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The delay-dependent resilient robust finite-time 𝐿
2
-𝐿
∞
control problem of uncertain neutral time-delayed system is studied. The

disturbance input is assumed to be energy bounded and the time delays are time-varying. Based on the Lyapunov function approach
and linear matrix inequalities (LMIs) techniques, a state feedback controller is designed to guarantee that the resulted closed-loop
system is finite-time bounded for all uncertainties and to satisfy a given 𝐿

2
-𝐿
∞

constraint condition. Simulation results illustrate
the validity of the proposed approach.

1. Introduction

Dynamical systems with time delays and uncertain parame-
ters have been of considerable interest over the past decades.
In fact, time delays are always the important source of system
instability and poor performance [1–4]. As a special class
of time-delay systems, the neutral type time-delayed system
has also received some attention in recent years. This time-
delayed system contains time delays both in its state and in
the derivative of its states. Moreover, neutral time-delayed
systems are frequently encountered in many dynamics, such
as automatic control, distributed network system containing
lossless transmission line, heat exchangers, and population
ecology. Various analysis approaches have been utilized
to find stability criteria and control design conditions for
asymptotic stability of neutral time delays [5–10].

It is now worth pointing out that the control perfor-
mances mentioned above concern the desired behavior of
control dynamics over an infinite-time interval and it always
deals with the asymptotic property of system trajectories. For
controlling a dynamical system, it can meet the requirements
of asymptotic stability, but it will not reflect the transient
characteristics. Asymptotic stability is unable to satisfy the
transient requirements of industrial production if there exists
large amount of overshoot, oscillation change, and nonlinear
disturbance within a finite-time interval. To deal with this
transient performance of control dynamics, Dorato gave the

concept of finite-time stability [11] (or short-time stability)
in the early 1960s. Then, the relevant concepts of finite-time
bounded (FTB) [12], finite-time stabilization [13], finite-time
𝐻
∞

control [14], and finite-time 𝐿
2
-𝐿
∞

[15] control have
been revisited in form of linear matrix inequalities (LMIs)
techniques. And this transient performance is widely applied
to time-delay systems, uncertain systems, nonlinear systems,
stochastic systems, and so forth. However, to the best of our
knowledge, very few results in the literature consider the
related control problems of neutral time-varying delays in the
finite-time interval.

On the other hand, the 𝐿
2
-𝐿
∞
performance has attracted

considerable attention as an important performance evalua-
tion indexwhen itwas first proposed in 1989 [16]. In engineer-
ing practice, although the study of the impact of noise and
delay on the system performance is important, the extremum
problem of the controlled output cannot be ignored, because
the controlled output should be controlled within a certain
range. In control theory and engineering application, the
𝐿
2
-𝐿
∞

control has very important significance that lies in
its performance index which can control the output value
minimization. Unfortunately, up to now, the theme of 𝐿

2
-

𝐿
∞

control design of uncertain neutral systems with time-
varying delays has received little attention.

Motivated by the above discussion, this paper focuses on
the problem of finite-time 𝐿

2
-𝐿
∞
controller design for a class
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of neutral systemswithmixed time-varying delays and uncer-
tainties. By constructing a suitable Lyapunov function, the
sufficient conditions are derived that closed-loop controlled
system is FTB and satisfies the given finite-time interval
induced 𝐿

2
-𝐿
∞

norm of the operator from the unknown
disturbance to the output. We also show that the 𝐿

2
-𝐿
∞

controller designing problem can be dealt with by solving a
set of coupled LMIs. Finally, a numerical example illustrates
the effectiveness of the developed techniques.

2. Problem Statement

Consider the following neutral time-delayed system with
uncertainties:

Σ
0
:

{{{{{{{{{{{{

{{{{{{{{{{{{

{

ẋ (𝑡) − (C + ΔC (𝑡)) ẋ (𝑡 − 𝜏 (𝑡)) = (A + ΔA (𝑡)) x (𝑡)

+ (A
𝑑
+ ΔA

𝑑
(𝑡)) x (𝑡 − ℎ (𝑡)) + Bu (𝑡)

+ (D + ΔD (𝑡))w (𝑡)

y (𝑡) = (F + ΔF (𝑡)) x (𝑡) + Gu (𝑡)

x (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−max {ℎ, 𝜏} , 0] , 𝑡

0
= 0,

(1)

where x(𝑡) ∈ R𝑛 is the state, u(𝑡) ∈ R𝑚 is the controlled
input, y(𝑡) ∈ R𝑞 is the controlled output, and w(𝑡) ∈ R𝑝 is the
disturbance input that belongs to 𝐿

2
[0, +∞) and for a given

positive number 𝛿 and constant time 𝑇, the following form is
satisfied:

∫

𝑇

0

w𝑇 (𝑡)w (𝑡) 𝑑𝑡 ≤ 𝛿, 𝛿 ≥ 0. (2)

ℎ(𝑡) and 𝜏(𝑡) are time-varying delays and satisfy

0 ≤ ℎ (𝑡) ≤ ℎ, ℎ̇ (𝑡) ≤ ℎ
𝑑
,

0 ≤ 𝜏 (𝑡) ≤ 𝜏, ̇𝜏 (𝑡) ≤ 𝜏
𝑑
< 1,

(3)

where ℎ, 𝜏, ℎ
𝑑
, and 𝜏

𝑑
are constant scalars. 𝜙(𝜃) ∈

𝐿
2
[−max{ℎ, 𝜏}, 0] is the continuous initial function. A, A

𝑑
,

C, D, and F ∈ R𝑛×𝑛 are known constant matrices, and
ΔA(𝑡), ΔA

𝑑
(𝑡), ΔC(𝑡), ΔD(𝑡), and ΔF(𝑡) are unknown time-

variant matrices representing the norm-bounded parameter
uncertainties and satisfy the following form:

[ΔA (𝑡) ΔA
𝑑
(𝑡) ΔC (𝑡) ΔD (𝑡)]

= M
1
𝜎 (𝑡) [H1 H

2
H
3
H
4] ,

(4)

ΔF (𝑡) = M
2
𝜎 (𝑡)H

1
, (5)

where M
1
, M
2
, H
1
, H
2
, H
3
, and H

4
are known real matrices

with suitable dimension and 𝜎(𝑡) is an unknown real and
possibly time-varying matrix with Lebesgue measurable ele-
ments satisfying

𝜎
𝑇
(𝑡)𝜎 (𝑡) ≤ I. (6)

In this paper, we consider the state feedback controller as
follows:

u (𝑡) = (K + ΔK (𝑡)) x (𝑡) , (7)

where K is the unknown controller gain and ΔK(𝑡) is the
time-varying controller gain which satisfies

ΔK (𝑡) = N𝜂 (𝑡) S, 𝜂
𝑇
(𝑡) 𝜂 (𝑡) ≤ I. (8)

Then, we can get the following closed-loop control sys-
tem:

Σ:
{{{{

{{{{

{

ẋ (𝑡) − Cẋ (𝑡 − 𝜏 (𝑡)) = Âx (𝑡)
+A
𝑑
x (𝑡 − ℎ (𝑡)) +Dw (𝑡)

y (𝑡) = F̂x (𝑡)
x (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−max {ℎ, 𝜏} , 0] , 𝑡0 = 0,

(9)

where Â = A+ΔA(𝑡),A = A+BK, ΔA(𝑡) = ΔA(𝑡) +BΔK(𝑡),
A
𝑑
= A
𝑑
+ ΔA
𝑑
(𝑡), C = C + ΔC(𝑡), D = D + ΔD(𝑡), F̂ =

F + ΔF(𝑡), F = F + GK, and ΔF(𝑡) = ΔF(𝑡) + GΔK(𝑡).
Themain purpose of this paper is to design an appropriate

resilient state feedback controller (7), such that the closed-
loop control system Σ is finite-time bounded and satisfies the
given performance index constraints.

Before proceeding with the study, we give the relevant
definitions and lemmas first.

Definition 1. For given positive scalars 𝑐
1
, 𝛿, and 𝑇 and a

symmetrical positive determined matrix R, the closed-loop
system Σ is robust finite-time bounded (FTB) with respect to
(𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇), if there exists a positive constant 𝑐

2
with 𝑐

2
>

𝑐
1
, such that, for all the external disturbances w(𝑡) satisfying

condition (2), the following formula is satisfied:

𝜙
𝑇
(𝜃)R𝜙 (𝜃) ≤ 𝑐

1
⇒ x𝑇 (𝑡)Rx (𝑡) < 𝑐

2
, ∀𝑡 ∈ [0, 𝑇] .

(10)

Remark 2. If the disturbance input is not present in the
closed-loop system, that is, w(𝑡) = 0, the concept of
FTB will reduce into finite-time stability (FTS). It is worth
mentioning that Lyapunov stability and finite-time stability
are two different concepts.The former is largely known to the
control characteristic in infinite-time interval, but the latter
concerns the boundedness analysis of the controlled states
within a finite-time interval. Obviously, a finite-time stable
system may not be Lyapunov stochastically stable and vice
versa.

Definition 3. The state feedback controller in the form of (7)
is considered as a robust finite-time 𝐿

2
-𝐿
∞
controller for the

closed-loop system Σ, if the system Σ is FTB with respect to
(𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇) and under the zero initial condition, there exist

two positive scalars 𝛾 and 𝑇 for all disturbance which satisfy
condition (2), such that

y (𝑡)


2

∞
≤ 𝛾
2
‖w (𝑡)‖

2

2
, (11)

where ‖y(𝑡)‖2
∞

= sup
𝑡∈[0,𝑇]

|y𝑇(𝑡)y(𝑡)|, ‖w(𝑡)‖2
2
= ∫
𝑇

0
w𝑇(𝑡)

w(𝑡)𝑑𝑡.
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Lemma 4 (see [17]). For any real positive scalars 𝛼, 𝛽 (where
𝛼 > 𝛽) and a positive definite symmetric matrix S, then the
following inequality holds for a vector function 𝜔 : [𝛽, 𝛼] →

R𝑛 which can let the integrals converge:

(∫

𝛼

𝛽

𝜔 (𝜎) 𝑑𝜎)
𝑇

S(∫
𝛼

𝛽

𝜔 (𝜎) 𝑑𝜎)

≤ (𝛼 − 𝛽) (∫

𝛼

𝛽

𝜔
𝑇
(𝜎) S𝜔 (𝜎) 𝑑𝜎) .

(12)

Lemma 5 (see [17]). For any positive scalar ℎ and positive def-
inite symmetric matrix S, the following inequality is satisfied:

2

ℎ
2
(∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝜔 (𝜎) 𝑑𝜎 𝑑𝜃)

𝑇

S(∫
0

−ℎ

∫

𝑡

𝑡+𝜃

𝜔 (𝜎) 𝑑𝜎 𝑑𝜃)

≤ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝜔
𝑇
(𝜎) S𝜔 (𝜎) 𝑑𝜎 𝑑𝜃.

(13)

Lemma 6 (see [15]). For any given appropriate dimension
matrix H and E, if there exists a matrix W(𝑡) which satisfied
W𝑇(𝑡)W(𝑡) ≤ I and a scalar 𝜀 > 0, then

HW (𝑡)E + E𝑇WT
(𝑡)H𝑇 ≤ 𝜀

−1HH𝑇 + 𝜀E𝑇E. (14)

3. Main Results

In this section, our main purpose is to solve the design
problem of a resilient robust finite-time 𝐿

2
-𝐿
∞
controller for

a class of uncertain neutral systems with mixed time-varying
delays.

Theorem 7. Given positive scalars 𝑐
1
, 𝛿, 𝑇, and 𝛼, positive

definite symmetric matrixR, and time-delay parameters ℎ > 0,
ℎ
𝑑
> 0, 𝜏 > 0, and 𝜏

𝑑
> 0, the closed-loop system Σ is

FTB with respect to (𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇), if there exist positive scalars

𝜆
𝑖
, 𝑖 = 1, 2, . . . , 6, 𝑐

2
, and symmetric positive definite matrices

P
𝑖
, 𝑖 = 1, 2, . . . , 6, Q

𝑖
, 𝑖 = 1, 2, . . . , 4, and W

𝑖
, 𝑖 = 1, 2, . . . , 6,

such that

Π=[

[

Π
1
Π
2
Π
3

∗ Π
4
Π
5

∗ ∗ Π
6

]

]

<0, (15)

𝑐
1
[𝜆
2
+ ℎ𝜆
3
+ ℎ𝜆
4
+ 𝜏𝜆
5
+ 𝜏𝜆
6
] + 𝛿 (1 − 𝑒

−𝛼𝑇
) < 𝜆
1
𝑐
2
𝑒
−𝛼𝑇

,

(16)

where

Π
1
= [Π
𝑖𝑗
]
7×7

,

Π
11
= Â𝑇P

1
+ P
1
Â + P

2
+ P
3
+ P
4
+ P
5

+W
1
+W
3
+W
4
+W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6

− 𝛼P
1
−
𝛼

𝜏
P
6
− 2𝛼Q

1
− 2𝛼Q

2
− 2𝛼Q

3
− 2𝛼Q

4
,

Π
12
= P
1
A
𝑑
−W
1
+W
2
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
13
= P
1
C +W𝑇

1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
14
= −W

4
+W
5
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
+
𝛼

𝜏
P
6
,

Π
15
= −W

2
−W
3
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
16
= −W

5
−W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Π
17
= P
1
D,

Π
22
= − (1 − ℎ

𝑑
)P
2
−W
1
+W
2
−W𝑇
1
+W𝑇
2
,

Π
23
= −W𝑇

1
+W𝑇
2
,

Π
24
= −W

4
+W
5
−W𝑇
1
+W𝑇
2
,

Π
25
= −W

2
−W
3
−W𝑇
1
+W𝑇
2
,

Π
26
= −W

5
−W
6
−W𝑇
1
+W𝑇
2
,

Π
27
= 0,

Π
33
= − (1 − 𝜏

𝑑
)P
6
,

Π
34
= −W

4
+W
5
,

Π
35
= −W

2
−W
3
,

Π
36
= −W

5
−W
6
,

Π
37
= 0,

Π
44
= − (1 − 𝜏

𝑑
)P
4
−W
4
+W
5
−W𝑇
4
+W𝑇
5
−
𝛼

𝜏
P
6
,

Π
45
= −W

2
−W
3
−W𝑇
4
+W𝑇
5
,

Π
46
= −W

5
−W
6
−W𝑇
4
+W𝑇
5
,

Π
47
= 0,

Π
55
= −P
3
−W
2
−W
3
−W𝑇
2
−W𝑇
3
,

Π
56
= −W

5
−W
6
−W𝑇
2
−W𝑇
3
,

Π
57
= 0,

Π
66
= −P
5
−W
5
−W
6
−W𝑇
5
−W𝑇
6
,

Π
67
= 0,

Π
77
= −𝛼I,

Π
2
=

[
[
[
[
[
[
[
[
[

[

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

ℎW
1
ℎW
2
ℎW
3
𝜏W
4
𝜏W
5
𝜏W
6

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]

]

,
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Π
3
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Â𝑇P
6
ℎÂ𝑇Q

1
ℎÂ𝑇Q

2
𝜏Â𝑇Q

3
𝜏Â𝑇Q

4

A𝑇
𝑑
P
6
ℎA𝑇
𝑑
Q
1
ℎA𝑇
𝑑
Q
2
𝜏A𝑇
𝑑
Q
3
𝜏A𝑇
𝑑
Q
4

C𝑇P
6
ℎC𝑇Q

1
ℎC𝑇Q

2
𝜏C𝑇Q

3
𝜏C𝑇Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D𝑇P
6
ℎD𝑇Q

1
ℎD𝑇Q

2
𝜏D𝑇Q

3
𝜏D𝑇Q

4

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
4
= diag {−ℎQ1 −ℎQ1 −ℎQ2 −𝜏Q3 −𝜏Q3 −𝜏Q4} ,

Π
5
= [0]6×5,

Π
6
= diag {−P6 −ℎQ1 −ℎQ2 −𝜏Q3 −𝜏Q3} .

(17)

Proof. Construct a positive definite Lyapunov function as
follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) , (18)

where

𝑉
1
(𝑡) = x𝑇 (𝑡)P

1
x (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

x𝑇 (𝑠)P
2
x (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−ℎ

x𝑇 (𝑠)P
3
x (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

x𝑇 (𝑠)P
4
x (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝜏

x𝑇 (𝑠)P
5
x (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

ẋ𝑇 (𝑠)P
6
ẋ (𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

ẋ𝑇 (𝑠) (Q
1
+Q
2
) ẋ (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

ẋ𝑇 (𝑠) (Q
3
+Q
4
) ẋ (𝑠) 𝑑𝑠 𝑑𝜃.

(19)

We take the time derivative of 𝑉(𝑡) along the trajectory of
system Σ and it yields the following:

�̇�
1
(𝑡) = x𝑇 (𝑡) (P

1
Â + Â𝑇P

1
) x (𝑡)

+ x𝑇 (𝑡)P
1
A
𝑑
x (𝑡 − ℎ (𝑡))

+ x𝑇 (𝑡)P
1
Cẋ (𝑡 − 𝜏 (𝑡))

+ x𝑇 (𝑡)P
1
Dw (𝑡) + x𝑇 (𝑡 − ℎ (𝑡))A𝑇

𝑑
P
1
x (𝑡)

+ ẋ𝑇 (𝑡 − 𝜏 (𝑡))C𝑇P
1
x (𝑡) + 𝜔𝑇 (𝑡)D𝑇P

1
x (𝑡) ,

�̇�
2
(𝑡) ≤ x𝑇 (𝑡) (P

2
+ P
3
) x (𝑡)

− (1 − ℎ
𝑑
) x𝑇 (𝑡 − ℎ (𝑡))P

2
x (𝑡 − ℎ (𝑡))

− x𝑇 (𝑡 − ℎ)P
3
x (𝑡 − ℎ) ,

�̇�
3
(𝑡) ≤ x𝑇 (𝑡) (P

4
+ P
5
) x (𝑡)

− (1 − 𝜏
𝑑
) x𝑇 (𝑡 − 𝜏 (𝑡))P

4
x (𝑡 − 𝜏 (𝑡))

− x𝑇 (𝑡 − 𝜏)P
5
x (𝑡 − 𝜏) ,

�̇�
4
(𝑡) ≤ ẋ𝑇 (𝑡)P

6
ẋ (𝑡)

− (1 − 𝜏
𝑑
) ẋ𝑇 (𝑡 − 𝜏 (𝑡))P

6
ẋ (𝑡 − 𝜏 (𝑡)) ,

�̇�
5
(𝑡)

= ẋ𝑇 (𝑡) (ℎ (Q
1
+Q
2
) + 𝜏 (Q

3
+Q
4
)) ẋ (𝑡)

− ∫

𝑡

𝑡−ℎ(𝑡)

ẋ𝑇 (𝑠)Q
1
ẋ (𝑠) 𝑑𝑠 − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

ẋ𝑇 (𝑠)Q
1
ẋ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

ẋ𝑇 (𝑠)Q
2
ẋ (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝜏(𝑡)

ẋ𝑇 (𝑠)Q
3
ẋ (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

ẋ𝑇 (𝑠)Q
3
ẋ (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝜏

ẋ𝑇 (𝑠)Q
4
ẋ (𝑠) 𝑑𝑠.

(20)

For any symmetric positive definite matrices W
𝑖
, 𝑖 =

1, 2, . . . , 6, the following equations are satisfied according to
Leibniz-Newton lemma:

2𝜁
𝑇
(𝑡)W
1
[x (𝑡) − x (𝑡 − ℎ (𝑡)) − ∫

𝑡

𝑡−ℎ(𝑡)

ẋ (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
2
[x (𝑡 − ℎ (𝑡)) − x (𝑡 − ℎ) − ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

ẋ (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
3
[x (𝑡) − x (𝑡 − ℎ) − ∫

𝑡

𝑡−ℎ

ẋ (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
4
[x (𝑡) − x (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

ẋ (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
5
[x (𝑡 − 𝜏 (𝑡)) − x (𝑡 − 𝜏) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

ẋ (𝑠) 𝑑𝑠] = 0,

2𝜁
𝑇
(𝑡)W
6
[x (𝑡) − x (𝑡 − 𝜏) − ∫

𝑡

𝑡−𝜏

ẋ (𝑠) 𝑑𝑠] = 0,

(21)

where

𝜁 (𝑡) = [x𝑇 (𝑡) x𝑇 (𝑡 − ℎ (𝑡)) ẋ𝑇 (𝑡 − 𝜏 (𝑡)) x𝑇 (𝑡 − 𝜏 (𝑡)) x𝑇 (𝑡 − ℎ) x𝑇 (𝑡 − 𝜏)]
𝑇

,

𝜉 (𝑡) = [𝜁
𝑇
(𝑡) w𝑇 (𝑡)]

𝑇

.

(22)
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According to (20)-(21), we can obtain

�̇� (𝑡) = �̇�
1
(𝑡) + �̇�

2
(𝑡) + �̇�

3
(𝑡) + �̇�

4
(𝑡) + �̇�

5
(𝑡)

≤ 𝜉
𝑇
(𝑡)Ω
1
𝜉 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

ẋ𝑇 (𝑠)Q
1
ẋ (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

ẋ𝑇 (𝑠)Q
1
ẋ (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−ℎ

ẋ𝑇 (𝑠)Q
2
ẋ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏(𝑡)

ẋ𝑇 (𝑠)Q
3
ẋ (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

ẋ𝑇 (𝑠)Q
3
ẋ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏

ẋ𝑇 (𝑠)Q
4
ẋ (𝑠) 𝑑𝑠

+ 2𝜁
𝑇
(𝑡)W
1
[x (𝑡) − x (𝑡 − ℎ (𝑡)) − ∫

𝑡

𝑡−ℎ(𝑡)

ẋ (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
2
[x (𝑡 − ℎ (𝑡)) − x (𝑡 − ℎ)

−∫

𝑡−ℎ(𝑡)

𝑡−ℎ

ẋ (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
3
[x (𝑡) − x (𝑡 − ℎ) − ∫

𝑡

𝑡−ℎ

ẋ (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
4
[x (𝑡) − x (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

ẋ (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
5
[x (𝑡 − 𝜏 (𝑡)) − x (𝑡 − 𝜏)

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

ẋ (𝑠) 𝑑𝑠]

+ 2𝜁
𝑇
(𝑡)W
6
[x (𝑡) − x (𝑡 − 𝜏) − ∫

𝑡

𝑡−𝜏

ẋ (𝑠) 𝑑𝑠]

= 𝜉
𝑇
(𝑡)Ω
1
𝜉 (𝑡) + 𝜁

𝑇
(𝑡)Ω
2
𝜁 (𝑡)

− ∫

𝑡

𝑡−ℎ(𝑡)

(𝜁
𝑇
(𝑡)W
1
+ ẋ𝑇 (𝑠)Q

1
)

×Q−1
1
(W𝑇
1
𝜁 (𝑡) +Q

1
ẋ (𝑠)) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

(𝜁
𝑇
(𝑡)W
2
+ ẋ𝑇 (𝑠)Q

1
)

×Q−1
1
(W𝑇
2
𝜁 (𝑡) +Q

1
ẋ (𝑠)) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

(𝜁
𝑇
(𝑡)W
3
+ ẋ𝑇 (𝑠)Q

2
)

×Q−1
2
(W𝑇
3
𝜁 (𝑡) +Q

2
ẋ (𝑠)) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏(𝑡)

(𝜁
𝑇
(𝑡)W
4
+ ẋ𝑇 (𝑠)Q

3
)

×Q−1
3
(W𝑇
4
𝜁 (𝑡) +Q

3
ẋ (𝑠)) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

(𝜁
𝑇
(𝑡)W
5
+ ẋ𝑇 (𝑠)Q

3
)

×Q−1
3
(W𝑇
5
𝜁 (𝑡) +Q

3
ẋ (𝑠)) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏

(𝜁
𝑇
(𝑡)W
6
+ ẋ𝑇 (𝑠)Q

4
)

×Q−1
4
(W𝑇
6
𝜁 (𝑡) +Q

4
ẋ (𝑠)) 𝑑𝑠.

(23)

Since Q
1
, Q
2
, Q
3
, and Q

4
are positive definite symmetric

matrices, we have

�̇� (𝑡) ≤ 𝜉
𝑇
(𝑡)Ω
1
𝜉 (𝑡) + 𝜁

𝑇
(𝑡)Ω
2
𝜁 (𝑡) , (24)

where

Ω
1
= [Ω
𝑖𝑗
]
7×7

,

Ω
11
= Â𝑇P

1
+ P
1
Â + P

2
+ P
3
+ P
4
+ P
5

+ Â𝑇 (P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
)) Â

+W
1
+W
3
+W
4
+W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
12
= P
1
A
𝑑
+ Â𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))A
𝑑

−W
1
+W
2
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
13
= P
1
C + Â𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))C

+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
14
= −W

4
+W
5
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
15
= −W

2
−W
3
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
16
= −W

5
−W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,

Ω
17
= P
1
D + Â𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
22
= − (1 − ℎ

𝑑
)P
2

+ A𝑇
𝑑
(P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))A
𝑑

−W
1
+W
2
−W𝑇
1
+W𝑇
2
,

Ω
23
= A𝑇
𝑑
(P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))C

−W𝑇
1
+W𝑇
2
,

Ω
24
= −W

4
+W
5
−W𝑇
1
+W𝑇
2
,

Ω
25
= −W

2
−W
3
−W𝑇
1
+W𝑇
2
,

Ω
26
= −W

5
−W
6
−W𝑇
1
+W𝑇
2
,
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Ω
27
= A𝑇
𝑑
(P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
33
= − (1 − 𝜏

𝑑
)P
6

+ C𝑇 (P
6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))C,

Ω
34
= −W

4
+W
5
,

Ω
35
= −W

2
−W
3
,

Ω
36
= −W

5
−W
6
,

Ω
37
= C𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
44
= − (1 − 𝜏

𝑑
)P
4
−W
4
+W
5
−W𝑇
4
+W𝑇
5
,

Ω
45
= −W

2
−W
3
−W𝑇
4
+W𝑇
5
,

Ω
46
= −W

5
−W
6
−W𝑇
4
+W𝑇
5
,

Ω
47
= 0,

Ω
55
= −P
3
−W
2
−W
3
−W𝑇
2
−W𝑇
3
,

Ω
56
= −W

5
−W
6
−W𝑇
2
−W𝑇
3
,

Ω
57
= 0,

Ω
66
= −P
5
−W
5
−W
6
−W𝑇
5
−W𝑇
6
,

Ω
67
= 0,

Ω
77
= D𝑇 (P

6
+ ℎ (Q

1
+Q
2
) + 𝜏 (Q

3
+Q
4
))D,

Ω
2
= ℎW

1
Q−1
1
W𝑇
1
+ ℎW

2
Q−1
1
W𝑇
3
+ ℎW

3
Q−1
2
W𝑇
3

+ 𝜏W
4
Q−1
3
W𝑇
4
+ 𝜏W

5
Q−1
3
W𝑇
5
+ 𝜏W

6
Q−1
4
W𝑇
6
.

(25)

Recalling formula (24) and Lemmas 4 and 5 and using
Schur complement, we can get

�̇� (𝑡) − 𝛼𝑉 (𝑡) − 𝛼w𝑇 (𝑡)w (𝑡) ≤ 𝜉
𝑇
(𝑡)Π𝜉 (𝑡) < 0; (26)

that is,

�̇� (𝑡) < 𝛼𝑉 (𝑡) + 𝛼w𝑇 (𝑡)w (𝑡) . (27)

Pre- and postmultiplying (27) by 𝑒−𝛼𝑡, we have

𝑑

𝑑𝑡
(𝑒
−𝛼𝑡
𝑉 (𝑡)) < 𝛼𝑒

−𝛼𝑡w𝑇 (𝑡)w (𝑡) . (28)

Then integrating the aforementioned inequality from 0 to 𝑡,
where 𝑡 ∈ [0, 𝑇], it yields

𝑒
−𝛼𝑡
𝑉 (𝑡) − 𝑉 (0) < 𝛼∫

𝑡

0

𝑒
−𝛼𝜏w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (29)

Considering condition (2), (29) can be simplified as

𝑉 (𝑡) < 𝑒
𝛼𝑡
[𝑉 (0) + 𝛼∫

𝑡

0

𝑒
−𝛼𝜏w𝑇 (𝜏)w (𝜏) 𝑑𝜏]

< 𝑒
𝛼𝑇
[𝑉 (0) + 𝛿 (1 − 𝑒

−𝛼𝑇
)] .

(30)

On the other hand,

𝑉 (𝑡) ≥ 𝑉
1
(𝑡) = x𝑇 (𝑡)P

1
x (𝑡) ≥ 𝜆min (P̃1) x

𝑇
(𝑡)Rx (𝑡) ,

𝑉 (0) ≤ 𝜙
𝑇
(𝜃)P
1
𝜙 (𝜃) + ℎ𝜙

𝑇
(𝜃)P
2
𝜙 (𝜃)

+ ℎ𝜙
𝑇
(𝜃)P
3
𝜙 (𝜃) + 𝜏𝜙

𝑇
(𝜃)P
4
𝜙 (𝜃)

+ 𝜏𝜙
𝑇
(𝜃)P
5
𝜙 (𝜃)

≤ 𝜆max (P̃1)𝜙
𝑇
(𝜃)R𝜙 (𝜃) + ℎ𝜆max (P̃2)𝜙

𝑇
(𝜃)R𝜙 (𝜃)

+ ℎ𝜆max (P̃3)𝜙
𝑇
(𝜃)R𝜙 (𝜃)

+ 𝜏𝜆max (P̃4)𝜙
𝑇
(𝜃)R𝜙 (𝜃)

+ 𝜏𝜆max (P̃5)𝜙
𝑇
(𝜃)R𝜙 (𝜃)

≤ 𝜆max (P̃1) 𝑐1 + ℎ𝜆max (P̃2) 𝑐1 + ℎ𝜆max (P̃3) 𝑐1

+ 𝜏𝜆max (P̃4) 𝑐1 + 𝜏𝜆max (P̃5) 𝑐1.
(31)

Then, formula (27) can be written as

x𝑇 (𝑡)Rx (𝑡)

≤

𝑐
1
[𝜆
2
+ ℎ𝜆
3
+ ℎ𝜆
4
+ 𝜏𝜆
5
+ 𝜏𝜆
6
] + 𝛿 (1 − 𝑒

−𝛼𝑇
)

𝜆
1
𝑒
−𝛼𝑇

,

(32)

which can be guaranteed by condition (16). This completes
the proof.

According to Theorem 7, we will obtain the resilient
robust finite-time 𝐿

2
-𝐿
∞

controller for a class of uncertain
neutral system with mixed time-varying delays.

Theorem 8. Given positive scalars 𝑐
1
, 𝑇, 𝛿, and 𝛼, positive

definite symmetric matrix R, and time-delay parameters ℎ >

0, ℎ
𝑑

> 0, 𝜏 > 0, and 𝜏
𝑑

> 0, the closed-loop neutral
system Σ is FTB with respect to (𝑐

1
, 𝑐
2
, 𝛿,R, 𝑇) and satisfies

the cost function (11) for all admissible disturbance w(𝑡), if
there exist positive scalars 𝑐

2
and 𝛽 and symmetric positive

definite matrices P
𝑖
, 𝑖 = 1, 2, . . . , 6, Q

𝑖
, 𝑖 = 1, 2, . . . , 4, W

𝑖
, 𝑖 =

1, 2, . . . , 6, such that conditions (15) and (16) and the following
LMI hold:

Ψ = [
−P
1

F̂𝑇
∗ −𝛽I] < 0. (33)

Proof. Similar to the proof of Theorem 7, (29) can be rewrit-
ten as

𝑒
−𝛼𝑡
𝑉 (𝑡) < 𝛼∫

𝑡

0

𝑒
−𝛼𝜏w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (34)
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Then, we have

x𝑇 (𝑡)P
1
x (𝑡) ≤ 𝑉 (𝑡) < 𝛼𝑒

𝛼𝑇
∫

𝑡

0

w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (35)
From (33), we can obviously get

F̂𝑇F̂ < 𝛽P
1
. (36)

Considering system Σ, we have

y𝑇 (𝑡) y (𝑡) = [F̂x (𝑡)]
𝑇

[F̂x (𝑡)] = x𝑇 (𝑡) F̂𝑇F̂x (𝑡) . (37)

Combining (35)–(37), we can obtain

x𝑇 (𝑡) F̂𝑇F̂x (𝑡) ≤ 𝛽x𝑇 (𝑡)P
1
x (𝑡) ≤ 𝛽𝛼𝑒

𝛼𝑇
∫

𝑡

0

w𝑇 (𝜏)w (𝜏) 𝑑𝜏;

(38)

that is,

y𝑇 (𝑡) y (𝑡) ≤ 𝛽𝛼𝑒
𝛼𝑇
∫

𝑡

0

w𝑇 (𝜏)w (𝜏) 𝑑𝜏. (39)

Letting 𝛾2 = 𝛽𝛼𝑒
𝛼𝑇, we have ‖y(𝑡)‖2

∞
< 𝛾
2
‖w(𝑡)‖2

2
. This

completes the proof.

Theorem 9. Given positive scalars 𝑐
1
, 𝑇, 𝛿, and 𝛼, positive

definite symmetric matrixR, and time-delay parameters ℎ > 0,
ℎ
𝑑
> 0, 𝜏 > 0, and 𝜏

𝑑
> 0, the closed-loop neutral system Σ is

FTB with respect to (𝑐
1
, 𝑐
2
, 𝛿,R, 𝑇), satisfies the cost function

(11) for all admissible disturbance w(𝑡), and exists as a state
feedback controller in the form of (7) with K = UP−1

1
, if

there exist positive scalars 𝑐
2
, 𝛽, 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 4, and 𝜇

𝑖
,

𝑖 = 1, 2, . . . , 5, and symmetric positive definite matrices 𝐿
𝑖
,

𝑖 = 1, 2, . . . , 10, 𝑇
𝑖
, 𝑖 = 1, 2, . . . , 6, Q

𝑖
, 𝑖 = 1, 2, . . . , 4, P

𝑖
,

𝑖 = 2, 3, . . . , 5, P
6
, and U, such that the following LMIs are

feasible:

Π̃ =
[
[
[

[

Π̃
1
Π̃
2
Π̃
3
Π̃
7

∗ Π̃
4
Π̃
5
Π̃
8

∗ ∗ Π̃
6
Π̃
9

∗ ∗ ∗ Π̃
10

]
]
]

]

< 0, (40)

Ψ̃ =
[
[
[

[

−L
1
L
1
F𝑇 + U𝑇G𝑇 L

1
H𝑇
1

L
1
S𝑇

∗ Ψ̃
22

0 0

∗ ∗ −𝜀
3
I 0

∗ ∗ ∗ −𝜀
4
I

]
]
]

]

< 0, (41)

𝜇
1
R−1 < L

1
< R−1, (42)

0 < P
2
< 𝜇
2
R, (43)

0 < P
3
< 𝜇
3
R, (44)

0 < P
4
< 𝜇
4
R, (45)

0 < P
5
< 𝜇
5
R, (46)

[
𝑐
1
[ℎ (𝜇
2
+ 𝜇
3
) + 𝜏 (𝜇

4
+ 𝜇
5
)] + 𝛿 (1 − 𝑒

−𝛼𝑇
) − 𝑐
2
𝑒
−𝛼𝑇

√𝑐1
∗ −𝜇

1

] < 0,

(47)

where

Π̃
1
= [Π̃
𝑖𝑗
]
7×7

, Π̃
11
= L
1
A𝑇 + AL

1
+ U𝑇B𝑇 + BU + L

2
+ L
3
+ L
4
+ L
5
+ T
1
+ T
3
+ T
4
+ T
6

+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
− 𝛼L
1
−
𝛼

𝜏
L
6
− 2𝛼L

7
− 2𝛼L

8
− 2𝛼L

9
− 2𝛼L

10
,

Π̃
12
= A
𝑑
L
1
− T
1
+ T
2
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
, Π̃

13
= CL
1
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
,

Π̃
14
= −T
4
+ T
5
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
+
𝛼

𝜏
L
6
, Π̃

15
= −T
2
− T
3
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
,

Π̃
16
= −T
5
− T
6
+ T𝑇
1
+ T𝑇
3
+ T𝑇
4
+ T𝑇
6
, Π̃

17
= D, Π̃

22
= − (1 − ℎ

𝑑
) L
2
− T
1
+ T
2
− T𝑇
1
+ T𝑇
2
,

Π̃
23
= −T𝑇
1
+ T𝑇
2
, Π̃

24
= −T
4
+ T
5
− T𝑇
1
+ T𝑇
2
, Π̃

25
= −T
2
− T
3
− T𝑇
1
+ T𝑇
2
,

Π̃
26
= −T
5
− T
6
− T𝑇
1
+ T𝑇
2
, Π̃

27
= 0, Π̃

33
= − (1 − 𝜏

𝑑
) L
6
, Π̃

34
= −T
4
+ T
5
,

Π̃
35
= −T
2
− T
3
, Π̃

36
= −T
5
− T
6
, Π̃

37
= 0, Π̃

44
= − (1 − 𝜏

𝑑
) L
4
− T
4
+ T
5
− T𝑇
4
+ T𝑇
5
−
𝛼

𝜏
L
6
,

Π̃
45
= −T
2
− T
3
− T𝑇
4
+ T𝑇
5
, Π̃

46
= −T
5
− T
6
− T𝑇
4
+ T𝑇
5
, Π̃

47
= 0,

Π̃
55
= −L
3
− T
2
− T
3
− T𝑇
2
− T𝑇
3
, Π̃

56
= −T
5
− T
6
− T𝑇
2
− T𝑇
3
, Π̃

57
= 0,

Π̃
66
= −L
5
− T
5
− T
6
− T𝑇
5
− T𝑇
6
, Π̃

67
= 0, Π̃

77
= −𝛼I,
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Π̃
2
=

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

ℎT
1
ℎT
2
ℎT
3
𝜏T
4
𝜏T
5
𝜏T
6

0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π̃
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

L
1
A𝑇 + U𝑇B𝑇 ℎL

1
A𝑇 + ℎU𝑇B𝑇 ℎL

1
A𝑇 + ℎU𝑇B𝑇 𝜏L

1
A𝑇 + 𝜏U𝑇B𝑇 𝜏L

1
A𝑇 + 𝜏U𝑇B𝑇

L
1
A𝑇
𝑑

ℎL
1
A𝑇
𝑑

ℎL
1
A𝑇
𝑑

𝜏L
1
A𝑇
𝑑

𝜏L
1
A𝑇
𝑑

L
1
C𝑇 ℎC𝑇Q

1
ℎC𝑇Q

2
𝜏C𝑇Q

3
𝜏C𝑇Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D𝑇 ℎD𝑇 ℎD𝑇 𝜏D𝑇 𝜏D𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π̃
4
= diag {−ℎL7 −ℎL7 −ℎL8 −𝜏L9 −𝜏L9 −𝜏L10} , Π̃

5
= [0]6×5,

Π̃
6
= diag {−P

6
−ℎQ
1
−ℎQ
2
−𝜏Q
3
−𝜏Q
3
} , Π̃

7
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

L
1
H𝑇
1

L
1
S𝑇 𝜀
1
M
1
𝜀
2
BN

L
1
H𝑇
2

0 0 0

L
1
H𝑇
3

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

L
1
H𝑇
4

0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π̃
8
= [0]6×4, Π̃

10
= diag {−𝜀1I −𝜀

1
I −𝜀
2
I −𝜀
2
I} , Ψ̃

22
= −𝛽I + 𝜀

3
M𝑇M𝑇

2
+ 𝜀
4
GN𝑇NG𝑇.

(48)

Proof. Replacing Â,A
𝑑
,C, andD in (15) with Â = A+ΔA(𝑡),

A = A + BK, ΔA(𝑡) = ΔA(𝑡) + BΔK(𝑡), A
𝑑
= A
𝑑
+ ΔA
𝑑
(𝑡),

C = C + ΔC(𝑡), andD = D + ΔD(𝑡), respectively, we have

Π = Π + ΔΠ < 0, (49)

where

Π = [

[

Π
1
Π
2
Π
3

∗ Π
4
Π
5

∗ ∗ Π
6

]

]

< 0, Π
1
= [Π
𝑖𝑗
]
7×7

, Π
1
=

[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11
Π
12
Π
13
Π
14
Π
15
Π
16

P
1
D

∗ Π
22
Π
23
Π
24
Π
25
Π
26
Π
27

∗ ∗ Π
33
Π
34
Π
35
Π
36
Π
37

∗ ∗ ∗ Π
44
Π
45
Π
46
Π
47

∗ ∗ ∗ ∗ Π
55
Π
56
Π
57

∗ ∗ ∗ ∗ ∗ Π
66
Π
67

∗ ∗ ∗ ∗ ∗ ∗ Π
77

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
11
= A𝑇P

1
+ P
1
A + P

2
+ P
3
+ P
4
+ P
5
+W
1
+W
3
+W
4
+W
6
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6

− 𝛼P
1
−
𝛼

𝜏
P
6
− 2𝛼Q

1
− 2𝛼Q

2
− 2𝛼Q

3
− 2𝛼Q

4
,

Π
12
= P
1
A
𝑑
−W
1
+W
2
+W𝑇
1
+W𝑇
3
+W𝑇
4
+W𝑇
6
, Π

13
= P
1
C +W𝑇

1
+W𝑇
3
+W𝑇
4
+W𝑇
6
,
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Π
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

A𝑇P
6
ℎA𝑇Q

1
ℎA𝑇Q

2
𝜏A𝑇Q

3
𝜏A𝑇Q

4

A𝑇
𝑑
P
6
ℎA𝑇
𝑑
Q
1
ℎA𝑇
𝑑
Q
2
𝜏A𝑇
𝑑
Q
3
𝜏A𝑇
𝑑
Q
4

C𝑇P
6
ℎC𝑇Q

1
ℎC𝑇Q

2
𝜏C𝑇Q

3
𝜏C𝑇Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D𝑇P
6
ℎD𝑇Q

1
ℎD𝑇Q

2
𝜏D𝑇Q

3
𝜏D𝑇Q

4

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, ΔΠ = [

[

ΔΠ
1
0 ΔΠ

3

∗ 0 0

∗ ∗ 0

]

]

< 0,

ΔΠ
1
=

[
[
[
[
[
[
[
[
[

[

ΔA𝑇 (𝑡)P
1
+ P
1
ΔA (𝑡) P

1
ΔA
𝑑
(𝑡) P
1
ΔC (𝑡) 0 0 0 P

1
ΔD (𝑡)

∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0

]
]
]
]
]
]
]
]
]

]

,

ΔΠ
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

ΔA𝑇 (𝑡)P
6
ℎΔA𝑇 (𝑡)Q1 ℎΔA𝑇 (𝑡)Q

2
𝜏ΔA𝑇 (𝑡)Q

3
𝜏ΔA𝑇 (𝑡)Q

4

ΔA𝑇
𝑑
(𝑡)P
6
ℎΔA𝑇
𝑑
(𝑡)Q
1
ℎΔA𝑇
𝑑
(𝑡)Q
2
𝜏ΔA𝑇
𝑑
(𝑡)Q
3
𝜏ΔA𝑇
𝑑
(𝑡)Q
4

ΔC𝑇 (𝑡)P
6
ℎΔC𝑇 (𝑡)Q

1
ℎΔC𝑇 (𝑡)Q

2
𝜏ΔC𝑇 (𝑡)Q

3
𝜏ΔC𝑇 (𝑡)Q

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ΔD𝑇 (𝑡)P
6
ℎΔD𝑇 (𝑡)Q

1
ℎΔD𝑇 (𝑡)Q

2
𝜏ΔD𝑇 (𝑡)Q

3
𝜏ΔD𝑇 (𝑡)Q

4

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(50)

bring formulas (4) and (8) into ΔΠ, and according to
Lemma 6, we have

Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
+ (Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
)
𝑇

≤ 𝜀
1
Γ
𝑑1
Γ
𝑇

𝑑1
+ 𝜀
−1

1
Γ
𝑇

𝑒1
Γ
𝑒1
,

Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
+ (Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
)
𝑇

≤ 𝜀
2
Γ
𝑑2
Γ
𝑇

𝑑2
+ 𝜀
−1

2
Γ
𝑇

𝑒2
Γ
𝑒2
,

(51)

where

Γ
𝑑1
= [M𝑇
1
P
1
0 0 0 0 0 0 0 0 0 0 0 0 M𝑇

1
P
6
ℎM𝑇
1
Q
1
ℎM𝑇
1
Q
2
𝜏M𝑇
1
Q
3
𝜏M𝑇
1
Q
4
]
𝑇

,

Γ
𝑒1
= [H1 H

2
H
3
0 0 0 H

4
0 0 0 0 0 0 0 0 0 0 0] ,

Γ
𝑑2
= [N𝑇B𝑇P

1
0 0 0 0 0 0 0 0 0 0 0 0 N𝑇B𝑇P

6
ℎN𝑇B𝑇Q

1
ℎN𝑇B𝑇Q

2
𝜏N𝑇B𝑇Q

3
𝜏N𝑇B𝑇Q

4
]
𝑇

,

Γ
𝑒2
= [S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] .

(52)

Considering

ΔΠ = Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
+ (Γ
𝑑1
𝜎 (𝑡) Γ

𝑒1
)
𝑇

+ Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
+ (Γ
𝑑2
𝜂 (𝑡) Γ

𝑒2
)
𝑇

≤ 𝜀
1
Γ
𝑑1
Γ
𝑇

𝑑1
+ 𝜀
−1

1
Γ
𝑇

𝑒1
Γ
𝑒1
+ 𝜀
2
Γ
𝑑2
Γ
𝑇

𝑑2
+ 𝜀
−1

2
Γ
𝑇

𝑒2
Γ
𝑒2
,

(53)

(49) can be guaranteed by

Π + 𝜀
1
Γ
𝑑1
Γ
𝑇

𝑑1
+ 𝜀
−1

1
Γ
𝑇

𝑒1
Γ
𝑒1
+ 𝜀
2
Γ
𝑑2
Γ
𝑇

𝑑2
+ 𝜀
−1

2
Γ
𝑇

𝑒2
Γ
𝑒2
< 0. (54)

Using Schur complement, equality (54) can be rewritten as

Π̂ =

[
[
[
[
[
[

[

Π
1
Π
2
Π
3
Π̂
7

∗ Π
4
Π
5
Π̂
8

∗ ∗ Π
6
Π̂
9

∗ ∗ ∗ Π̂
10

]
]
]
]
]
]

]

< 0, (55)
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where

Π̂
7
=

[
[
[
[
[
[
[
[
[
[

[

S𝑇
1

N𝑇 𝜀
1
P
1
M
1
𝜀
2
P
1
BN

S𝑇
2

0 0 0

S𝑇
3

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

S𝑇
4

0 0 0

]
]
]
]
]
]
]
]
]
]

]

,

Π̂
9
=

[
[
[
[
[

[

0 0 𝜀
1
P
6
M
1

𝜀
2
P
6
BN

0 0 ℎ𝜀
1
Q
1
M
1
ℎ𝜀
2
Q
1
BN

0 0 ℎ𝜀
1
Q
2
M
1
ℎ𝜀
2
Q
2
BN

0 0 𝜏𝜀
1
Q
3
M
1
𝜏𝜀
2
Q
3
BN

0 0 𝜏𝜀
1
Q
4
M
1
𝜏𝜀
2
Q
4
BN

]
]
]
]
]

]

,

Π̂
8
= [0]6×4,

Π̂
10
= diag {−𝜀1I −𝜀

2
I −𝜀
1
I −𝜀
2
I} .

(56)

Letting L
1
= P−1
1
, L
2
= L
1
P
2
L
1
, L
3
= L
1
P
3
L
1
, L
4
=

L
1
P
4
L
1
, L
5
= L
1
P
5
L
1
, L
6
= L
1
P
6
L
1
, L
7
= L
1
Q
1
L
1
, L
8
=

L
1
Q
2
L
1
, L
9

= L
1
Q
3
L
1
, L
10

= L
1
Q
4
L
1
, T
1

= L
1
W
1
L
1
,

T
2
= L
1
W
2
L
1
, T
3
= L
1
W
3
L
1
, T
3
= L
1
W
3
L
1
, T
4
= L
1
W
4
L
1
,

T
5
= L
1
W
5
L
1
, T
6
= L
1
W
6
L
1
, P
6
= P−1
6
,Q
1
= Q−1
1
,Q
2
= Q−1
2
,

Q
3
= Q−1
.3
, Q
4
= Q−1
4
, and U = KL

1
, we can obtain condition

(40) by pre- and postmultiplying inequality (55) by block-
diagonal matrix

diag {P−11 P−11 P−11 P−11 P−11 P−11 I P−11 P−11 P−11 P−11 P−11 P−11 P−1
6

Q−11 Q−12 Q−1
3

Q−1
4

I I I I} . (57)

Next, we will prove that condition (33) is equivalent to (41).
Considering

Ψ=Ψ+ΔΨ<0, (58)

where

Ψ = [
−P
1

F𝑇

∗ −𝛽I
] , ΔΨ = [

0 ΔF𝑇 (𝑡)
∗ 0

] , (59)

combining with formulas (5) and (8), and using Schur
complement, we have

ΔΨ = Γ
𝑑3
𝜎 (𝑡) Γ

𝑒3
+ (Γ
𝑑3
𝜎 (𝑡) Γ

𝑒3
)
𝑇

+ Γ
𝑑4
𝜂 (𝑡) Γ

𝑒4
+ (Γ
𝑑4
𝜂 (𝑡) Γ

𝑒4
)
𝑇

≤ 𝜀
3
Γ
𝑑3
Γ
𝑇

𝑑3
+ 𝜀
−1

3
Γ
𝑇

𝑒3
Γ
𝑒3
+ 𝜀
4
Γ
𝑑4
Γ
𝑇

𝑑4
+ 𝜀
−1

4
Γ
𝑇

𝑒4
Γ
𝑒4
,

(60)

where Γ
𝑑3

= [0 M𝑇
2
]
𝑇

, Γ
𝑒3

= [H1 0], Γ𝑑4 = [0 N𝑇G𝑇]
𝑇

,
and Γ

𝑒4
= [S 0].

Then, we can get the following inequality which ensures
(58):

Ψ + 𝜀
3
Γ
𝑑3
Γ
𝑇

𝑑3
+ 𝜀
−1

3
Γ
𝑇

𝑒3
Γ
𝑒3
+ 𝜀
4
Γ
𝑑4
Γ
𝑇

𝑑4
+ 𝜀
−1

4
Γ
𝑇

𝑒4
Γ
𝑒4
< 0, (61)

Using the Schur complement, equality (61) can be rewritten
as

Ψ̂ =
[
[
[

[

−P
1
F𝑇 + K𝑇G𝑇 H𝑇

1
S𝑇

∗ Ψ̃
22

0 0

∗ ∗ −𝜀
3
I 0

∗ ∗ ∗ −𝜀
4
I

]
]
]

]

< 0. (62)

Then, we can obtain condition (40) by pre- and post-
multiplying inequality (62) by block-diagonal matrix
diag {P−1

1
I I I}.

Denoting L̃
1
= R1/2L

1
R1/2, P̃

2
= R−1/2P

2
R−1/2, P̃

3
=

R−1/2P
3
R−1/2, P̃

4
= R−1/2P

4
R−1/2, and P̃

5
= R−1/2P

5
R−1/2,

we know that condition (16) is equivalent to (47) according
to conditions (42)–(46). This completes the proof.

4. Simulation Example

In this part, we consider a class of neutral time-varying
delayed systems with parameters described as

A = [
1.5 0.2

2.1 0.9
] , A

𝑑
= [

−1.1 −0.2

−0.1 −1.1
] , B = [

1.0

0.8
] ,

C = [
−0.2 0

0.2 −0.1
] , R = [

1 0

0 1
] ,

D = [
0.1 0.2

−0.2 0.1
] , F = [

1.5 1.7

0.2 0.9
] ,

G = [
2

−1.5
] , M

1
= [

1.1

−0.7
] , M

2
= [

0.8

−0.4
] ,

H
1
= [1.4 0.8] , H

2
= [0.4 1.1] ,

H
3
= [0.7 0.2] , H

4
= [0.5 1.3] ,

N = [0.2] , S = [0.2 0.6] .

(63)

In this note, we choose the initial values for 𝑐
1
= 1, 𝑇 = 5,

𝛼 = 0.3, and 𝛿 = 1.0 and the upper bounds on the delays are
𝜏 = 0.8, ℎ = 0.5, ℎ

𝑑
= 0.9, and 𝜏

𝑑
= 0.9. By using the LMI

toolbox in MATLAB to solve LMIs (40)–(47), we can get the
finite-time 𝐿

2
-𝐿
∞

controller gain as follows:

L
1
= [

0.6515 −0.1789

−0.1789 0.3827
] , U = [−0.3115 −0.0343] ,

K = UL−1
1
= [−0.5768 −0.3593] ,

(64)

with constraint conditions 𝛽 = 14.7085, 𝛾 = 0.9923, and 𝑐
2
=

124.6975.
Selecting ℎ(𝑡) = 0.9/(1 + 𝑡

2
), 𝜏(𝑡) = 0.11/(3 + 𝑡

2
), 𝜎(𝑡) =

(0.9/(1 + 𝑡
2
))I, 𝜂(𝑡) = (1.5/(1 + 𝑡

2
))I, and ℎ(𝑡) = 0.9/(1 + 𝑡

2
),
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Figure 1: The trajectories of open-loop controlled system state x(𝑡).
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x(
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Figure 2: The trajectories of closed-loop controlled system state
x(𝑡).

𝑡 ∈ [0, 20], and setting the initial states x
0
= [−0.5 0.8]

𝑇

and w
0
= [0.04 0.08]

𝑇, we have the open-loop controlled
system state simulation graph and the trajectories of closed-
loop controlled system state and output as shown in Figures 1,
2, and 3, respectively. Figure 4 shows the evolution of function
x𝑇(𝑡)Rx(𝑡) (𝑡 ∈ [0, 20]) of the uncertain neutral time-delayed
system Σ

0
. Based on comparison between result in Figure 1

and result in Figure 2, we noted that the design finite-time𝐿
2
-

𝐿
∞

controller can make the closed-loop controlled system
achieve FTB.

5. Conclusions

This paper studied the delay-dependent resilient robust
finite-time 𝐿

2
-𝐿
∞

control problem for a class of uncertain
neutral time-delayed systemwithmixed time-varying delays.
A state feedback controller is designed by using LMI tech-
nique and free weighting matrices, such that the closed-loop

0 2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0

2

y(
t)

t

y1
y2

Figure 3: The trajectories of closed-loop controlled system output
y(𝑡).

−6−5−4−3−2−1010
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−2.5−2
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−0.5 0

0.5 1

x2(t) x1(t)

xT
(t
)R

x(
t)

Figure 4: The graph of x𝑇(𝑡)Rx(𝑡) (𝑡 ∈ [0, 𝑇]) of closed-loop
controlled system.

controlled system is FTB and satisfies the input-output 𝐿
2
-

𝐿
∞

performance matrices. The simulation results verify the
effectiveness of the design method. We will consider the
finite-time observer for neutral time-delayed system in the
future.

Conflict of Interests

The authors declare that they have no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (no. 61203051), the Joint Spe-
cialized Research Fund for the Doctoral Program of Higher
Education (no. 20123401120010), and the Key Program of
Natural Science Foundation of Education Department of
Anhui Province (no. KJ2012A014).

References

[1] S. He and F. Liu, “𝐿
2
-𝐿
∞

fuzzy control for Markov jump
systems with neutral time-delays,”Mathematics and Computers
in Simulation, vol. 92, pp. 1–13, 2013.



12 Abstract and Applied Analysis

[2] J. Sun, G. P. Liu, J. Chen, and D. Rees, “Improved delay-range-
dependent stability criteria for linear systemswith time-varying
delays,” Automatica, vol. 46, no. 2, pp. 466–470, 2010.

[3] L. Vu and K. A. Morgansen, “Stability of time-delay feedback
switched linear systems,” IEEE Transactions on Automatic Con-
trol, vol. 55, no. 10, pp. 2385–2390, 2010.

[4] J. Hu, Z. Wang, H. Gao, and L. K. Stergioulas, “Robust 𝐻
∞

sliding mode control for discrete time-delay systems with
stochastic nonlinearities,” Journal of the Franklin Institute, vol.
349, no. 4, pp. 1459–1479, 2012.

[5] Y. He,M.Wu, J.-H. She, andG.-P. Liu, “Delay-dependent robust
stability criteria for uncertain neutral systems with mixed
delays,” Systems & Control Letters, vol. 51, no. 1, pp. 57–65, 2004.

[6] D. Zhang and L. Yu, “𝐻
∞

filtering for linear neutral systems
with mixed time-varying delays and nonlinear perturbations,”
Journal of the Franklin Institute, vol. 347, no. 7, pp. 1374–1390,
2010.

[7] C. Yin, S.-M. Zhong, and W.-F. Chen, “On delay-dependent
robust stability of a class of uncertain mixed neutral and Lur’e
dynamical systems with interval time-varying delays,” Journal
of the Franklin Institute, vol. 347, no. 9, pp. 1623–1642, 2010.

[8] X.-G. Liu,M.Wu,R.Martin, andM.-L. Tang, “Delay-dependent
stability analysis for uncertain neutral systems with time-
varying delays,”Mathematics and Computers in Simulation, vol.
75, no. 1-2, pp. 15–27, 2007.

[9] R. Rakkiyappan, P. Balasubramaniam, and R. Krishnasamy,
“Delay dependent stability analysis of neutral systems with
mixed time-varying delays and nonlinear perturbations,” Jour-
nal of Computational and Applied Mathematics, vol. 235, no. 8,
pp. 2147–2156, 2011.

[10] P. Balasubramaniam, R. Krishnasamy, and R. Rakkiyappan,
“Delay-dependent stability of neutral systems with time-
varying delays using delay-decomposition approach,” Applied
Mathematical Modelling, vol. 36, no. 5, pp. 2253–2261, 2012.

[11] P. Dorato, “Short-time stability in linear time-varying systems,”
in Proceedings of the IRE International Convention, pp. 83–87,
1961.

[12] F. Amato, M. Ariola, and P. Dorato, “Finite-time control of
linear systems subject to parametric uncertainties and distur-
bances,” Automatica, vol. 37, no. 9, pp. 1459–1463, 2001.

[13] F. Amato, M. Ariola, and C. Cosentino, “Finite-time stabiliza-
tion via dynamic output feedback,” Automatica, vol. 42, no. 2,
pp. 337–342, 2006.

[14] S. He and F. Liu, “Finite-time 𝐻
∞

fuzzy control of nonlinear
jump systemswith timedelays via dynamic observer-based state
feedback,” IEEETransactions on Fuzzy Systems, vol. 20, no. 4, pp.
605–614, 2012.

[15] J. Song and S. He, “Nonfragile robust finite-time 𝐿
2
-𝐿
∞

controller design for a class of uncertain Lipschitz nonlinear
systems with time-delays,” Abstract and Applied Analysis, vol.
2013, Article ID 265473, 9 pages, 2013.

[16] D. A. Wilson, “Convolution and Hankel operator norms for
linear systems,” in Proceedings of the 27th IEEE Conference on
Decision and Control, pp. 1373–1374, IEEE, December 1988.

[17] L. Xie, “Output feedback𝐻
∞
control of systems with parameter

uncertainty,” International Journal of Control, vol. 63, no. 4, pp.
741–750, 1996.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


