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The exponential stability is investigated for neutral stochastic differential equations with time-varying delays. Based on the
Lyapunov stability theory and linear matrix inequalities (LMIs) technique, some delay-dependent criteria are established to
guarantee the exponential stability in almost sure sense. Finally a numerical example is provided to illustrate the feasibility of
the result.

1. Introduction

Neutral differential equations are well-known models from
many areas of science and engineering, wherein, quite
often the future state of such systems depends not only on
the present state but also involves derivatives with delays.
Deterministic neutral differential equations were originally
introduced by Hale and Meyer [1] and discussed in Hale and
Lunel (see [2]) and Kolmanovskii et al. (for details, see also
[3, 4]), among others. Motivated by chemical engineering
systems as well as theory of aeroelasticity, stochastic neutral
delay systems have been intensively studied over recent year
[5–9]. Mao initiated the study of exponential stability of
neutral stochastic differential delay equations in [5], while [9]
incorporated Razumikhinis approach in neutral stochastic
functional differential equations to investigate the stability
problem. It is pointed out in Section 5 [10] that the conditions
imposed in [5, 9] make the theory not applicable to the delay
equation.

More recently, Luo et al. [6] proposed new criteria on
exponential stability of neutral stochastic delay differential
equations. In [11, 12], Milošević investigated the almost
sure exponential stability of a class of highly nonlinear

neutral stochastic differential equations with time-dependent
delay, and some sufficient conditions were given for the
considered systems. However, when the exponential stability
of the neutral system with time-delay is considered, one
always assumes that the derivative of the delay function
is less than 1 (e.g., [6]). Meanwhile, the delay-independent
conditions in [6, 10] are restricted when the delay is
small. On the other hand, some results are proposed on
stochastic Markovian jumping systems (e.g., [13–20]) and
finite-time problems of stochastic systems (e.g., [18–22]),
which can provide some useful methods and techniques
for the neutral stochastic systems. This paper aims to
develop the exponential stability in almost sure sense of the
neutral stochastic differential equations with time-varying
delays. Under the weaker assumptions that the derivative
of time delay is less than some constant, sufficient con-
ditions for the exponential stability are given in terms of
linear matrix inequality (LMI) based on Lyapunov stability
theory, which can be checked easily by MATLAB LMI
Toolbox.

The paper is organized as follows. In the remainder of
this section we recall some preliminaries, mainly from [5]. In
Section 3 we state the main results on exponential stability.
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Section 4 will provide numerical examples to illustrate the
feasibility and effectiveness of the results, and the conclusion
will be made in Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, let {Ω,
F, 𝑃} be a complete probability space with a filtration
{F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., right con-
tinuous and 𝐹

0
containing all 𝑃-null sets). Let 𝑤(𝑡) =

(𝑤
1
(𝑡), 𝑤
2
(𝑡), . . . , 𝑤

𝑚
(𝑡))
𝑛 be 𝑚-dimensional Wiener process

defined on the probability space. Let | ⋅ | denote the Euclidean
norm in R𝑛. 𝐴𝑇 stands for the transpose of the vector or
matrix 𝐴. If 𝐴 is a matrix, its trace norm is denoted by
|𝐴| = √𝐴𝑇𝐴. 𝑎 ∨ 𝑏 denotes max{𝑎, 𝑏}. 𝜆max(⋅), 𝜆min(⋅) are
maximum eigenvalue and minimum eigenvalue, respective-
ly.

Consider the following 𝑛-dimensional neutral stochastic
differential delay equations with time-varying delays:

d [𝑥 (𝑡) − 𝐺 (𝑥 (𝑡 − 𝛿 (𝑡)))]

= 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛿 (𝑡)) , 𝑡) d𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛿 (𝑡)) , 𝑡) d𝑤 (𝑡)

𝑥 (𝑡) = 𝜉 (𝑡) ∈ 𝐶
𝑏

F0
([−𝜏, 0] ,R

𝑛
) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑓 : R𝑛 × R𝑛 × R
+

→ R𝑛, 𝑔 : R𝑛 × R𝑛 ×

R
+

→ R𝑛×𝑚, and 𝐺 ∈ 𝐶(R𝑛,R𝑛). The functions 𝛿(𝑡) :

R
+

→ [0, 𝜏] are continuously differentiable such that 0 ≤

𝛿(𝑡) ≤ 𝛿, ̇𝛿(𝑡) ≤ 𝛿. Let 𝐶([−𝜏, 0],R𝑛) denote the family of
continuous functions 𝜙 from [−𝜏, 0] to R𝑛 with the norm
‖𝜙‖ = sup

−𝜏≤𝜃≤0
|𝜙(𝜃)|. Let 𝐶𝑏F0([−𝜏, 0],R

𝑛
) be the family

of allF
0
-measurable𝐶([−𝜏, 0],R𝑛)-valued random variables

𝜉 = {𝜉(𝜃) : 𝜏 ≤ 𝜃 ≤ 0} such that sup
−𝜏≤𝜃≤0

𝐸|𝜉(𝜃)|
2
< ∞. To

guarantee the existence and uniqueness of the solution, we
first list the following hypotheses.

(H
1
) Both the functionals 𝑓 and 𝑔 satisfy the uni-
form Lipschitz conditions. That is, there is a diago-
nal positive matrix 𝐿 = diag {𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑛
} such

that
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑡) − 𝑓 (𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨 ∨
󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑦, 𝑡) − 𝑔 (𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨

≤ |𝐿 (𝑥 − 𝑥)| +
󵄨󵄨󵄨󵄨𝐿 (𝑦 − 𝑦)

󵄨󵄨󵄨󵄨

(2)

for all 𝑡 ≥ 0 and those 𝑥, 𝑦, 𝑥, 𝑦 ∈ R𝑛.

(H
2
) There is a constant 𝑘 ∈ (0, 1) such that for all 𝜙

1
, 𝜙
2
∈

𝐶
𝑏

F0
([−𝜏, 0],R𝑛)

󵄨󵄨󵄨󵄨𝐺 (𝜙
1
) − 𝐺 (𝜙

2
)
󵄨󵄨󵄨󵄨
2

≤ 𝑘 sup
−𝜏≤𝜃≤0

󵄨󵄨󵄨󵄨𝜙1 (𝜃) − 𝜙
2
(𝜃)

󵄨󵄨󵄨󵄨
2

. (3)

It is well known (see, e.g., [3]) that under hypotheses H
1
, H
2

(1) has a unique continuous solution on 𝑡 ≥ −𝜏.
To obtain sufficient conditions on almost sure expo-

nential stability, the following lemmas and definition are
given.

Lemma 1 (see [23]). For any positive definite constant matrix
𝑀 ∈ R𝑛×𝑛, scalar 𝑟 > 0, and vector function 𝑓(⋅) : [0, 𝑟] →

R𝑛 such that the integrations in the following are well defined,
then the following inequality holds:

(∫
𝑟

0

𝑓(𝑠)𝑑𝑠)

𝑇

𝑀(∫
𝑟

0

𝑓 (𝑠) 𝑑𝑠) ≤ 𝑟∫
𝑟

0

𝑓
𝑇
(𝑠)𝑀𝑓 (𝑠) 𝑑𝑠. (4)

The following semimartingale convergence theoremwill play an
important role in the later parts.

Lemma 2 (see [24]). Let 𝐴(𝑡) and 𝑈(𝑡) be two continuous
adapted increasing processed on 𝑡 ≥ 0 with 𝐴(0) = 𝑈(0) = 0

a.s. Let𝑀(𝑡) be a real-valued continuous local martingale with
𝑀(0) = 0 a.s. Let 𝜍 be a nonnegative F

0
-measurable random

variable. Define

𝑋(𝑡) = 𝜍 + 𝐴 (𝑡) − 𝑈 (𝑡) + 𝑀 (𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0. (5)

If𝑋(𝑡) is nonnegative, then

{ lim
𝑡→∞

𝐴 (𝑡) < ∞} ⊂ { lim
𝑡→∞

𝑋 (𝑡) < ∞}

∩ { lim
𝑡→∞

𝑈 (𝑡) < ∞} 𝑎.𝑠.,

(6)

where 𝐵 ⊂ 𝐷 a.s. means 𝑃(𝐵 ∩ 𝐷) = 0. In particular, if
lim
𝑡→∞

𝐴(𝑡) < ∞ a.s., then for almost all 𝑤 ∈ Ω,

lim
𝑡→∞

𝑋(𝑡) < ∞, lim
𝑡→∞

𝑈 (𝑡) < ∞; (7)

that is, both𝑋(𝑡) and𝑈(𝑡) converge to finite random variables.

Definition 3 (see [25]). The equilibrium of solution {𝑥(𝑡), 𝑡 ≥

0} of (1) is said to be almost sure exponentially stable if there
exists a constant 𝜀 > 0 such that

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤ −𝜀 a.s. (8)

for any bounded initial condition 𝜉.

3. Main Results

Theorem 4. Let hypotheses H
1
, H
2
hold. System (1) is almost

sure exponentially stable, if there exists positive definite matrix
such that the following LMI holds
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Ω =

(
(
(
(
(
(
(
(
(
(
(

(

Ξ
11

𝑁
𝑇

2
− 𝑁
𝑇

1
𝑁
𝑇

3
+ 𝑈
𝑇

𝑁
𝑇

4
−𝑁
𝑇

1
+ 𝑁
𝑇

5
0

∗ Ξ
22

−𝑁
𝑇

3
−𝑁
𝑇

4
−𝑁
𝑇

2
− 𝑁
𝑇

5
0

∗ ∗ Ξ
33

0 −𝑁
𝑇

3
𝑈

∗ ∗ ∗ Ξ
44

−𝑁
𝑇

4
0

∗ ∗ ∗ ∗ −
1

𝛿
𝑅 − 2𝑁

𝑇

5
0

∗ ∗ ∗ ∗ ∗ −𝜀𝐼

)
)
)
)
)
)
)
)
)
)
)

)

< 0, (9)

where

Ξ
11

= 𝛽𝑃 + 𝑒
𝛽𝛿
𝑄 + 𝑃 + 2𝑁

𝑇

1
,

Ξ
22

= (− (1 − 𝛿) 𝑒
𝛽𝛿

∨ − (1 − 𝛿))𝑄 − 2𝑁
2
,

Ξ
33

= − 2𝑈 + 𝑒
𝛽𝛿
𝑆 + 2𝜆max (𝑃) 𝐿

𝑇
𝐿

+
2

𝛽
𝜆max (𝑅) (𝑒

𝛽𝛿
− 1) 𝐿

1
,

Ξ
44

= − (1 − 𝛿) 𝑆 + 2𝜆max (𝑃) 𝐿
𝑇
𝐿

+
2

𝛽
𝜆max (𝑅) (𝑒

𝛽𝛿
− 1) 𝐿

1
+ 𝜀𝑘𝐼.

(10)

Proof. To confirm that the stochastic neutral differential
equation (1) is mean-square exponentially stable with decay
rate 𝛽, we define a Lyapunov-Krasovskii functional𝑉(𝑥(𝑡), 𝑡)
as follows:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑒
𝛽𝑡
𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡)

+ ∫
𝑡

𝑡−𝛿(𝑡)

𝑒
𝛽(𝑠+𝛿)

𝜌
𝑇
(𝑠) 𝑄𝜌 (𝑠) d𝑠

+ ∫
0

−𝛿

∫
𝑡

𝑡+𝜃

𝑒
𝛽(𝑠−𝜃)

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠)

× 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠d𝜃

+ ∫
𝑡

𝑡−𝛿(𝑡)

𝑒
𝛽(𝑠+𝛿)

𝑥
𝑇
(𝑠) 𝑆𝑥 (𝑠) d𝑠.

(11)

For simplicity, let 𝑦(𝑡) = 𝑥(𝑡 − 𝛿(𝑡)), 𝜌(𝑡) = 𝑥(𝑡) − 𝐺(𝑦(𝑡)). By
generalizing Ito’s formula, we have that

𝐸𝑉 (𝜌 (𝑡) , 𝑡) = 𝐸𝑉 (𝜌 (0) , 0) + ∫
𝑡

0

L𝑉 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠.

(12)

Then, the derivative of𝑉(𝜌(𝑡), 𝑡) along the solution of (1) gives

𝐿𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

= 𝛽𝑒
𝛽𝑡
𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡) + 2𝑒

𝛽𝑡
𝜌(𝑡)
𝑇
𝑃𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

+ 𝑒
𝛽𝑡
𝑔
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑃𝑔 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

+ 𝑒
𝛽(𝑡+𝛿)

𝜌 (𝑡) 𝑄𝜌 (𝑡)

− 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

𝜌
𝑇
(𝑡 − 𝛿 (𝑡)) 𝑄𝜌 (𝑡 − 𝛿 (𝑡)) (1 − ̇𝛿 (𝑡))

+
1

𝛽
𝑒
𝛽𝑡
(𝑒
𝛽𝛿

− 1)𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑅𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

− 𝑒
𝛽𝑡
∫
𝑡

𝑡−𝛿

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

+ 𝑒
𝛽(𝑡+𝛿)

𝑥 (𝑡) 𝑆𝑥 (𝑡) − 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

× 𝑥
𝑇
(𝑡 − 𝛿 (𝑡)) 𝑆𝑥 (𝑡 − 𝛿 (𝑡)) (1 − ̇𝛿 (𝑡)) .

(13)

Note that, from system (1) and Newton-Leibniz formula, we
have

𝑀 = (𝜌 (𝑡) − 𝜌 (𝑡 − 𝛿 (𝑡)) − ∫
𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

−∫
𝑡

𝑡−𝛿(𝑡)

𝑔 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑤 (𝑠)) = 0.

(14)

By calculation, it is clear that

𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑅𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜆max (𝑅) 𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜆max (𝑅)
󵄨󵄨󵄨󵄨𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

󵄨󵄨󵄨󵄨
2

≤ 2𝜆max (𝑅) (𝑥
𝑇
(𝑡) 𝐿
𝑇
𝐿𝑥 (𝑡) + 𝑥

𝑇
(𝑡 − 𝛿 (𝑡)) 𝐿

𝑇
𝐿𝑦 (𝑡)) ,

(15)
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and then by which, we have

2𝜌
𝑇
(𝑡) 𝑃𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜌
𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 𝑓
𝑇
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡) 𝑃𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝜌
𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 2𝜆max (𝑃) (𝑥
𝑇
(𝑡) 𝐿
𝑇
𝐿𝑥 (𝑡) + 𝑦

𝑇
(𝑡) 𝐿
𝑇
𝐿𝑦 (𝑡)) ,

− 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡) (1 − ̇𝛿 (𝑡))

≤ − (1 − 𝛿) 𝑒
𝛽𝑡
𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡) .

− 𝑒
𝛽(𝑡−𝛿(𝑡))+𝛿

𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) (1 − ̇𝛿 (𝑡))

≤ − (1 − 𝛿) 𝑒
𝛽𝑡
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) .

(16)

Moreover, by Lemma 2, one can get

− ∫
𝑡

𝑡−𝛿

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

≤ −∫
𝑡

𝑡−𝛿(𝑡)

𝑓
𝑇
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) 𝑅𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

≤ −
1

𝛿
(∫
𝑡

𝑡−𝛿(𝑡)

𝑓(𝑥(𝑠), 𝑦(𝑠), 𝑠)d𝑠)
𝑇

× 𝑅(∫
𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠) .

(17)

Letting 𝐿
1
= 𝐿
𝑇
𝐿 and substituting (14)–(17) into (13) yield

𝐿𝑉 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑡)

≤ 𝑒
𝛽𝑡
{𝛽𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡) + 𝜌

𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 2𝜆max (𝑃) 𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡)

+ 2𝜆max (𝑃) 𝑦
𝑇
(𝑡) 𝐿
1
𝑦 (𝑡)

+ (− (1 − 𝛿) 𝑒
𝛽𝛿

∨ − (1 − 𝛿)) 𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡)

+ 𝑒
𝛽𝛿
𝜌
𝑇
(𝑡) 𝑄
1
𝜌 (𝑡) + 2𝜆max

1

𝛽
(𝑒
𝛽𝛿

− 1)

× (𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡) + 𝑦

𝑇
(𝑡) 𝐿
1
𝑦 (𝑡))

−
1

𝛿
(∫
𝑡

𝑡−𝛿(𝑡)

𝑓(𝑥(𝑠), 𝑦(𝑠), 𝑠)d𝑠)
𝑇

×𝑅(∫
𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠)} .

(18)

Furthermore, from (14), it follows that

𝐴 = 2𝜂
𝑇
(𝑁
𝑇

1
, 𝑁
𝑇

2
, 𝑁
𝑇

3
, 𝑁
𝑇

4
, 𝑁
𝑇

5
)
𝑇

𝑀 = 0,

𝐵 = 2𝑥
𝑇
(𝑡) 𝑈 [𝜌 (𝑡) − 𝑥 (𝑡) + 𝐺 (𝑦 (𝑡))] = 0,

(19)

where 𝜂 = (𝜌
𝑇, 𝜌𝑇(𝑡 − 𝛿(𝑡)), 𝑥𝑇(𝑡), 𝑦𝑇(𝑡), (∫𝑡

𝑡−𝛿(𝑡)
𝑓(𝑥, 𝑦, 𝑠)

d𝑠)𝑇)𝑇, and 𝑁
𝑖
(1 ≤ 𝑖 ≤ 5), 𝑈 are matrices with compatible

dimensions.
It can be shown that

∫
𝑡

0

L𝑉 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

+ 𝑒
𝛽𝑡
(𝐴 + 𝐵) + 𝑒

𝛽𝑡
𝑀
𝑇
𝑃
1
(𝑀(𝑡) + ∫

𝑡

𝑡−𝛿(𝑡)

𝑔 (𝑥, 𝑦, 𝑠) d𝑠)

≤ 𝑒
𝛽𝑡
{𝛽𝜌
𝑇
(𝑡) 𝑃𝜌 (𝑡) + 𝜌

𝑇
(𝑡) 𝑃
𝑇
𝜌 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡) + 𝑒

𝛽𝛿
𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡)

+ 𝑦
𝑇
(𝑡) 𝐿
1
𝑦 (𝑡) + 2𝜆max (𝑃) 𝑥

𝑇
(𝑡) 𝐿
1
𝑥 (𝑡)

+ 2𝜆max𝑦
𝑇
(𝑡) 𝐿
1
𝑦 (𝑡)

− (1 − 𝛿) 𝜌
𝑇
(𝑡) 𝑄𝜌 (𝑡) + 𝑒

𝛽𝛿
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡)

− (1 − 𝛿) 𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡) + 2𝜆max

1

𝛽
(𝑒
𝛽𝛿

− 1)

× (𝑥
𝑇
(𝑡) 𝐿
1
𝑥 (𝑡) + 𝑦

𝑇
(𝑡) 𝐿
1
𝑦 (𝑡))

−
1

𝛿
(∫
𝑡

𝑡−𝛿(𝑡)

𝑓(𝑥(𝑠), 𝑦(𝑠), 𝑠)d𝑠)
𝑇

× 𝑅(∫
𝑡

𝑡−𝛿(𝑡)

𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠)}

≤ 𝑒
𝛽𝑡
{𝜂
𝑇
Ω̃𝜂 + 𝜀

−1
𝑥
𝑇
(𝑡) 𝑈𝑈

𝑇
𝑥 (𝑡)} ,

(20)

whereΩ is defined as

Ω̃ =

(
(
(
(
(
(
(
(

(

Ξ
11

𝑁
𝑇

2
− 𝑁
𝑇

1
𝑁
𝑇

3
+ 𝑈
𝑇

𝑁
𝑇

4
−𝑁
𝑇

1
+ 𝑁
𝑇

5

∗ Ξ
22

−𝑁
𝑇

3
−𝑁
𝑇

4
−𝑁
𝑇

2
− 𝑁
𝑇

5

∗ ∗ Ξ
33

0 −𝑁
𝑇

3

∗ ∗ ∗ Ξ
44

−𝑁
𝑇

4

∗ ∗ ∗ ∗ −
1

𝛿
𝑅 − 2𝑁

𝑇

5

)
)
)
)
)
)
)
)

)

.

(21)
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By Schur complement, we know that 𝜂
𝑇
Ω̃𝜂 +

𝜀
−1
𝑥
𝑇
(𝑡)𝑈𝑈

𝑇
𝑥(𝑡) < 0. On the other hand, it follows

that

𝑉 (𝜌 (𝑡) , 𝑡) = 𝑉 (𝜌 (0) , 0) + ∫
𝑡

0

L𝑉 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑠

+ ∫
𝑡

0

2𝑒
𝛽𝑠
𝑥
𝑠
(𝑡) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑤 (𝑠) .

(22)

Note that 𝜉 is bounded and𝑉,𝐺 are continuous; then𝑉(𝜌(0))
must be nonnegative bounded. Moreover, L𝑉(𝑥, 𝑦, 𝑡) ≤ 0

can be obtained directly:

𝑉 (𝜌 (𝑡) , 𝑡) ≤ 𝑉 (𝜌 (0) , 0)

+ ∫
𝑡

0

2𝑒
𝛽𝑡
𝑥
𝑇
(𝑠) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠) , 𝑠) d𝑤 (𝑠) .

(23)

By applying Lemma 2 to (23), one sees that

lim
𝑡→∞

sup𝑉 (𝜌 (𝑡) , 𝑡) < ∞; (24)

hence there exists a positive random variable 𝜁 satisfying

sup
0≤𝑡<∞

𝑒
𝛽𝑡󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝐺 (𝑦 (𝑡))

󵄨󵄨󵄨󵄨
2

≤ 𝜁. (25)

Since, for any 𝜀
3
∈ (0, 1)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝐺 (𝑦 (𝑡))
󵄨󵄨󵄨󵄨
2

≥ (1 − 𝜀
−1

3
) |𝑥 (𝑡)|

2
− (𝜀
3
− 1)

󵄨󵄨󵄨󵄨𝐺 (𝑦 (𝑡))
󵄨󵄨󵄨󵄨
2

,

(26)

we must have

sup
0≤𝑡≤𝑇

𝑒
𝛽𝑡
|𝑥 (𝑡)|

2

≤ 𝜁 +
𝑘
2

𝜀
3

sup
0≤𝑡≤𝑇

𝑒
𝛽𝑡 󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
2

≤ 𝜁 + 𝑘
2
𝑒
𝛽𝜏󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩
2

+
𝑘
2

𝜀
3

𝑒
𝛽𝜏 sup
0≤𝑡≤𝑇

𝑒
𝛽𝑡
|𝑥 (𝑡)|

2

.

(27)

From the above inequality (26), it yields the desired result

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤ −

𝛽

2
. (28)

That completes the proof.

4. Example

In this section, a numerical example will be given to illustrate
that the proposed method is effective.

Example 1. Consider the following system:

𝑑 [𝑥
1
(𝑡) − 0.1𝑥

2
(𝑡 − 𝛿 (𝑡))] = − 𝑥

1
(𝑡) 𝑥
2
(𝑡 − 𝛿 (𝑡)) d𝑡

+ 𝑥
1
(𝑡) sin2 (𝑡 − 𝛿 (𝑡)) d𝜔 (𝑡) ,

𝑑 [𝑥
2
(𝑡) − 0.1𝑥

1
(𝑡 − 𝛿 (𝑡))] = − 𝑥

2
(𝑡) 𝑥
1
(𝑡 − 𝛿 (𝑡)) d𝑡

+ 𝑥
2
(𝑡) cos2 (𝑡 − 𝛿 (𝑡)) d𝜔 (𝑡) ,

(29)

where the delay function is defined as 𝛿(𝑡) = (1/4) sin(𝑡), 𝑡 >
0. It is obvious that (29) satisfies the assumptions H

1
and H

2
,

and here 𝐿 = 𝐼, 𝑘 = 0.1. Moreover, since ̇𝛿 = (1/4) cos(𝑡),
then 𝛿 = 1/4.

According to Theorem 4 and employing MATLAB LMI
Toolbox, it is relatively easy to deduce that the neutral
stochastic differential equation (29) is almost sure exponen-
tially stable.

Remark 5. Comparing with some existing sufficient criteria
for neural stochastic differential equations (e.g., [6, 11, 12]),
the obtained result is given in terms of linear matrix inequal-
ity (LMI), which can be easily checked by MATLAB LMI
Toolbox.

5. Conclusion

The exponential stability is investigated for a class of neutral
stochastic differential equations with time-varying delays.
In order to overcome the difficulties, we introduce suitable
Lyapunov functionals and employ linear matrix inequalities
(LMIs) technique, and then a delay-dependent criteria are
given to check the almost sure exponential stability of the
concerned equations.
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