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We study an epidemic model of leptospirosis in fractional order numerically. The multistep generalized differential transform
method is applied to find the accurate approximate solution of the epidemic model of leptospirosis disease in fractional order.
A unique positive solution for the epidemic model in fractional order is presented. For the integer case derivative, the approximate
solution ofMGDTM is compared with the Runge-Kutta order four scheme.The numerical results are presented for the justification
purpose.

1. Introduction

Leptospirosis disease is an important infectious disease. This
kind of infection occurs in urban areas of industrialized and
developed countries and also in the rural areas.The people of
the city who walk in dirty water are mostly infected. Workers
planting rice, sewer cleaners, cleaning canals workers, and
agriculture labor get the disease easily. The disease flourishes
due to delay in diagnosis and unavailability of clinical infras-
tructure. The cause of the disease is bacteria. It is potentially
fatal infection of brain, kidney, liver, heart, and lung. The
people who can get infection are those who have contact
with infected animals, soil, or water in which the bacteria is
present. The outdoor people, who work with animals, face
the risk of leptospirosis infection, similarly workers in farms,
sewer, mine, slaughter houses, dairy farmers, and animal
caretakers and those who work with fishes and military
personnel. Those people who work outdoors like swimming,
rafting, and kayaking also face the risk of infection [1].

The mathematical modeling dealing with the complex
biological structures is a great challenge for the researchers.
For simple biological models, the study of integer order dif-
ferential equations is enough for the description of their
dynamics while for those systems contains complexities are

characterized due to its variability structured properties, like
nonlinearity of the systems, multiscale behavior, and the
mathematical relation between the parameters [2]. To study
such nonlinear biological models, with complex mathemat-
ical structures, the fractional derivatives provide the tool to
handle the dynamical behavior of such complex systems.
The fundamental property related to these models is the
nonexistence of the differential operator of integer order.
These characteristics show information about the present but
also show its historical states.

The fractional derivative and fractional integrals were
first used by Magin [3] in his model which is related to the
relation between stress-strain and biomaterials. A new frac-
tional analytical approach via a modified Riemann Liouville
derivative has been used by [4]. For solution of the 2D region
with obstacles, the author [5] used the fractional differential
equations. For the giving up smoking model, the fractional
differential equation was used by [6]. The author used
the differential transforms method and Pade approximants
for a fractional population growth model [7]. For more
information about fractional calculus, see [2, 8–10]. The
author had made many efforts for modeling of leptospirosis
epidemic disease since 2011; see [11–16].The author proposed
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amathematicalmodel that describes the epidemic leptospiro-
sis disease [11]. The model proposed by [11] is given by
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V
(𝑡), respectively, repre-

sent the population of susceptible human, infected human,
recovered human, susceptible vector, and infected vector at
time 𝑡. The rate at which the population of human increases
is shown by 𝑏1. The natural mortality rate for the human
population is 𝜇ℎ; 𝛽1, 𝛽2, and 𝛽3 represent the transmission
coefficients. The parameter 𝜆ℎ shows the individuals who
become susceptible again. The death from the disease that
occurs to humans is shown by 𝛿ℎ. The rate of recovery from
infection for the human is denoted by 𝛾ℎ. The growth rate of
the vector population is represented by 𝑏2; 𝛾V is the natural
death rate for vector and disease related death rate for the
vector is 𝛿V.

The model presented by [11] is given by system (1) which
represents a system of nonlinear ODE; their fractional order
differential equation is given as follows:
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(3)

where 𝐷
𝛼

𝑡
represents the fractional derivative in Caputo

derivative sense and the order of the fractional derivative
is shown by the parameter 𝛼 and 0 < 𝛼 < 1, with the
related initial conditions (2). The parameter which describes
the general response expression in representing the order
of fractional derivative gives different results for different
values. Obviously, the integer-order system can be viewed
as a special case of the fractional-order system by putting
the time-fractional order of the derivative equal to one. To
put it simple, for the higher in order, the behavior of the

fractional order system is the same in the case of integer order.
According to research, this is the first work, which is available
on the epidemic model of leptospirosis in fractional order.
Due to this reason, we express the approximate solutions
to the problems (3) by the technique of (MSGDTM). The
solution to such nonlinear fractional equation can also be
available by using an efficient approach [17].

TheMSGDTM is amodified form of the GDTM [6, 8, 18–
20], in which it is treated as an algorithm in a sequence of
small steps, to obtain the accurate approximate solution to
the desire models. By using GDTM, the obtained solution is
valid for short interval of time while the solution obtained
from multistep generalized differential transform method
(MSGDTM) is valid for a long time. To obtain the solution,
using MSGDTM is more accurate and valid for long interval
of time and agrees well with the classical Runge-Kutta numer-
ical solution method, with the unity order derivative [6, 21].

The paper has been organized/structured as follows.
Section 1 is introduction; Section 2 contains basic definitions
of fractional calculus and their notations; Section 3 gives non-
negative solution of themodel; Section 4 contains application
ofMSGDTM; Section 5 gives numerical results; and Section 6
is the conclusion.

2. Basic Definitions and Notations

This section contains some fundamental definitions and no-
tations of fractional calculus that will help us in the proceed-
ing sections [3, 22–24].
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For the properties of the operator [22], we need only the fol-
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where 𝐵𝜏(𝛼, 𝛾 + 1) represents the incomplete beta function
defined as
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The Riemann Liouville derivative has some disadvantages
when applying to real worldmodel with fractional differential
equations. Therefore, here we use a modified fractional
differential operator𝐷𝛼

𝑎
which is used in his work by Caputo

on the theory of viscoelasticity.

Definition 3. The Caputo fractional derivative of 𝑔(𝑥) of
order 𝛼 > 0 with 𝑎 ≥ 0 is defined as
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3. Nonnegativity of the Model

Suppose 𝑅
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the following lemma [25].

Lemma 4. Suppose 𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝐷
𝛼
𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏] for

𝛼 ∈ (0, 1]. Then one has

𝑔 (𝑥) = 𝑔 (𝑎) +
1

Γ (𝛼)
𝐷
𝛼
𝑔 (𝜂) (𝑥 − 𝑎)

𝜂
, (9)

with 0 ≤ 𝜂 ≤ 𝑥, for all 𝑥 ∈ [𝑎, 𝑏]. This is also called generalized
mean value theorem.
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0 ∀𝑥 ∈ (0, 𝑏), then the 𝑔 is nonincreasing function.
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on each hyperplane bounding the nonnegative orthant, the
vector field points into 𝑅
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+
.

4. MSGDTM: Its Application

The general differences transform method (GDTM) is used
to provide approximate solutions for nonlinear problems
with respect to the convergent series with easily computable
components. It has shown that the solution obtained is
estimated to be invalid for large 𝑡 for some systems [21, 27].
We therefore use multistep generalized differential transform
method (MSGDTM) to approximate the solution of (3),
which provides accurate solution for a period that is longer
than the standard generalized difference transform method
[21, 27]. Several authors used theMSGDTM; see, for example,
[28, 29].We take the differential transform of (3) with respect
to time 𝑡 as
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The series solution for the systems (3), according to
MSGDTM is suggested as
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(13)

where 𝑆
ℎ
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ℎ
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Table 1: The relation between the original function and the dif-
ferential transform.

The original function The transformed function
𝑔(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) 𝐺(𝑘) = 𝑋(𝑘) + 𝑌(𝑘)

𝑔(𝑡) = 𝛼𝑥(𝑡) 𝐺(𝑘) = 𝛼𝑋(𝑘)

𝑔(𝑡) = 𝑥(𝑡)𝑦(𝑡) 𝐺(𝑘) =

𝑘

∑
𝑙=0

𝑋(𝑙)𝑌(𝑘 − 𝑙)

𝑔(𝑡) =
𝑑𝑥(𝑡)

𝑑(𝑡)
𝐺(𝑘) = (𝑘 + 1)𝑋(𝑘 + 1)

𝑔(𝑡) =
𝑑
𝑚
𝑥(𝑡)

𝑑𝑡𝑚
𝐺(𝑘) = (𝑘 + 1)(𝑘 + 2) ⋅ ⋅ ⋅ (𝑘 + 𝑚)𝑋(𝑘 + 𝑚)

𝑆
V
𝑖
(𝑘 + 1) =

Γ (𝛼𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)
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2
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ℎ
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(𝑘 − 𝑘2)) ,

𝐼
V
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𝑘
2
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− (𝛾V + 𝛿V) 𝐼
V
𝑖
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(14)

such that 𝑆ℎ
𝑖
(𝑡𝑖−1) = 𝑆

ℎ

𝑖−1
(𝑡𝑖−1), 𝐼

ℎ

𝑖
(𝑡𝑖−1) = 𝐼

ℎ

𝑖−1
(𝑡𝑖−1), 𝑅

ℎ

𝑖
(𝑡𝑖−1) =

𝑅
ℎ

𝑖−1
(𝑡𝑖−1), 𝑆

V
𝑖
(𝑡𝑖−1) = 𝑆

V
𝑖−1

(𝑡𝑖−1), and 𝐼
V
𝑖
(𝑡𝑖−1) = 𝐼

V
𝑖−1

(𝑡𝑖−1).
Initially starting from 𝑆

ℎ

0
= 𝑒1, 𝐼

ℎ

0
= 𝑒2, 𝑅

ℎ

0
= 𝑒3, 𝑆

V
0

= 𝑒4,
and 𝐼

V
0
= 𝑒5, with the use of (14).The solution can be obtained

by theMSGDTM given in (13). Table 1 represents the relation
between the original function and the differential transform.

5. Numerical Results

In this section, we present the numerical solution of the
proposed model (3) numerically by the classical Runge-
Kutta order four method for the integer case derivative and
analytically we use theMSGDTM.We apply the algorithm on
the interval [0, 30] for the approximate solution of nonlinear
fractional differential equations (3). For 𝐾 = 10 and 𝑀 =

3000, the results are obtained. The results are obtained by
using computer algebra package Mathematica. The initial
conditions 𝑒1 = 40, 𝑒2 = 20, 𝑒3 = 10, 𝑒4 = 50, and
𝑒5 = 30 are used. The values for the parameters we assumed
are presented in Table 2. In Figures 1, 2, 3, 4, and 5, the
approximate solution is obtained by MSGDTM and classical
Runge-Kutta method order four scheme for 𝛼 = 1. The
approximate solution of MSGDTM has good agreement with
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Figure 1: The dotted line and the solid line connectively show the
Runge-Kutta method and MSGDTM.
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Figure 2: Comparison of RK method (dotted line) and MSGDTM
(solid line).

the Runge-Kutta order four method. Figures 6, 7, 8, 9, and 10
represent the approximate solution obtained by MSGDTM
and classical Runge-Kutta order four scheme considering
different values of 𝛼. We conclude from our graphical results
that the MSGDTM results behave as closely as Runge-Kutta
method.

6. Conclusion

In this paper, we have presented an approximate solution
to an epidemic model of leptospirosis in fractional order.
First, we obtained the analytical solution to the fractional
order of epidemicmodel.Then, we solved the fractional order
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Table 2: Parameter values used in the numerical simulations of the optimal control.

Notation Parameter description Value Reference
𝑏
1

Recruitment rate for human 1.6 [11]
𝜆ℎ Proportionality constant 0.066 [30]
𝜇ℎ Natural death rate of human 4.6 × 10

−5 [11]
𝛾V Natural death rate of vector 1.8 × 10

−3 [11]
𝛿ℎ Death rate due to disease at human class 1.0 × 10

−5 [31]
𝛾ℎ Recovery rate of the infection 2.7 × 10

−3 [31]
𝑏2 Birth rate of vector 1.9 Assumed
𝛽2 Transmission between 𝑆

ℎ and 𝐼
V 0.0089 Assumed

𝛽3 Transmission between 𝑆
V and 𝐼

ℎ 0.0079 Assumed
𝛽1 Transmission coefficient between 𝑆

ℎ and 𝐼
ℎ 0.00013 Assumed

𝛾V Natural death rate of vector 0.0027 [11]
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Figure 3: Comparison of RK method (dotted line) and MSGDTM
(solid line).
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Figure 4: Comparison of RK method (dotted line) and MSGDTM
(solid line).
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Figure 5: Comparison of RK method (dotted line) and MSGDTM
(solid line).
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Figure 6: Susceptible human: solid line 𝛼 = 1.0, ++ line (𝛼 = 0.95),
and ∗∗ line (𝛼 = 0.90).
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Figure 7: Infected human: solid line 𝛼 = 1.0, ++ line (𝛼 = 0.95),
and ∗∗ line (𝛼 = 0.90).
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Figure 8: Recovered human: solid line 𝛼 = 1.0, ++ line (𝛼 = 0.95),
and ∗∗ line (𝛼 = 0.90).
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Figure 9: Susceptible vector: solid line 𝛼 = 1.0, ++ line (𝛼 = 0.95),
and ∗∗ line (𝛼 = 0.90).
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Figure 10: Infected vector: solid line (𝛼 = 1.0, ++ line (𝛼 = 0.95),
and ∗∗ line (𝛼 = 0.90).

system and the results were compared with classical Runge-
Kutta method. The results obtained from MGDTM have a
good agreement with Runge-Kutta order four method. The
MGDTM results are valid for a larger 𝑡.
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