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We build a multiassets heterogeneous agents model with fundamentalists and chartists, who make investment decisions by max-
imizing the constant relative risk aversion utility function. We verify that the model can reproduce the main stylized facts in real
markets, such as fat-tailed return distribution and long-term memory in volatility. Based on the calibrated model, we study the
impacts of the key strategies’ parameters on investors’ wealth shares. We find that, as chartists’ exponential moving average periods
increase, their wealth shares also show an increasing trend. This means that higher memory length can help to improve their
wealth shares. This effect saturates when the exponential moving average periods are sufficiently long. On the other hand, the
mean reversion parameter has no obvious impacts on wealth shares of either type of traders. It suggests that no matter whether
fundamentalists take moderate strategy or aggressive strategy on the mistake of stock prices, it will have no different impact on
their wealth shares in the long run.

1. Introduction

Compared with traditional economic modeling, agent-based
modeling is more flexible in terms of characterizing the
individual heterogeneity and population dynamics. This
advantage is beneficial in researching on the survivability of
different types of investors, namely, market selection.

Previously, the related studies on market selection and
wealth share distribution concentrated mainly on the impact
of prediction accuracy, risk-aversion level, learning process,
and noise trading. Blume and Easley [1] associated market
selection with the first-principle of welfare economics and
discovered that, in complete market under Pareto opti-
mum allocation, the survival and disappearance of investors
depend on the accuracy of their forecasts. Similarly, Fedyk
et al. [2] studied the multiasset economy situation and
found that, comparedwith rational investors, unsophisticated
investors could suffer severe loss in the long run, and even
their predication deviations seem a priori small. Barucci

and Casna [3] also found that, under the mean reverting
environment, investors who have inaccuracy predictions
cannot survive.

Conversely, Chen and Huang [4, 5] compared the influ-
ence of forecasting accuracy and risk preference for investors’
long-term survival, based on a multiassets agent-based artifi-
cial stock market. They put forward that the risk preference
was the determinant and showed that the wealth of the
investors who adopted logarithmic utility function could be
dominated in the long run. In respect of learning evolution,
LeBaron [6] focused on investors’ learning on the gain level,
which is the weight level for the last step’s forecast error
in their price forecast rules. This study showed the stylized
facts of the market, analyzed the wealth evolution between
different strategic investors, and demonstrated their influence
on the market instability. Amir et al. [7] identified the
adaptive portfolio strategies which could allow investors to
survive under the frame of game theory. From the perspective
of noise trading, several researchers used the agent-based
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modeling method to analyze the survival problem in the long
run by comparing the specialists and the noise traders and
the noise traders and BSV investors, respectively [8–10]. Zhao
[11] studied the survival boundary conditions of different irra-
tional investors by utilizing the market utility maximization
rather than the individual utility maximization.

In the field of heterogeneous agents, fundamentalist/
chartist modeling is a very important frame. For instance,
Chiarella and He [12], Chiarella et al. [13], Anufriev and
Dindo [14], Yuan and Fu [15], and Zou et al. [16] have mainly
focused on the price equilibrium and system stability. This
paper, however, focuses on the strategies parameters’ impacts
on investors’ long-term wealth share, including fundamen-
talists’ mean reversion parameters and chartists’ exponential
moving average periods under the fundamentalist/chartist
modeling frame.

2. Heterogeneous Agent Model

For generality, this paper extends tomultiassets case based on
the Constant Relative Risk Aversion (CRRA) heterogeneous
agent model which was proposed by Chiarella et al. [13]. The
setting of the model is as follows.

2.1. The Market. This paper proposes a discrete-time model
with 𝑛 risky assets and one risk-free asset in the financial
market.The risk-free interest rate 𝑟 is constant.There are two
types of strategic agents, fundamentalists and chartists, and a
Walrasian auctioneer.

Consider risky asset 𝑖. Under the assumption of tradition-
al financial economics, investors have homogeneous rational
expectations to the return of asset 𝑖, and the fundamental
price of asset 𝑖 can be derived from the “no-arbitrage”
equation

𝐸
𝑡
[𝑃
𝑖,𝑡+1

+ 𝐷
𝑖,𝑡+1

] = (1 + 𝑟) 𝑃
𝑖,𝑡
. (1)

The fundamental long-run solution is given by

𝑃
𝑖,𝑡

= 𝑃
∗

𝑖,𝑡
≡

∞

∑

𝑘=1

𝐸
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]
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, (2)

where 𝑃, 𝑃∗, and 𝐷 denote the price, the fundamental value,
and the dividend yield, respectively. In particular, if the
dividend process is described by
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one can obtain
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where 𝜙
𝑖
denotes the dividend growth rate of asset 𝑖.Then one

can easily obtain that the fundamental values evolve over time
according to

𝐸
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∗

𝑖,𝑡+1
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) 𝑃
∗
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and that the capital return is given by

𝐸
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, (6)

where 𝜂
𝑖
denotes the dividend growth rate of asset 𝑖. In the

following section we will introduce heterogeneity into the
model. We assume agents have heterogeneous, time-varying
beliefs about the first and second moment of capital returns,
but for simplicity, they are assumed to share the same beliefs
about dividend returns.

2.2. The Demand Function. Each agent is assumed to max-
imize the CRRA (power) utility function to allocate their
wealth as follows:

𝑈
𝑗
(𝑊) =

{

{

{

1

1 − 𝜆
𝑗
(𝑊
1−𝜆
𝑗

− 1) (𝜆
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̸= 1) ,

ln (𝑊) (𝜆
𝑗
= 1) ,

(7)

where 𝑊 > 0 represents the wealth and the parameter
𝜆
𝑗

> 0 represents the relative risk aversion coefficient. We
choose the CRRA utility function because this assumption
is quite realistic. The experiment results of Levy et al. [17]
support the decreasing absolute risk aversion (DARA). In
otherwords, investor’s risk aversion declineswith the increase
of wealth, which is consistent with the CRRA (power) utility
function. In addition, Campbell and Viceira [18] pointed out
that relative risk aversion cannot depend strongly on wealth
in the long-run behavior of the economy.

This paper extends the solution proposed by Chiarella
and He [12] to the multiassets case and derives investors’
demand function. At time 𝑡, the optimal wealth proportion𝜋t
to be invested in the risky asset is determined by maximizing
the expected utility of wealth at 𝑡 + 1, as given by

max
𝜋t

𝐸
𝑡
[𝑈 (𝑊

𝑡+1
)] . (8)

To solve this, one needs to work out the evolution of𝑈(𝑊(𝑡)).
Assume that the wealth 𝑊(𝑡) follows a continuous time

stochastic differential equation

𝑑𝑊 = 𝜇 (𝑊) 𝑑𝑡 + 𝜎 (𝑊) 𝑑𝑧 (𝑡) , (9)

where 𝑧(𝑡) is aWiener process. Let𝑋 = 𝑈(𝑊) be an invertible
differentiable function with the inverse function 𝑊 = 𝐺(𝑋).
Following Ito’s lemma,
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(10)

which can be written as
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where
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(12)

𝜎 (𝑋) = 𝜎 (𝐺 (𝑋))𝑈

(𝐺 (𝑋)) . (13)

Discretizing (11) using the Euler formula, one obtains the fol-
lowing approximation:

𝑋 (𝑡 + Δ𝑡) = 𝑋 (𝑡) + 𝜇 (𝑋 (𝑡)) Δ𝑡 + 𝜎 (𝑋 (𝑡)) Δ𝑧 (𝑡) . (14)
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It follows that
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Unitizing the time Δ𝑡 in (15), we have
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Substituting (12) into (17), one gets
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This is the evolution of 𝑈(𝑊(𝑡)).
Let
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where 𝜑
𝑖,𝑡+1

is the return of asset 𝑖, 𝜎
𝑖,𝑡+1

is the standard
deviation of the return of asset 𝑖, and 𝜉

𝑖,𝑡
is an𝑁(0, 1) process.

Meanwhile, we assume that a trader’s wealth change
equals to the sum of the return of the risk-free asset and the
returns of risky assets; that is,
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where 𝜋
𝑖,𝑡
is the wealth proportion invested in asset 𝑖 at time

𝑡.
Substituting (19) into (20), we have
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Substituting (23) into (18), we have
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Thus the first order condition of the problem (8) leads to the
following optimal solution:
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where 𝐸
𝑡
(𝜑t+1) − 𝑟e represents the vector of the expected

excess return on risky assets and∑
𝑡
represents the covariance

matrix of the expected return on risky assets.Then we can get
the investor’s position demand for all assets as follows:

zt = 𝑊
𝑡−1
𝜋t./Pt, (27)

where Pt, zt, and ./ denote the price vector, the vector of the
demand for asset position, and the division of the element
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as opposed to the vector, respectively. It can be seen that
although the optimal investment proportion of an investor’s
wealth to be invested in the risky asset is independent of
wealth, its optimal position demand is proportional towealth.

2.3. Heterogeneous Expectations. The heterogeneous beliefs
of fundamentalists and chartists are reflected in the expected
return as well as the expected variance. We assume that the
same type of investors predicts all risky assets in the sameway.

2.3.1. Fundamentalists. Assume that fundamentalists (denot-
ed by 𝑓) know the fundamental value of assets. These invest-
ors believe that the price will move back to the fundamental
value when the market price deviates from fundamental
value. Therefore their expected price change is

𝐸
(𝑓)
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Fundamentalists’ expected price is the sum of the change
of the fundamental value and an adjustment item. The
adjustment item is proportional to the deviation between
current asset price and the fundamental value.The coefficient
𝑑
𝑓
(𝑑
𝑓
> 0) indicates the speed returning to the fundamental

value, and we call it mean reversion coefficient. In addition,
to simplify, we assume that the two types of investors have the
same expectation to dividend return; that is,
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Thus, fundamentalist’s expected return for asset 𝑖 is
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We further assume that fundamentalists use the exponen-
tialmoving average of expected return deviation to determine
the expected return variance. To certain extent, it reflects the
adaptability; that is,

𝑡
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where 𝜏
(𝑓) stands for the period length of the exponential

moving average. The larger is 𝜏(𝑓), the smaller is (1 − 𝑒
−1/𝜏
(𝑓)

).
It shows that the longer is the moving average period, the
smaller is the weight of the latest deviation. Thus the latest
expected deviation has the smaller influence on the expected
variance. Furthermore, this paper assumes that investors’
expected correlations between assets are 𝜌(𝑓)

𝑖𝑗
(𝑖, 𝑗 denotes the

assets), which vary with different investors, but do not change

with time. Hence, the covariance matrix of the expected
return is

(𝑓)

∑
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2.3.2. Chartists. Chartists do not know the fundamental
value of the assets. They use the past price series to infer
the movement of future prices. Therefore, chartists can be
regarded as a kind of adaptive investors. This paper assumes
that the first moment and the secondmoment of the expected
return are adaptable for chartists; that is, both the expected
return and its variance are obtained by using the exponential
moving average. The expected price change of chartists is

𝑚
(𝑐)

𝑡
≡ 𝐸
(𝑐)

𝑡
[𝜂
𝑡+1

] = 𝐸
(𝑐)

𝑡
[

𝑃
𝑡+1

− 𝑃
𝑡

𝑃
𝑡

]

= 𝑒
−1/𝜏
(𝑐)

𝑚
(𝑐)

𝑡−1
+ (1 − 𝑒

−1/𝜏
(𝑐)

)(

𝑃
𝑡
− 𝑃
𝑡−1

𝑃
𝑡−1

) ,

(33)

where 𝜏
(𝑐) presents the period length of the exponential

moving average. Chartists have the same expected dividend
yield as fundamentalists, whose expected return for asset 𝑖 is

𝐸
(𝑐)

𝑡
(𝜑
𝑖,𝑡+1

) =

𝐸
(𝑐)

𝑡
[𝑃
𝑖,𝑡+1

] + 𝐸
(𝑐)

𝑡
(𝐷
𝑖,𝑡+1

) − 𝑃
𝑖,𝑡

𝑃
𝑖,𝑡

= 𝑒
−1/𝜏
(𝑐)

𝑚
(𝑐)

𝑡−1
+ (1 − 𝑒

−1/𝜏
(𝑐)

)(

𝑃
𝑡
− 𝑃
𝑡−1

𝑃
𝑡−1

)

+

(1 + 𝜙)𝐷
𝑖,𝑡

𝑃
𝑖,𝑡

.

(34)

For chartists, the covariance matrix of the expected return is
similar to that of fundamentalists.

2.4. Market Clearing. This model achieves market clearing
through the equilibrium between supply and demand as

𝑁
(𝑓)

∑

𝑗=1

Z𝑗 +
𝑁

∑

𝑗=𝑁
(𝑓)
+1

Z𝑗 = M, (35)

where 𝑗 represents the investors,𝑁(𝑓) represents the number
of fundamentalists, 𝑁 is the total number of investors, 𝑁 −

𝑁
(𝑓)

= 𝑁
(𝑐) is the number of chartists, andM is the number

of outstanding stocks in the market. The equation indicates
that the sum of risky asset holdings by all traders is equal toM
at any time 𝑡, which is achieved by adjusting the equilibrium
price repeatedly.

2.5. Wealth Shares. After the market price is determined
through the clearing mechanism, the wealth of investor 𝑗 is
also determined as follows:

𝑊
𝑗

𝑡
= (1 −

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
)𝑊
𝑡−1

(1 + 𝑟) + 𝑊
𝑡−1

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡

𝑃
𝑖,𝑡
+ 𝐷
𝑖,𝑡

𝑃
𝑖,𝑡−1

.

(36)
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At this moment, the total wealth of all investors, the funda-
mentalists, and the chartists in the market is

𝑊
𝑡
=

𝑁

∑

𝑗=1

𝑊
𝑗

𝑡
,

𝑊
(𝑓)

𝑡
=

𝑁
(𝑓)

∑

𝑗=1

𝑊
𝑗

𝑡
,

𝑊
(𝑐)

𝑡
=

𝑁
(𝑐)

∑

𝑗=1

𝑊
𝑗

𝑡
,

(37)

where 𝑁 is the number of investors, 𝑁(𝑓) is the number
of fundamentalists, 𝑁(𝑐) is the number of chartists, 𝑊(𝑓)

𝑡
is

the total wealth of fundamentalists, and 𝑊
(𝑐)

𝑡
is the total

wealth of chartists. Accordingly, investor 𝑗’s wealth share, all
fundamentalists’ wealth share, and chartists’ wealth share in
the market are defined as follows:

𝑤
𝑗

𝑡
=

𝑊
𝑗

𝑡

𝑊
𝑡

,

𝑤
(𝑓)

𝑡
=

𝑊
(𝑓)

𝑡

𝑊
𝑡

,

𝑤
(𝑐)

𝑡
=

𝑊
(𝑐)

𝑡

𝑊
𝑡

.

(38)

By studying the relative wealth share rather than the absolute
wealth amount, we can get to the wealth evolution of different
types of investors more intuitively.

3. Simulation Results

To reflect the randomness of the dividend process, we
revised the dividend process in the following agent-based
experiments:

𝐷
𝑖,𝑡+1

= (1 + 𝜙
𝑖
+ 𝜎
𝑖,𝜀
𝜀
𝑡+1

)𝐷
𝑖,𝑡
. (39)

Then we can obtain the fundamental value of the asset as
follows:

𝑃
∗

𝑖,𝑡+1
= (1 + 𝜙

𝑖
+ 𝜎
𝑖,𝜀
𝜀
𝑡+1

) 𝑃
∗

𝑖,𝑡
, (40)

where 𝜀
𝑡
∼ 𝑁(0, 1) and 𝜎

𝑖,𝜀
> 0 represents standard deviation

dividend growth rates.

3.1. Reproducing Stylized Facts. Table 1 lists the parameters
for the benchmark model. In this paper, we use three risky
stocks as examples to calibrate this model and the parameters
of all stocks are setting consistently.The fundamental value of
each stock is setting to 10, each investor’s initial wealth is 10,
so that his total initial wealth is 40. In addition, short selling
is permitted in the model. The total number of investors is
40, including 20 fundamentalists and 20 chartists. One step
in this model can be seen as one week in reality. Every exper-
iment runs 1000 periods, corresponding to 20 years in reality.

Table 1: The parameters of basic model.

Parameter Value
Number of risky assets 3
Number of agents 40
Number of fundamentalists 20
Number of chartists 20
Initial cash 10
Initial stock positions 1
The minimum stock positions −5
The maximum stock positions 10
The initial dividend 0.002
Dividend growth rate 0.001
The standard deviation of dividend growth rate 0.01
Random seeds 0
The risk-free interest rate 0.0012
The relative risk aversion 3
The max exponential moving average periods 80
The min exponential moving average periods 20
The min mean reversion parameter 0.5
The max mean reversion parameter 1
The min expected correlation coefficient −0.2
The max expected correlation coefficient 0.8
The max wealth investment proportion 0.95
The min wealth investment proportion −0.95

The risk-free interest rate is 0.0012, corresponding to the
annual interest rate which is about 6%. The dividend growth
rate is 0.001, corresponding to the annual growth ratewhich is
about 5%.The initial dividend is 0.002. Many studies suggest
that the relative risk aversion is in the range from 2 to 4.
In this paper, we set it to 3. To reflect the heterogeneity
of the investors, the exponential moving average periods,
fundamentalists’ mean reversion parameter, and the expected
correlation coefficients between assets are randomly selected
in a certain range by every trader at the beginning of the
experiment, which are kept unchanged during the remaining
experiment time. For example, the correlation coefficients
between stocks are selected randomly in the range [−0.2, 0.8],
which is consistentwith real stockmarket (Ochiai andNacher
[19] show that the correlations between DJIA and Nikkei 225
roughly fluctuate within [−0.2, 0.8]).

It is easily understood that although stocks have the same
parameters, due to the randomness of the dividend process
and the different imbalances of supply and demand, the price
evolutions of different stocks are not the same, and they can
even be opposite.

Considering that our model is a growth model, in which
the dividend growth rate is positive, if we compare one day
to one time step, then the dividend growth rate will be so
small that the model accuracy could be lost. Thus, in this
paper, we useweekly closing prices of the S&P 500 index from
December 30, 1991, to March 7, 2011, as the calibration series
and compare it with the simulated price series in both the
descriptive statistics and the stylized facts.
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Table 2: The descriptive statistics.

Statistic Asset 1 Asset 2 Asset 3 S&P 500
Mean 0.00090 0.0011 0.00072 0.0014
Median 0.0016 0.00048 0.0011 0.0024
S. D. 0.0196 0.0235 0.0157 0.0238
Kurtosis 7.0397 7.9133 6.2793 8.9414
Skewness 0.0496 0.1523 0.1301 −0.5191
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Figure 1: Evolution of prices of the three simulated stocks and the S&P 500 index.

Figure 1 shows the evolution of stock prices. The bottom
right plot is for the S&P 500 index. Table 2 shows the
descriptive statistics of the three simulated stock prices and
the S&P 500 prices. We can find that these properties of
simulated prices are very similar with those of S&P 500 index.

Here we test the stylized facts of our model. Figures 2,
3, 4, 5, and 6 display the stylized facts of S&P 500, stock 1,
stock 2, and stock 3. Figure 2 shows the probability density
in the semilogarithmic axis, where the red line is normal
fitted curve. We can find that both S&P 500 returns and
the simulated stocks returns show the fat-tailed distribution.
Figures 3–6 compare the autocorrelation functions of the
return rate. In each plot, the black line shows the autocor-
relation function of the original returns, and the red line
is the autocorrelation of the absolute returns. From these
autocorrelation plots, we can find that the original returns
have no autocorrelations, whereas the absolute returns show
significant long-term autocorrelations. In addition, the Hurst
indexes for the absolute returns of three simulated stocks are
0.6993, 0.7585, and 0.6817, respectively, which confirm the

property of long-term autocorrelation as in real markets [20].
We find that all three stocks show similar characteristics as
S&P 500.

We conclude that ourmodel is able to reproduce themain
stylized facts of real stocks and stock indexes, including the
fat-tailed distribution of returns, the absence of long-memory
in the returns, and the strong long-term correlations in the
absolute returns. It indicates that our model has captured
some key ingredients of the microstructure of real financial
markets.

3.2. Wealth Share Analysis. Investors’ beliefs play an impor-
tant role in making investment decisions. Therefore, it is
essential to analyze the key parameters that determine
investor’s beliefs and focus on these parameters’ impacts
on investors’ wealth accumulation. The model has two
key parameters, including fundamentalists’ mean reversion
parameters 𝑑

𝑓
and chartists’ exponential moving average

periods 𝜏(𝑐).
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Figure 2: The probability density of S&P 500 returns and the
simulated stocks returns.The red line is the normal fitted curve. Both
S&P 500 returns and the simulated stocks returns show the fat-tailed
distribution.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

Lag

Au
to

co
rr

el
at

io
n

−0.2

Figure 3: Autocorrelation function of the S&P 500 index.The black
line shows the autocorrelation function of the returns. The red line
is the autocorrelation of the absolute returns.

In order to analyze the two parameters’ impacts on two
types of investors’ wealth shares, this paper divides the mean
reversion parameter values into four intervals: (0.5, 0.6),
(0.6, 0.7), (0.7, 0.8), and (0.8, 0.9). Fundamentalists’ mean
reversion parameters value is randomly selected in the spe-
cific interval. We also take 9 different values for the chartists,
that is, 1, 2, 3, 4, 5, 10, 20, 50, and 80, which correspond to 9
differentweights of the latest price information, that is, 0.6321,
0.3935, 0.2835, 0.2212, 0.1813, 0.0952, 0.0488, 0.0198, and
0.0124. This results in 36 different parameters combinations.
In order to keep the conclusion robust, this paper selects
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Figure 4: Autocorrelation function of the simulated stock 1. The
black line shows the autocorrelation function of the returns.The red
line is the autocorrelation of the absolute returns.
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Figure 5: Autocorrelation function of the simulated stock 2. The
black line shows the autocorrelation function of the returns.The red
line is the autocorrelation of the absolute returns.

five different random seeds for each combination to conduct
five experiments, and then average investors’ wealth shares
of these five experiments. Thus, we run a total of 180
experiments. We focus on the aggregate wealth of the same
type of traders. Figures 7, 8, 9, and 10 show investors’ wealth
share for 4 different intervals of 𝑑

𝑓
. In every figure, each

bar corresponds to the average wealth share at the end of
experiments when exponential moving average period 𝜏

(𝑐) is
given a specific value.

We can see that nomatter what kinds of parameters’ port-
folios are chosen, the two types of investors coexist in the long
term. Chartists’ wealth shares fall into the range of 0.3–0.5,
and the corresponding fundamentalists’ wealth shares locate
between 0.7 and 0.5. Meanwhile, different portfolios (𝑑

𝑓
, 𝜏
(𝑐)
)

do have different distributions of wealth. Obviously, no
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Figure 6: Autocorrelation function of the simulated stock 3. The black line shows the autocorrelation function of the returns. The red line is
the autocorrelation of the absolute returns.
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Figure 7: Wealth shares (𝑑
𝑓
∈ (0.5, 0.6)).

matter 𝑑
𝑓
is at which intervals, with the exponential moving

average periods increasing, chartists’ wealth shares also show
an increasing trend, indicating that a higher memory length
will help chartists form more accurate expectations, thus
increasing their wealth shares. However, this trend becomes
less obvious when exponential moving average periods are
high enough, such as 𝜏(𝑐) is 20, 50, 80.This is because chartists’
return expectations only have very small weight on the latest
price information (namely, 0.0488, 0.0198, and 0.0124), and
more than 95% of the weights are given to the past pricing
information. Hence, the growth trend of wealth share is no
longer obvious when the exponential moving average period
is sufficiently long.

In addition, the value of mean reversion coefficient 𝑑
𝑓

has no significant impacts on the wealth share of the two
types of investors. It suggests that the aggressiveness of
fundamentalists’ strategies on the mistake of stock prices, be
they moderate (when 𝑑

𝑓
is small) or aggressive (when 𝑑

𝑓
is

large), has no impact on their wealth shares in the long run.

4. Conclusions

We have built a multiassets heterogeneous-agents model
with fundamentalists and chartists. We verified that the
model can reproduce the main stylized facts in real mar-
kets such as fat tails in the return distribution, absence of
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Figure 8: Wealth Shares (𝑑
𝑓
∈ (0.6, 0.7)).

0

0.1

0.2

0.3

0.4

0.5
Chartist

W
ea

lth
 (%

)

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fundamentalist

W
ea

lth
 (%

)

1 2 3 4 5 6 7 8 9
𝜏 min max 𝜏 min max

Figure 9: Wealth Shares (𝑑
𝑓
∈ (0.7, 0.8)).

long-memory in returns, and long-termmemory in the abso-
lute returns. Based on the calibrated model, we studied the
key strategies parameters’ impacts on investors’ wealth shares.
We found that as chartists’ exponential moving average
periods increase, their wealth shares also show an increasing
trend. This means that higher memory length can help to
improve their wealth shares. However when the exponential
moving average periods are long enough, this trend is no
longer obvious and nomatter how long thememory is, wealth
share of chartists will not be higher than fundamentalists’.

That is, chartists’ wealth share will not be more than 0.5.
This reflects that chartists can coexist with fundamentalists
in stock markets, that is, at least accounting for about 30% of
market wealth, although they cannot equally share themarket
wealth. On the other hand, themean reversing parameter has
no significant impacts on the wealth share of either type of
traders. Therefore, no matter whether fundamentalists take
moderate strategy or aggressive strategy on the mistake of
stock prices, it has no different impacts on their wealth shares
in the long run.
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Figure 10: Wealth Shares (𝑑
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