappings 𝜙 :
[0,∞) → [0,∞) which are upper semicontinuous, nonde-
creasing in each coordinate variable and 𝜙(𝑡) < 𝑡 for all 𝑡 > 0
[21].

Lemma 11 (see [21]). If 𝜙𝑖 ∈ Φ and 𝑖 ∈ 𝐼 where 𝐼 is a finite
index set, then there exists some 𝜙 ∈ Φ such that max{𝜙𝑖(𝑡) :
𝑖 ∈ 𝐼} ≤ 𝜙(𝑡) for all 𝑡 > 0.

Let𝑓, 𝑔, 𝑆, and𝑇 be self-mappings of ametric space (𝑋, 𝑑)
such that

𝑑 (𝑓𝑥, 𝑔𝑦)

≤ 𝑎𝜙0 (𝑑 (𝑆𝑥, 𝑇𝑦)) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑆𝑥, 𝑇𝑦)) ,

𝜙2 (
1

2
[𝑑 (𝑆𝑥, 𝑓𝑥) + 𝑑 (𝑇𝑦, 𝑔𝑦)]) ,

𝜙3 (
1

2
[𝑑 (𝑆𝑥, 𝑔𝑦) + 𝑑 (𝑇𝑦, 𝑓𝑥)]) ,

𝜙4 (
1

2
[𝑑 (𝑆𝑥, 𝑓𝑥) + 𝑑 (𝑇𝑦, 𝑓𝑥)]) ,

𝜙5 (
1

2
[𝑑 (𝑆𝑥, 𝑔𝑦) + 𝑑 (𝑇𝑦, 𝑔𝑦)])} ,

(31)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜙𝑖 ∈ Φ, 𝑖 = 0, 1, 2, 3, 4, 5, 0 ≤ 𝑎 ≤ 1.

Theorem 12. Let 𝑓, 𝑔, 𝑆, and 𝑇 be self-mappings of a metric
space (𝑋, 𝑑) satisfying (31). If (𝑓, 𝑆) and (𝑔, 𝑇) are each JH-
operator pairs, then𝑓, 𝑔, 𝑆, and 𝑇 have a unique common fixed
point.

Proof. By hypothesis there exist points 𝑥, 𝑦 ∈ 𝑋 such that
𝑓𝑥 = 𝑆𝑥 = 𝑤 and 𝑔𝑦 = 𝑇𝑦 = 𝑧. If 𝑓𝑥 ̸= 𝑔𝑦, then, from (31),
we get

𝑑 (𝑓𝑥, 𝑔𝑦)

≤ 𝑎𝜙0 (𝑑 (𝑓𝑥, 𝑔𝑦)) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑓𝑥, 𝑔𝑦)) , 𝜙2 (0) ,

𝜙3 (
1

2
[𝑑 (𝑓𝑥, 𝑔𝑦) + 𝑑 (𝑔𝑦, 𝑓𝑥)]) ,

𝜙4 (
1

2
[𝑑 (𝑔𝑦, 𝑓𝑥)]) , 𝜙5 (

1

2
[𝑑 (𝑓𝑥, 𝑔𝑦)]) } ,

(32)

which implies that 𝑑(𝑓𝑥, 𝑔𝑦) ≤ 𝑎𝜙(𝑑(𝑓𝑥, 𝑔𝑦)) + (1 −
𝑎)𝜙(𝑑(𝑓𝑥, 𝑔𝑦)) = 𝜙(𝑑(𝑓𝑥, 𝑔𝑦)) < 𝑑(𝑓𝑥, 𝑔𝑦), a contradiction.
Thus, 𝑤 = 𝑓𝑥 = 𝑔𝑦 = 𝑧. Suppose that there exists another
point 𝑢 such that 𝑓𝑢 = 𝑆𝑢. Then condition (31) implies that
𝑓𝑢 = 𝑆𝑢 = 𝑔𝑦 = 𝑇𝑦 = 𝑓𝑥 = 𝑆𝑥. Hence, 𝑤 = 𝑓𝑥 = 𝑓𝑢. That
is, 𝑃𝐶(𝑓, 𝑆) is singleton. Since 𝑑(𝑥, 𝑤) ≤ diam(𝑃𝐶(𝑓, 𝑆)) = 0,
so 𝑑(𝑥, 𝑤) = 0 and 𝑥 = 𝑤 is a unique common fixed point of
𝑓 and 𝑆. Similarly, 𝑦 = 𝑧 is a unique common fixed point of
𝑔 and 𝑇. Therefore, 𝑤 = 𝑧 is a unique common fixed point of
𝑓, 𝑔, 𝑆, and 𝑇.

Corollary 13. Let 𝑓, 𝑔, 𝑆, and 𝑇 be self-mappings of a metric
space (𝑋, 𝑑) satisfying 𝑑(𝑓𝑥, 𝑔𝑦) ≤ 𝑘𝑑(𝑆𝑥, 𝑇𝑦), for all 𝑥, 𝑦 ∈ 𝑋
where 0 < k < 1. If (𝑓, 𝑆) and (𝑔, 𝑇) are each JH-operator
pairs, then 𝑓, 𝑔, 𝑆, and 𝑇 have a unique common fixed point.

Proof. It is sufficient to set 𝑎 = 1 and take 𝜙0(𝑡) = 𝑘𝑡 ∈ Φ in
Theorem 12.

Corollary 14. Let𝑓, 𝑆 be self-mappings of ametric space (𝑋, 𝑑)
satisfying the following condition:

𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝑎𝜙0 (𝑑 (𝑆𝑥, 𝑆𝑦)) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑆𝑥, 𝑆𝑦)) ,

𝜙2 (
1

2
[𝑑 (𝑆𝑥, 𝑓𝑥) + 𝑑 (𝑆𝑦, 𝑓𝑦)]) ,
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𝜙3 (
1

2
[𝑑 (𝑆𝑥, 𝑓𝑦) + 𝑑 (𝑆𝑦, 𝑓𝑥)]) ,

𝜙4 (
1

2
[𝑑 (𝑆𝑥, 𝑓𝑥) + 𝑑 (𝑆𝑦, 𝑓𝑥)]) ,

𝜙5 (
1

2
[𝑑 (𝑆𝑥, 𝑓𝑦) + 𝑑 (𝑆𝑦, 𝑓𝑦)])} .

(33)

If (𝑓, 𝑆) is JH-operator pair, then 𝑓 and 𝑆 have a unique
common fixed point.

Proof. Considering that 𝑔 := 𝑓 and 𝑇 := 𝑆 in Theorem 12,
the result is obtained.

Theorem 15. Let 𝑓, 𝑆 be self-mappings of a metric space
(𝑋, 𝑑) satisfying (33). Suppose that (𝑓, 𝑆) is nontrivial Banach
operator pair on𝑋, then 𝑓 and 𝑆 have a unique common fixed
point.

Proof. By hypothesis 𝐹(𝑆) ̸= 0 and𝑓(𝐹(𝑆)) ⊆ 𝐹(𝑆). From (33),
for any 𝑥, 𝑦 ∈ 𝐹(𝑆)

𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝑎𝜙0 (𝑑 (𝑥, 𝑦)) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑥, 𝑦)) ,

𝜙2 (
1

2
[𝑑 (𝑥, 𝑓𝑥) + 𝑑 (𝑦, 𝑓𝑦)]) ,

𝜙3 (
1

2
[𝑑 (𝑥, 𝑓𝑦) + 𝑑 (𝑦, 𝑓𝑥)]) ,

𝜙4 (
1

2
[𝑑 (𝑥, 𝑓𝑥) + 𝑑 (𝑦, 𝑓𝑥)]) ,

𝜙5 (
1

2
[𝑑 (𝑥, 𝑓𝑦) + 𝑑 (𝑦, 𝑓𝑦)])} .

(34)

By Corollary 14 (with 𝑆 as identity map on𝑋), 𝑓 has a unique
fixed point on𝐹(𝑆) and hence𝑓 and 𝑆 have a unique common
fixed point.

Corollary 16. Let𝑓, 𝑆 be self-mappings of ametric space (𝑋, 𝑑)
satisfying 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘𝑑(𝑆𝑥, 𝑆𝑦), for all 𝑥, 𝑦 ∈ 𝑋 where 0 <
𝑘 < 1. If (𝑓, 𝑆) is a nontrivial Banach operator pair, then 𝑓 and
𝑆 have a unique common fixed point.

Proof. It is sufficient to set 𝑎 = 1 and take 𝜙0(𝑡) = 𝑘𝑡 ∈ Φ in
Theorem 15.

Example 17. Let 𝑋 = [0, 1] be a metric space with the usual
metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋. Define 𝑓𝑥 = 𝑔𝑥 =

−1 + √3, 𝑆𝑥 = 1 − (1/2)𝑥2, and 𝑇𝑥 = 𝑥 for all 𝑥 ∈ [0, 1].
Obviously, |𝑓𝑥 − 𝑔𝑦| = 0 and |𝑓𝑥 − 𝑔𝑦| ≤ 𝑘|𝑆𝑥 − 𝑇𝑦| for all
𝑥, 𝑦 ∈ 𝑋 and 0 < 𝑘 < 1. Also,𝐶(𝑓, 𝑆) = {−1+√3}, 𝑃𝐶(𝑓, 𝑆) =
{−1+√3}, 𝐶(𝑔, 𝑇) = {−1+√3}, and𝑃𝐶(𝑔, 𝑇) = {−1+√3}. So,
clearly (𝑓, 𝑆) and (𝑔, 𝑇) are eachJH-operator pairs.Thus, all

the conditions of Corollary 13 are satisfied and −1+√3 is the
unique common fixed point of 𝑓, 𝑔, 𝑆, and 𝑇.

4. Applications

In this section, we utilize the common fixed point theorems
and their results to deduce the existence and uniqueness of
the common solution for the system of functional equations
in dynamic programming.

Remark 18. Many authors (e.g., see [9, 11–15, 22], or [3–
5, 8–12, 17, 22] in [22]) used the fixed point theory to solve
functional equations arising in dynamic programming on
complete metric spaces such as Banach spaces. But, in the
final section, we omit the completeness of the space and we
state the result in the normed vector spaces andmetric spaces
setting.

Let 𝑋,𝑌 be normed vector spaces, 𝑆 ⊆ 𝑋 the state
space, and 𝐷 ⊆ 𝑌 the decision space. Denote by 𝐵(𝑆) the
set of all bounded real-valued functions on 𝑆 and 𝑑(𝑓, 𝑔) =
sup{|𝑓(𝑥) − 𝑔(𝑥)| : 𝑥 ∈ 𝑆}. It is clear that (𝐵(𝑆), 𝑑) is a metric
space:

𝑓𝑖 (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐻𝑖 (𝑥, 𝑦, 𝑓𝑖 (𝑇 (𝑥, 𝑦)))} ,

∀𝑥 ∈ 𝑆, 𝑖 = 1, 2,

𝑔𝑖 (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹𝑖 (𝑥, 𝑦, , 𝑔𝑖 (𝑇 (𝑥, 𝑦)))} ,

∀𝑥 ∈ 𝑆, 𝑖 = 1, 2,

(35)

where opt stands for sup or inf,𝑢 : 𝑆×𝐷 → R,𝑇 : 𝑆×𝐷 → 𝑆,
and 𝐻𝑖, 𝐹𝑖 : 𝑆 × 𝐷 × R → R for 𝑖 = 1, 2. Suppose that the
mappings 𝐴 𝑖 and 𝑇𝑖 (𝑖 = 1, 2) are defined:

𝐴 𝑖ℎ (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐻𝑖 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))} ,

∀𝑥 ∈ 𝑆, ℎ ∈ 𝐵 (𝑆) , 𝑖 = 1, 2,

𝑇𝑖𝑘 (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹𝑖 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))} ,

∀𝑥 ∈ 𝑆, 𝑘 ∈ 𝐵 (𝑆) , 𝑖 = 1, 2.

(36)

Theorem 19. Suppose that the following conditions are satis-
fied:

(i) for given ℎ ∈ 𝐵(𝑆), there exist 𝑟(ℎ) > 0 such that
𝑢 (𝑥, 𝑦)

 +max {𝐻𝑖 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))
 ,

𝐹𝑖 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))
 𝑖 = 1, 2}

≤ 𝑟 (ℎ) , ∀ (𝑥, 𝑦) ∈ 𝑆 × 𝐷;

(37)

(ii)
𝐻1 (𝑥, 𝑦, ℎ (𝑡)) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑡))



≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) ,
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𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))]

+ 𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] )} ,

(38)

for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑆), 𝑡 ∈ 𝑆, where 𝜙𝑖 ∈ Φ,
𝑖 = 0, 1, 2, 3, 4, 5, 0 ≤ 𝑎 ≤ 1;

(iii) for 𝑖 = 1, 2, 0 ̸= Γ𝑖 = {𝜏𝑝𝑖 : 𝐴 𝑖𝜏𝑝𝑖 = 𝑇𝑖𝜏𝑝𝑖 = Θ𝑝𝑖} ⊆ 𝐵(𝑆);
(iv) there exist 𝜏𝑝𝑖 ∈ Γ𝑖(𝑖 = 1, 2), such that
𝐻𝑖 (𝑥, 𝑦, 𝜏𝑞𝑖 (𝑡)) − 𝐹𝑖 (𝑥, 𝑦, 𝜏𝑟𝑖 (𝑡))

 ≥
Θ𝑝𝑖 − 𝜏𝑝𝑖

 , (39)

for some 𝜏𝑞𝑖 , 𝜏𝑟𝑖 ∈ Γ𝑖 and for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, 𝑡 ∈ 𝑆.
Then the system of functional equations (35) possesses a

unique common solution in 𝐵(𝑆).

Proof. Assume that opt𝑦∈𝐷 = inf𝑦∈𝐷. By condition (i) and
(36), 𝐴 𝑖 and 𝑇𝑖 are self-mappings of 𝐵(𝑆). Using (i) and (36),
one can deduce that there exist 𝑦, 𝑧 ∈ 𝐷 such that

𝐴1ℎ (𝑥) > 𝑢 (𝑥, 𝑦) + 𝐻1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝜖, (40)

𝐴2𝑘 (𝑥) > 𝑢 (𝑥, 𝑦) + 𝐻2 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧))) − 𝜖. (41)

Note that

𝐴1ℎ (𝑥) ≤ 𝑢 (𝑥, 𝑧) + 𝐻1 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) , (42)

𝐴2𝑘 (𝑥) ≤ 𝑢 (𝑥, 𝑦) + 𝐻2 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) . (43)

By virtue of (41) and (42),

𝐴1ℎ (𝑥) − 𝐴2𝑘 (𝑥)

< 𝐻1 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) − 𝐻2 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧))) + 𝜖

≤
𝐻1 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) − 𝐻2 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧)))

 + 𝜖.

(44)

From (40) and (43), we conclude that

𝐴1ℎ (𝑥) − 𝐴2𝑘 (𝑥)

> 𝐻1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦))) − 𝜖

≥
𝐻1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))

 − 𝜖.

(45)

It follows from (44) and (45) that
𝐴1ℎ (𝑥) − 𝐴2𝑘 (𝑥)



≤ max {𝐻1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))
 ,

𝐻1 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) − 𝐻2 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧)))
} + 𝜖.

(46)

Equation (46) and (ii) lead to
𝐴1ℎ (𝑥) − 𝐴2𝑘 (𝑥)



≤ max {𝐻1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))
 ,

𝐻1 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) − 𝐻2 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧)))
}+𝜖

≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+ 𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] )} + 𝜖

(47)

which yields that

𝑑 (𝐴1ℎ, 𝐴2𝑘)

= sup
𝑥∈𝑆

𝐴1ℎ (𝑥) − 𝐴2𝑘 (𝑥)


≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] ) ,
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𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+ 𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] )} + 𝜖.

(48)

Let 𝜖 → 0 in (48); then

𝑑 (𝐴1ℎ, 𝐴2𝑘)

= sup
𝑥∈𝑆

𝐴1ℎ (𝑥) − 𝐴2𝑘 (𝑥)


≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴2𝑘 (𝑡))

+𝑑 (𝑇2𝑘 (𝑡) , 𝐴2𝑘 (𝑡))] )} .

(49)

Now, we shall show that (𝐴1, 𝑇1) and (𝐴2, 𝑇2) are JH-
operator pairs. By (iii) there exists 𝜏𝑝1 ∈ Γ1; thus, 𝐴1𝜏𝑝1 =
𝑇1𝜏𝑝1 = Θ𝑝1 and by (iv) for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, 𝑡 ∈ 𝑆, we have

Θ𝑝1 − 𝜏𝑝1
 ≤

𝐻1 (𝑥, 𝑦, 𝜏𝑞1 (𝑡)) − 𝐹1 (𝑥, 𝑦, 𝜏𝑟1 (𝑡))
 , (50)

for some 𝜏𝑞1 , 𝜏𝑟1 ∈ Γ1. Therefore, for all 𝑥 ∈ 𝑆

Θ𝑝1 (𝑥) − 𝜏𝑝1 (𝑥)


≤

inf
𝑦∈𝐷

(𝐻1 (𝑥, 𝑦, 𝜏𝑞1 (𝑇 (𝑥, 𝑦))) − 𝐹1 (𝑥, 𝑦, 𝜏𝑟1 (𝑇 (𝑥, 𝑦))))


=

inf
𝑦∈𝐷

(𝑢 (𝑥, 𝑦) + 𝐻1 (𝑥, 𝑦, 𝜏𝑞1 (𝑇 (𝑥, 𝑦))) − 𝑢 (𝑥, 𝑦)

− 𝐹1 (𝑥, 𝑦, 𝜏𝑟1 (𝑇 (𝑥, 𝑦))))


=
𝐴1𝜏𝑞1 − 𝑇1𝜏𝑟1



=
Θ𝑞1 − Θ𝑟1



≤ sup
𝑥∈𝑆

Θ𝑞1 (𝑥) − Θ𝑟1 (𝑥)


= 𝑑 (Θ𝑞1 , Θ𝑟1)

≤ diam (𝑃𝐶 (𝐴1, 𝑇1)) .

(51)

So

sup
𝑥∈𝑆

Θ𝑝1 (𝑥) − 𝜏𝑝1 (𝑥)
 ≤ diam (𝑃𝐶 (𝐴1, 𝑇1)) , (52)

and, hence, 𝑑(Θ𝑝1 , 𝜏𝑝1) ≤ diam(𝑃𝐶(𝐴1, 𝑇1)). That is, (𝐴1, 𝑇1)
isJH-operator pair. Similarly, (𝐴2, 𝑇2) is alsoJH-operator
pair. Clearly, all the above process also holds for opt𝑦∈𝐷 =
sup
𝑦∈𝐷

. Then all of the conditions ofTheorem 15 are satisfied
and ℎ ∈ 𝐵(𝑆) is a unique common fixed point of 𝐴1, 𝑇1, 𝐴2,
and 𝑇2; that is, ℎ(𝑥) is a unique common solution of
functional equations (35).

Corollary 20. Suppose that the conditions (𝑖), (𝑖𝑖𝑖), and (𝑖V)
ofTheorem 19 are satisfied. Moreover, if the following condition
also holds:

𝐻1 (𝑥, 𝑦, ℎ (𝑡)) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑡))
 ≤ 𝛼𝑑 (𝑇1ℎ (𝑡) , 𝑇2𝑘 (𝑡)) ,

(53)

for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑆), 𝑡 ∈ 𝑆, where 0 < 𝛼 < 1,
then the system of functional equations (35) possesses a unique
common solution in 𝐵(𝑆).

Proof. It is sufficient to set 𝑎 = 1 and take 𝜙0(𝑡) = 𝛼𝑡 ∈ Φ in
Theorem 19.

Example 21. Let 𝑋 = 𝑌 = R be normed vector spaces
endowed with the usual norm ‖ ⋅ ‖ defined by ‖𝑥‖ = |𝑥|
for all 𝑥 ∈ R. Let 𝑆 = [0, 1] ⊆ 𝑋 be the state space and
𝐷 = [1,∞) ⊆ 𝑌 the decision space. Define 𝑇 : 𝑆 × 𝐷 → 𝑆
and 𝑢 : 𝑆 × 𝐷 → R by

𝑇 (𝑥, 𝑦) =
𝑥 + 1

𝑦2 + 2
, 𝑢 (𝑥, 𝑦) = 0, ∀𝑥 ∈ 𝑆, 𝑦 ∈ 𝐷. (54)

Define 𝑓𝑖, 𝑔𝑖 : 𝑆 → R (𝑖 = 1, 2) by

𝑓𝑖 (𝑥) =
1

16
[𝑥 − 𝑥2] ,

𝑔1 (𝑥) =
1

2
√𝑥, 𝑔2 (𝑥) =

1

2
𝑥3.

(55)
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Now, for all ℎ, 𝑘 ∈ 𝐵(𝑆); 𝑥 ∈ 𝑆, we define mappings 𝐴 𝑖 and
𝑇𝑖 (𝑖 = 1, 2) by

𝐴1ℎ (𝑥) = sup
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐻1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))} ,

𝐴2𝑘 (𝑥) = sup
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐻2 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))} ,

𝑇1ℎ (𝑥) = sup
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹1 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))} ,

𝑇2𝑘 (𝑥) = sup
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹2 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))} ,

(56)

for which 𝐻𝑖, 𝐹𝑖 : 𝑆 × 𝐷 × R → R (𝑖 = 1, 2) are defined as
follows:

𝐻𝑖 (𝑥, 𝑦, 𝑡) =
1

16
[(𝑥 − 𝑥2) cos(𝑡 ⋅ (1 −

1

𝑦 + 2
))] ,

𝐹1 (𝑥, 𝑦, 𝑡) =
1

2
[√𝑥 sin(𝑡 ⋅ (1 −

1

𝑦 + 2
))] ,

𝐹2 (𝑥, 𝑦, 𝑡) =
1

2
[𝑥3 sin(𝑡 ⋅ (1 −

1

𝑦 + 2
))] .

(57)

So,

𝐴1ℎ (𝑥) = sup
𝑦∈𝐷

𝐻1 (𝑥, 𝑦, ℎ (
𝑥 + 1

𝑦2 + 1
))

= sup
𝑦∈𝐷

1

16
[(𝑥 − 𝑥2) cos(ℎ(

𝑥 + 1

𝑦2 + 2
)

⋅ (1 −
1

𝑦 + 2
))]

=
1

16
[𝑥 − 𝑥2] = 𝑓1 (𝑥) ,

𝐴2𝑘 (𝑥) = sup
𝑦∈𝐷

𝐻2 (𝑥, 𝑦, 𝑘 (
𝑥 + 1

𝑦2 + 2
))

= sup
𝑦∈𝐷

1

16
[ (𝑥 − 𝑥2) cos(𝑘( 𝑥 + 1

𝑦2 + 2
)

⋅ (1 −
1

𝑦 + 2
))]

=
1

16
[𝑥 − 𝑥2] = 𝑓2 (𝑥) ,

𝑇1ℎ (𝑥) = sup
𝑦∈𝐷

𝐹1 (𝑥, 𝑦, ℎ (
𝑥 + 1

𝑦2 + 1
))

= sup
𝑦∈𝐷

1

2
[√𝑥 sin(ℎ(

𝑥 + 1

𝑦2 + 2
) ⋅ (1 −

1

𝑦 + 2
))]

=
1

2
√𝑥 = 𝑔1 (𝑥) ,

𝑇2𝑘 (𝑥) = sup
𝑦∈𝐷

𝐹2 (𝑥, 𝑦, 𝑘 (
𝑥 + 1

𝑦2 + 2
))

= sup
𝑦∈𝐷

1

2
[𝑥3 sin(𝑘(

𝑥 + 1

𝑦2 + 2
) ⋅ (1 −

1

𝑦 + 2
))]

=
1

2
𝑥3 = 𝑔2 (𝑥) ,

(58)

for all 𝑥 ∈ 𝑆, ℎ, 𝑘 ∈ 𝐵(𝑆). Also, ‖𝐻𝑖‖ ≤ 1/16 and ‖𝐹𝑖‖ ≤ 1/2,
(𝑖 = 1, 2); then easily we have the following:

(i) for given ℎ ∈ 𝐵(𝑆), there exist 𝑟(ℎ) > 0 such that

𝑢 (𝑥, 𝑦)
 +max {𝐻𝑖 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))

 ,

𝐹𝑖 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))
 𝑖 = 1, 2}

≤ 𝑟 (ℎ) , ∀ (𝑥, 𝑦) ∈ 𝑆 × 𝐷,

(59)

if choose 𝑎 = 1, and 𝜙0(𝑛) = (1/4)𝑛, for 𝑛 ∈ [0,∞) we have
(ii)

𝐻1 (𝑥, 𝑦, ℎ (𝑡)) − 𝐻2 (𝑥, 𝑦, 𝑘 (𝑡))


=


1

16
[(𝑥 − 𝑥2) cos(ℎ (𝑡) ⋅ (1 −

1

𝑦 + 2
))]

−
1

16
[(𝑥 − 𝑥2) cos(𝑘 (𝑡) . (1 −

1

𝑦 + 2
))]



=
1

16

𝑥 − 𝑥2



cos(ℎ (𝑡) ⋅ (1 −

1

𝑦 + 2
))

− cos(𝑘 (𝑡) ⋅ (1 −
1

𝑦 + 2
))



=
1

16

𝑥 − 𝑥2


⋅ 2

sin((ℎ (𝑡) ⋅ (1 −

1

𝑦 + 2
) − 𝑘 (𝑡)

⋅ (1 −
1

𝑦 + 2
)) ×(2)

−1)


×

sin((ℎ (𝑡) ⋅ (1 −

1

𝑦 + 2
) + 𝑘 (𝑡)

⋅ (1 −
1

𝑦 + 2
)) ×(2)

−1)


≤
1

8

𝑥 − 𝑥2
 ≤

1

8
[√𝑥 − 𝑥3] =

1

4
[
√𝑥

2
−

𝑥3

2
]

= 𝑎𝜙0 (


√𝑥

2
−

𝑥3

2


)

= 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑥) , 𝑇2𝑘 (𝑥))) .

(60)

Therefore, |𝐻1(𝑥, 𝑦, ℎ(𝑡)) − 𝐻2(𝑥, 𝑦, 𝑘(𝑡))| ≤ 𝑎𝜙0(𝑑(𝑇1
ℎ(𝑡), 𝑇2𝑘(𝑡))), for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑆), 𝑡 ∈ 𝑆.
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(iii) Γ1 = {𝜏𝑝1 : 𝐴1𝜏𝑝1 = 𝑇1𝜏𝑝1 = Θ𝑝1} = 𝐵({0}) ̸= 0 and
Γ2 = {𝜏𝑝2 : 𝐴2𝜏𝑝2 = 𝑇2𝜏𝑝2 = Θ𝑝2} = 𝐵({0}) ̸= 0.

(iv) Clearly, there exist 𝜏𝑝𝑖 ∈ Γ𝑖(𝑖 = 1, 2), such that
𝐻𝑖 (𝑥, 𝑦, 𝜏𝑞𝑖 (𝑡)) − 𝐹𝑖 (𝑥, 𝑦, 𝜏𝑟𝑖 (𝑡))

 ≥
Θ𝑝𝑖 − 𝜏𝑝𝑖

 , (61)

for some 𝜏𝑞𝑖 , 𝜏𝑟𝑖 ∈ Γ𝑖 and for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷.
Thus, all the assumptions of Theorem 19 are satisfied. So,

the system of (35) has a unique common solution in 𝐵(𝑆).
Let

𝑓 (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐻 (𝑥, 𝑦, 𝑓 (𝑇 (𝑥, 𝑦)))} , ∀𝑥 ∈ 𝑆,

𝑔 (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑔 (𝑇 (𝑥, 𝑦)))} , ∀𝑥 ∈ 𝑆,

(62)

where 𝑢 : 𝑆×𝐷 → R,𝑇 : 𝑆×𝐷 → 𝑆 and𝐻,𝐹 : 𝑆×𝐷×R →
R. Suppose that the mappings 𝐴1 and 𝑇1 are defined:

𝐴1ℎ (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))} ,

∀𝑥 ∈ 𝑆, ℎ ∈ 𝐵 (𝑆) ,

𝑇1𝑘 (𝑥) = opt
𝑦∈𝐷

{𝑢 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))} ,

∀𝑥 ∈ 𝑆, 𝑘 ∈ 𝐵 (𝑆) ,

(63)

Theorem 22. Suppose that the following conditions are satis-
fied:

(i) for given ℎ ∈ 𝐵(𝑆), there exist 𝑟(ℎ) > 0 such that
𝑢 (𝑥, 𝑦)

 +max {𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))
 ,

𝐹 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦)))
}

≤ 𝑟 (ℎ) , ∀ (𝑥, 𝑦) ∈ 𝑆 × 𝐷;

(64)

(ii)
𝐻 (𝑥, 𝑦, ℎ (𝑡)) − 𝐻 (𝑥, 𝑦, 𝑘 (𝑡))



≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] )} ,

(65)

for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑆), 𝑡 ∈ 𝑆, where 𝜙𝑖 ∈ Φ,
𝑖 = 0, 1, 2, 3, 4, 5, 0 ≤ 𝑎 ≤ 1;

(iii) 0 ̸= Γ = {𝜏𝑝 : 𝐴1𝜏𝑝 = 𝑇𝑖𝜏𝑝 = Θ𝑝} ⊆ 𝐵(𝑆);
(iv) there exist 𝜏𝑝 ∈ Γ, such that

𝐻 (𝑥, 𝑦, 𝜏𝑞 (𝑡)) − 𝐹 (𝑥, 𝑦, 𝜏𝑟 (𝑡))
 ≥

Θ𝑝 − 𝜏𝑝
 , (66)

for some 𝜏𝑞, 𝜏𝑟 ∈ Γ and for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, 𝑡 ∈ 𝑆.
Then the functional equations (62) have a unique common

solution in 𝐵(𝑆).

Proof. Assume that opt𝑦∈𝐷 = sup
𝑦∈𝐷

. By conditions (i) and
(63),𝐴1 and 𝑇1 are self-mappings of 𝐵(𝑆). Let ℎ, 𝑘 be any two
points of 𝐵(𝑆), 𝑥 ∈ 𝑆, and 𝜖 > 0 any positive number; using
(i) and (63), we deduce that there exist 𝑦, 𝑧 ∈ 𝐷 such that

𝐴1ℎ (𝑥) < 𝑢 (𝑥, 𝑦) + 𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) + 𝜖, (67)

𝐴1𝑘 (𝑥) < 𝑢 (𝑥, 𝑦) + 𝐻 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧))) + 𝜖, (68)

𝐴1ℎ (𝑥) ≥ 𝑢 (𝑥, 𝑦) + 𝐻 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) , (69)

𝐴1𝑘 (𝑥) ≥ 𝑢 (𝑥, 𝑦) + 𝐻 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦))) . (70)

Subtracting (70) from (67) and using (ii),

𝐴1ℎ (𝑥) − 𝐴1𝑘 (𝑥)

< 𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦))) + 𝜖

≤
𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))

 + 𝜖

≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+ 𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+ 𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+ 𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,
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𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+ 𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] )} + 𝜖.

(71)

From (68) and (69), we get

𝐴1ℎ (𝑥) − 𝐴1𝑘 (𝑥)

> 𝐻 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) − 𝐻 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧))) − 𝜖

≥ |𝐻 (𝑥, 𝑧, ℎ (𝑇 (𝑥, 𝑧))) − 𝐻 (𝑥, 𝑧, 𝑘 (𝑇 (𝑥, 𝑧)))| − 𝜖

≥ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))])

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] )} − 𝜖.

(72)

Hence, from (71) and (72)
𝐴1ℎ (𝑥) − 𝐴1𝑘 (𝑥)



≤
𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))

 + 𝜖

≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] )} + 𝜖.

(73)

So
𝑑 (𝐴1ℎ, 𝐴1𝑘) = sup

𝑥∈𝑆

𝐴1ℎ (𝑥) − 𝐴1𝑘 (𝑥)


≤
𝐻 (𝑥, 𝑦, ℎ (𝑇 (𝑥, 𝑦))) − 𝐻 (𝑥, 𝑦, 𝑘 (𝑇 (𝑥, 𝑦)))

 + 𝜖

≤ 𝑎𝜙0 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) + (1 − 𝑎)

×max {𝜙1 (𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡))) ,

𝜙2 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] ) ,

𝜙3 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙4 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1ℎ (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1ℎ (𝑡))] ) ,

𝜙5 (
1

2
[𝑑 (𝑇1ℎ (𝑡) , 𝐴1𝑘 (𝑡))

+𝑑 (𝑇1𝑘 (𝑡) , 𝐴1𝑘 (𝑡))] )} + 𝜖.

(74)

Also from (iii) and (iv) and similar toTheorem 19, it is easy to
prove that the pair (𝐴1, 𝑇1) is JH-operator pair. Therefore,
byCorollary 14,𝐴1 and𝑇1 have a unique commonfixed point
in𝐵(𝑆) and hence the functional equations (62) have a unique
common solution in 𝐵(𝑆).

Corollary 23. Suppose that the conditions (i), (iii), and (iv) of
Theorem 22 are satisfied. Moreover, if the following condition
also holds:

𝐻 (𝑥, 𝑦, ℎ (𝑡)) − 𝐻 (𝑥, 𝑦, 𝑘 (𝑡))
 ≤ 𝛼𝑑 (𝑇1ℎ (𝑡) , 𝑇1𝑘 (𝑡)) ,

(75)

for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑆), 𝑡 ∈ 𝑆, where 0 < 𝛼 < 1, then
the functional equations (62) have a unique common solution
in 𝐵(𝑆).
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