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We study the bifurcation structure of the parameter space of a 1D continuous piecewise linear bimodal map which describes
dynamics of a business cycle model introduced by Day-Shafer. In particular, we obtain the analytical expression of the boundaries
of several periodicity regions associated with attracting cycles of the map (principal cycles and related fin structure). By crossing
these boundaries the map displays robust chaos.

1. Introduction

Appliedmodels defined by piecewise smooth functions appear
quite often when one studies a real process characterized
by some “nonsmooth” phenomena such as sharp switching
between several states, impacts, friction, sliding, and the like.
In economic modeling piecewise smooth systems arise, for
example, taking into account that the most used economic
variables have nonnegativity constraints, or when a process is
studied in which the economic agents change their behavior
when a relevant indicator reaches certain thresholds, and so
forth. The main reason why economists still prefer to build
their theoreticalmodels avoiding piecewise smooth functions
is related to the lack of knowledge and experience in the
investigation of such a kind of models. In fact, a general
theory for piecewise smooth dynamical systems, differently
from the one for smooth systems, is not yet well established.
The studies and results on these systems are growing and
rapidly developing nowadays (see, e.g., the books [1, 2] and
references therein). During the last decade important results
have been obtained in this field, and one of the aims of the
present paper is to show that such results can be successfully

applied to investigate a relevant economic model, proposed
by Day and Shafer in [3].

We recall that among nonsmooth dynamical systems,
those described by piecewise linear maps are the simplest
to study due to the linearity of their components, but
nevertheless they are quite rich in the outcome of the possible
dynamics. In particular, a one-dimensional (1D for short)
continuous piecewise linear map with one border point,
known as skew tent map, depending on the parameters
values can have attracting cycles of any period as well as
cyclic chaotic intervals of any period, also called 𝑛-bands
chaotic attractors, which have the relevant property of being
robust (as introduced in [4]) with respect to parameter
perturbations.The bifurcation structure of the skew tent map
has been completely described (see, e.g., [5–8]). Moreover,
the skew tent map can be used as a normal form for a so-
called border collision bifurcation (BCB for short) which is
characteristic in piecewise smooth maps [9, 10]. Recall that
a BCB occurs when an invariant set, such as, for example, a
fixed point or cycle, collides with a border separating regions
of different definition of the map. This bifurcation may
lead, for example, from an attracting cycle directly to chaos.
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The dynamic behaviors of the skew tent map are used to
classify the possible dynamics which may occur after a
generic BCB in a 1D continuous piecewise smooth map (see,
e.g., [11–13], where the skew tent map is applied to classify
BCBs in economic models).

The map considered in the present paper, which repre-
sents an economic model, is described by a one-dimensional
(1D for short) bimodal piecewise linear map with increasing
outermost branches. Clearly, a map with two border points
possesses more complicated dynamics, and all the possible
outcomes are not yet fully investigated; some results can
be found in [14, 15]. In particular, the bifurcation structure
of its parameter space includes both regions which belong
to the known period adding structure (called also Arnold
tongues or mode-locking tongues), which is characteristic
for piecewise increasing discontinuous maps and also for
certain circle maps (see, e.g., [16–20]). The period adding
structure is formed by periodicity regions related to cycles
organized according to the Farey summation rule applied to
the rotation numbers of the related cycles. Besides this, in
bimodal piecewise linear maps the so-called fin structure is
also observed (see [15]). We will describe these regions in
the parameter space of the considered map, recalling how
these two structures are organized and giving formulas of the
boundaries of related regions.

The plan of the work is as follows. In Section 2 we
recall the Day-Shafer model. Its dynamics are bounded in an
absorbing interval, and depending on the parameters values
the system may have attracting cycles of any period as well
as 𝑛-band chaotic attractors. In Section 3 we will consider
the parameter space of interest, showing how the periodicity
regions representing the regions in the parameter space
associated with stable attracting cycles may be organized.
Moreover, the boundaries of such regions (BCB curves) are
obtained analytically (and reported in Appendices). Crossing
these boundaries the system may either enter a different
periodicity region (via the fin structure mentioned above)
or it may become chaotic (and in a regime of robust chaos).
Some conclusions are given in Section 4.

2. The Day-Shafer Model

The Day-Shafer model we are interested in dates back to
1987. Richard Day has been a pioneer in the application of
nonlinear models in economics and finance (see, e.g., [21–
24]). In particular, in [3] Day and Shafer argued that the
trapping set of their nonlinear business cycle model in one of
themost interesting cases is well approximated by a piecewise
smoothmap with two turning pointswith dynamics bounded
in an absorbing interval. Moreover, they explicitly consider
a piecewise linear bimodal map as a further approximation.
In the particular case in which the dynamics reduces to those
on a unimodal piecewise linear map (i.e., a skew tent map),
they succeeded in writing the BCB curves associated with the
principal (or maximal) cycles. While in the generic case of a
piecewise linear bimodal map, only a few numerical results
were given. As we will show in the next sections, the results

of the generic case with two turning points can be much
improved and many BCB curves can be detected analytically.

Let us briefly recall that in [3] Day and Shafer build a
generic map defining a business cycle model of an economy
with monetary and real sectors. In the monetary market,
demand and supply for money are implicitly given by the
interest rate 𝑟 as a function of the income 𝑌 and a money
supply parameter 𝑀. In the real market the interest rate
determines the level of investments 𝐼 = 𝐻(𝑟(𝑌), 𝑌) =

𝐼(𝑌), that is, a component of the income together with
consumption 𝐶 = 𝐶(𝑌). By using the assumption that the
level of income at a certain time period depends upon the
one-time lagged amounts of consumption and investment, a
discrete time equation of the following form is obtained:

𝑌
𝑡+1

= 𝐹 (𝑌
𝑡
) = 𝜆𝐼 (𝑌

𝑡
) + 𝐶 (𝑌

𝑡
) + 𝐴, (1)

where the parameter 𝜆 ≥ 0 measures how strongly invest-
ment translates into new income, and the parameter 𝐴 >

0 includes all the autonomous components (of investment,
consumption, and public expenditure). The function 𝐶(𝑌) is
typically monotonically increasing with 𝐶(0) = 0, and the
investment function 𝐼(𝑌) usually is increasing for low level of
incomewhile it is decreasing when income is high (this is due
to the fact that with high income the money market becomes
too crowded, inducing the increase of the interest rate that
causes a contraction in the investments). Putting together
these assumptions a function 𝐹(𝑌) is obtained that is nonlin-
ear and has a bimodal shape. By using explicit functions, Day
and Shafer found that for some parameters’ configurations
the income dynamics are bounded in a trapping set like the
one shown in Figure 1. The piecewise linear map shown in
Figure 1 represents the function 𝐹(𝑌); it is continuous but
not differentiable at the points 𝑌 = 𝑌

∗ and 𝑌 = 𝑌
∗∗.

The dynamics are bounded in the interval [𝐹(𝑌∗∗), 𝐹(𝑌∗)] =
[𝑌
𝑚
, 𝑌
𝑀
]. For convenience, we can normalize the interval

[𝑌
𝑚
, 𝑌
𝑀
] to [0, 1] and denoting by 𝑥 the state variable income

𝑌 we obtain the map 𝑓 : 𝐼 → 𝐼, 𝐼 = [0, 1] defined as follows:

𝑓 : 𝑥 → 𝑓 (𝑥)

=

{
{
{

{
{
{

{

𝑓
𝐿
(𝑥) = 𝑎

𝐿
𝑥 + 1 − 𝑎

𝐿
𝑑
𝐿

if 0 ≤ 𝑥 < 𝑑
𝐿
,

𝑓
𝑀
(𝑥) = −

𝑥

𝑑
𝑅
− 𝑑
𝐿

+ 1 +

𝑑
𝐿

𝑑
𝑅
− 𝑑
𝐿

if 𝑑
𝐿
≤ 𝑥 < 𝑑

𝑅
,

𝑓
𝑅
(𝑥) = 𝑎

𝑅
𝑥 − 𝑎
𝑅
𝑑
𝑅

if 𝑑
𝑅
≤ 𝑥 ≤ 1,

(2)

where 𝑓
𝐿
(𝑑
𝐿
) = 𝑓
𝑀
(𝑑
𝐿
) = 1, 𝑓

𝑅
(𝑑
𝑅
) = 𝑓
𝑀
(𝑑
𝑅
) = 0, and the

parameters satisfy

𝑎
𝐿
> 0, 𝑎

𝑅
> 0, 0 < 𝑑

𝐿
< 𝑑
𝑅
< 1,

𝑓 (0) > 0, 𝑓 (1) < 1

(3)

so that 𝑓(𝐼) = 𝐼. More correctly, this is a version of
the map in which we can investigate the dynamic behavior
changing independently the slopes of the external branches
and border points. In [3] the authors give the relations
between the parameters here considered and those related to
the economic model. Moreover, the parameters used above
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Figure 1: The function 𝐹(𝑌) in the trapping interval [𝑌𝑚, 𝑌𝑀].

(slopes and border points) may all or in part depend on some
economic parameters, so that as an economic parameter is
varied, it is also possible that it influences several of the above
parameters, leading to particular paths in the parameter
space.

Clearly, this map (2) has a unique fixed point in the
middle branch given by

𝑥
∗

𝑀
=

𝑑
𝑅

1 + 𝑑
𝑅
− 𝑑
𝐿

(4)

which is always unstable given that the slope of the middle
branch (−1/(𝑑

𝑅
−𝑑
𝐿
)) is always smaller than−1.The interval 𝐼

is trapping so in 𝐼wedonot have any divergent trajectory, and
the attracting set may be periodic (an 𝑛-cycle with 𝑛 > 1) or
chaotic (a chaotic interval or an 𝑛-band chaotic attractor with
𝑛 > 1). Some dynamic behaviors and bifurcation structures
of map (2) will be described in the next section.

3. Bifurcation Structure of
the Parameter Space

The Day-Shafer model presented in the previous section is
described by a family of 1D continuous piecewise linear maps
𝑓 : 𝐼 → 𝐼, 𝐼 = [0, 1], as given in (2), where the parameter
region of interest, which allows obtaining the required shape
of the map, is the region 𝑃 defined as follows (as 𝑓(0) > 0

leads to 𝑎
𝐿
𝑑
𝑅
< 1 while 𝑓(1) < 1 leads to 𝑎

𝑅
(1 − 𝑑

𝑅
) < 1):

𝑃 = {𝑝 : 𝑎
𝐿
> 0, 𝑎

𝑅
> 0, 0 < 𝑑

𝐿
< 𝑑
𝑅
< 1,

𝑎
𝐿
𝑑
𝑅
< 1, 𝑎

𝑅
(1 − 𝑑

𝑅
) < 1} ,

(5)

where 𝑝 = (𝑎
𝐿
, 𝑎
𝑅
, 𝑑
𝐿
, 𝑑
𝑅
) denotes a point in the parameter

space. For 𝑝 ∈ 𝑃 the left and the right branches of map 𝑓
are both increasing, while the middle one is decreasing, so
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Figure 2: The map 𝑓 given in (2) for 𝑎
𝐿
= 0.4, 𝑎

𝑅
= 0.8, 𝑑

𝐿
= 0.3,

and 𝑑
𝑅
= 0.8.

that 𝑓 is a bimodalmap. An example is shown in Figure 2. As
already mentioned in Section 1, the dynamics of 1D bimodal
maps have been considered bymany researchers (see, e.g., [14,
25–27], etc.). Our aim is to study the bifurcation structure of
the region𝑃, that is, to describe the possible attractors of map
𝑓 and the parameter regions corresponding to their existence.

Let us denote by 𝐼
𝐿

= [0, 𝑑
𝐿
), 𝐼
𝑀

= [𝑑
𝐿
, 𝑑
𝑅
), and

𝐼
𝑅

= [𝑑
𝑅
, 1] the definition intervals (or, in other words,

partitions) of the functions 𝑓
𝐿
, 𝑓
𝑀
, and 𝑓

𝑅
, respectively. They

are separated by the border points 𝑑
𝐿
and 𝑑

𝑅
. As already

remarked, for 𝑝 ∈ 𝑃, the fixed point is 𝑥∗
𝑀

∈ 𝐼
𝑀
, given in

(4), always exists, and is repelling, while the fixed points

𝑥
∗

𝐿
=

𝑎
𝐿
𝑑
𝐿
− 1

𝑎
𝐿
− 1

, 𝑥
∗

𝑅
=

𝑎
𝑅
𝑑
𝑅

𝑎
𝑅
− 1

, (6)

associated with the branches 𝑓
𝐿
and 𝑓

𝑅
, exist (repelling) for

𝑎
𝐿
> 1 and 𝑎

𝑅
> 1. However, for the considered parameter

values these fixed points do not belong to the interval 𝐼 given
that 𝑥∗

𝐿
< 0 and 𝑥∗

𝑅
> 1. For our map 𝑓 the absorbing interval

is always associated with all three branches. In fact, given that
𝑓(𝑑
𝐿
) = 1 > 𝑑

𝑅
and 𝑓(𝑑

𝑅
) = 0 < 𝑑

𝐿
it follows that 𝐼 is

an absorbing invariant interval, 𝑓(𝐼) = 𝐼 (see Figure 2), so
that any orbit with an initial value 𝑥

0
∈ 𝐼 is bounded, being

trapped in 𝐼. We denote by 𝜑
𝐿
and 𝜑

𝑅
the boundaries related

to the contact of the interval 𝐼 with the fixed points 𝑥∗
𝐿
and

𝑥
∗

𝑅
, given by 𝑥∗

𝐿
= 0 and 𝑥∗

𝑅
= 1, respectively (although not

occurring for parameters in 𝑃):

𝜑
𝐿
: 𝑎
𝐿
𝑑
𝐿
= 1, (7)

𝜑
𝑅
: 𝑎
𝑅
(1 − 𝑑

𝑅
) = 1. (8)

Suppose that {𝑥
𝑖
}
𝑛

𝑖=1
are the points of an 𝑛-cycle of map

𝑓. The symbolic representation of such a cycle is 𝜎 =

𝑠
1
𝑠
2
⋅ ⋅ ⋅ 𝑠
𝑛
, obtained associating to each point 𝑥

𝑖
the symbol

𝑠
𝑖
∈ {𝐿,𝑀, 𝑅} depending on the partition 𝐼

𝐿
, 𝐼
𝑀
, or 𝐼
𝑅
which

the point 𝑥
𝑖
belongs to. In the following, to denote an 𝑛-

cycle we use its symbolic representation. The region in the
parameter space related to the existence and stability of a
cycle with symbolic sequence 𝜎 is denoted by 𝑃

𝜎
and called

periodicity region. Clearly, the boundaries of a periodicity
region can be related either to the stability loss of the cycle
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Figure 3: 2D bifurcation diagram of the map 𝑓 in the (𝑎
𝐿
, 𝑎
𝑅
)-parameter plane in (a), at 𝑑

𝐿
= 0.4, 𝑑

𝑅
= 0.8, and an enlargement of the

indicated window in (b). The color bar indicates the correspondence of a color and the period of the related cycle.

due to its eigenvalue crossing ±1 (recall that for a piecewise
linear map such bifurcations are degenerate, see [8]) or to
the appearance/disappearance of the cycle due to a border
collision bifurcation (see [9]). We recall that if some point of
a cycle collides with a border point and neither the period
nor the stability of the cycle changes after the collision, we say
that this cycle undergoes a persistence border collision, while
a border collision bifurcation (BCB) occurs when a qualitative
change in the dynamics is observed after the collision.

As noticed in [15], the overall bifurcation structure of the
parameter space for a generic 1D bimodal piecewise linear
map is characterized by several substructures among which
we recall the skew tent map structure, the period adding
structure, and a particular one called fin structure (due to the
shape of the periodicity regions, as it will be clear below).The
simplest one is the skew tent map structure associated with
absorbing intervals involving only two adjacent partitions,
so that on these absorbing intervals the map is reduced
to a skew tent map. However, as already mentioned, by
definition for our map 𝑓 such a possibility is excluded. That
is, the parameter space of 𝑓 does not include the skew tent
map structure. The period adding structure is associated with
periodicity regions related to attracting cycles whose points
belong to the outermost partitions only. Such periodicity
regions are ordered according to the Farey summation rule
applied to the rotation numbers of the related cycles. This
bifurcation structure is observed for our map 𝑓 and we
describe it in detail in Section 3.3.The fin structurewhich also
reveals itself in the parameter space of map𝑓 (See Section 3.3

for a deeper analysis) is closely related to the period adding
structure being formed by the periodicity regions contiguous
to the regions of the period adding structure and related to
attracting cycles with just one point belonging to the middle
partition and all the other points belonging to the outermost
partitions.

3.1. Two-Dimensional Bifurcation Diagrams. We first present
a few 2D bifurcation diagrams in various parameter planes
to illustrate the overall bifurcation structure of the parameter
space of map 𝑓. In particular, Figure 3 shows such a diagram
and its enlargement in the (𝑎

𝐿
, 𝑎
𝑅
)-parameter plane for 𝑑

𝐿
=

0.4, 𝑑
𝑅
= 0.8, 0 < 𝑎

𝐿
< 1/𝑑

𝐿
= 2.5, and 0 < 𝑎

𝑅
< 1/(1 −

𝑑
𝑅
) = 5. Here different colors are related to attracting cycles

of different periods 𝑛 ≤ 30, where the correspondence of a
color and the period is indicated in the color bar; white region
corresponds either to chaotic attractors or to cycles of higher
periodicity. The gray region corresponds to 𝑎

𝐿
> 1, 𝑎

𝑅
> 1,

so that all the slopes of 𝑓 are larger than 1 in modulus; thus,
attracting cycles cannot exist, and it is associated with chaotic
attractors only (cyclic chaotic intervals).

The choice of the parameters 𝑎
𝐿
and 𝑎

𝑅
to be varied

for fixed values of 𝑑
𝐿
and 𝑑

𝑅
, as in Figure 3, is not optimal

to illustrate the bifurcation structures typical for piecewise
linear bimodal maps. To this purpose it is better to fix values
for 𝑎
𝐿
and 𝑎

𝑅
and vary 𝑑

𝐿
and 𝑑

𝑅
, as it is shown in Figures

4 and 5. In these figures, the characteristic shapes of the
periodicity regions belonging to the period adding structure
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Figure 4: 2D bifurcation diagram of 𝑓 in the (𝑑
𝐿
, 𝑑
𝑅
)-parameter plane for 𝑎

𝐿
= 0.5, 𝑎

𝑅
= 1.01 in (a), and 𝑎

𝐿
= 0.6, 𝑎

𝑅
= 1.1 in (b). The small

red region in (b) (see left bottom), defined by 𝑑
𝐿
< 𝑑
𝑅
< 1 − 1/𝑎

𝑅
, is related to divergent orbits and not involved in the economic model.

are visible. Such regions have one side on the straight line𝑑
𝐿
=

𝑑
𝑅
and also are observable regions which are contiguous (or

attached) to the regions of the period adding structure and are
those constituting the “fin structure.” A third example in the
(𝑑
𝐿
, 𝑑
𝑅
)-parameter plane is shown in Figure 5 at 𝑎

𝐿
= 0.7 and

𝑎
𝑅
= 0.8 fixed.Wewill see how to get the analytic equations of

the BCB curves bounding the periodicity regions evidenced
in the figures.

3.2. Period Adding Structure. Let us briefly recall the main
elements of the period adding structure. As already men-
tioned, the periodicity regions constituting this structure are
related to attracting 𝑛-cycles, 𝑛 ≥ 2, whose points only belong
to the partitions 𝐼

𝐿
and 𝐼
𝑅
; that is, their symbolic sequences

does not include the symbol𝑀.
Following [16] all the cycles associated with the period

adding structure are grouped into families according to com-
plexity levels. The complexity level one includes two families,
denoted by Σ

1,1
and Σ

2,1
, to which the so-called basic cycles

belong:

Σ
1,1

= {𝐿𝑅
𝑛
1
}
∞

𝑛
1
=1
, Σ

2,1
= {𝑅𝐿

𝑛
1
}
∞

𝑛
1
=1
. (9)

Note that the “central” cycle 𝐿𝑅 ≡ 𝑅𝐿 belongs to both
families. To get the symbolic sequences of the cycles of
families of complexity level two we apply to the families Σ

1,1

and Σ
2,1

the following symbolic replacements:

𝜅
𝐿

𝑚
:= {

𝐿 → 𝐿𝑅
𝑚

𝑅 → 𝑅𝐿𝑅
𝑚
,

𝜅
𝑅

𝑚
:= {

𝐿 → 𝐿𝑅𝐿
𝑚

𝑅 → 𝑅𝐿
𝑚
.

(10)

This method is based on the map replacement technique (see
[19, 20]). Namely, at first we substitute in Σ

1,1
each symbol 𝐿

by 𝐿𝑅𝑚 and each symbol 𝑅 by 𝑅𝐿𝑅𝑚 (replacement 𝜅𝐿
𝑚
), and

then we substitute in Σ
1,1

each symbol 𝐿 by 𝐿𝑅𝐿𝑚 and each
symbol 𝑅 by 𝑅𝐿𝑚 (replacement 𝜅𝑅

𝑚
). Then the index 𝑚 is set

𝑚 = 𝑛
2
in order to write the two families of complexity level

two, respectively, as follows:

Σ
1,2

= {𝐿𝑅
𝑛
2
(𝑅𝐿𝑅
𝑛
2
)
𝑛
1

}

∞

𝑛
1
,𝑛
2
=1
,

Σ
2,2

= {𝐿𝑅𝐿
𝑛
2
(𝑅𝐿
𝑛
2
)
𝑛
1

}

∞

𝑛
1
,𝑛
2
=1
.

(11)

We notice that the replacement technique is here used to
detect the symbolic representation of the existing cycles.
However, the same technique is used also to get the equations
of the BCB curves of cycles of complexity level higher than
one, starting from the equations of those of complexity level
one.

Similarly, applying the replacements 𝜅𝐿
𝑚
and 𝜅𝑅
𝑚
to Σ
2,1

we
get the symbolic sequences of two more families:

Σ
3,2

= {𝑅𝐿𝑅
𝑛
2
(𝐿𝑅
𝑛
2
)
𝑛
1

}

∞

𝑛
1
,𝑛
2
=1
,

Σ
4,2

= {𝑅𝐿
𝑛
2
(𝐿𝑅𝐿
𝑛
2
)
𝑛
1

}

∞

𝑛
1
,𝑛
2
=1
.

(12)

Note that the central cycle 𝐿𝑅𝑅𝐿𝑅 ≡ 𝑅𝐿𝑅𝐿𝑅 belongs to
both families Σ

1,2
and Σ

3,2
, with 𝑛

1
= 𝑛
2
= 1, while the

central cycle 𝐿𝑅𝐿𝑅𝐿 ≡ 𝑅𝐿𝐿𝑅𝐿 belongs to both families Σ
2,2

and Σ
4,2
, with 𝑛

1
= 𝑛
2
= 1. All the other cycles in these
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Figure 5: 2D bifurcation diagram of 𝑓 in the (𝑑
𝐿
, 𝑑
𝑅
)-parameter

plane for 𝑎
𝐿
= 0.7, 𝑎

𝑅
= 0.8.

families are distinct. In short this procedure can be written as
Σ
1,2

= 𝜅
𝐿

𝑛
2

(Σ
1,1
), Σ
2,2

= 𝜅
𝑅

𝑛
2

(Σ
1,1
), Σ
3,2

= 𝜅
𝐿

𝑛
2

(Σ
2,1
), and Σ

4,2
=

𝜅
𝑅

𝑛
2

(Σ
2,1
). So, we get 4 families of complexity level two (one

moreway to construct the families of the complexity level two
consists in consecutive application of the concatenation rule
to the “neighbour” symbolic sequences of the first complexity
level. Symbolic sequences obtained in such a way are shift
invariant to those obtained by symbolic replacements (10)
(see [19, 20])). Further, applying the replacements (10) with
𝑚 = 𝑛

3
to the families of complexity level two we obtain 23

families Σ
𝑗,3
, 𝑗 = 1, . . . , 2

3, of complexity level three, and so
on. In this way all the symbolic sequences of cycles associated
with the period adding structure are obtained.

Now let us turn to the boundaries of the periodicity
regions (i.e., the BCB curves) related to the cycles of map
𝑓 associated with the period adding structure. They can be
confined by the boundaries related to their existence. A cycle
disappears when are crossed these boundaries, which are
related to the BCBs occurring when a point of the cycle
close to a border point, 𝑥 = 𝑑

𝐿
or 𝑥 = 𝑑

𝑅
, collides with

it in a saddle-node border collision bifurcation (merging
with a companion unstable cycle). For the boundaries of a
periodicity region associated with the stability of the cycle,
first note that an 𝑛-cycle whose symbolic sequence 𝜎 does not
include the symbol𝑀 has multiplier 𝜆

𝜎
= 𝑎
𝑘

𝐿
𝑎
𝑛−𝑘

𝑅
> 0, where

𝑘 and 𝑛 − 𝑘 are the numbers of symbols 𝐿 and 𝑅, respectively,
in 𝜎. Thus, a degenerate flip bifurcation (DFB for short),
related to 𝜆

𝜎
= −1, cannot occur for such a cycle, so that

the periodicity regions of the period adding structure cannot
have DFB boundaries. A degenerate +1 bifurcation (DB1 for

short) associated with 𝜆
𝜎
= 1 occurs if 𝑎𝑘

𝐿
𝑎
𝑛−𝑘

𝑅
= 1. Obviously,

this condition defines a boundary of the periodicity region
only if the related cycle exists.

To illustrate how the periodicity regions of the period
adding structure are ordered let us consider first the limit
case 𝑑

𝐿
= 𝑑
𝑅
≡ 𝑑 at which the considered map becomes

discontinuous, say ̃
𝑓,

𝑥 →
̃
𝑓 (𝑥) = {

̃
𝑓
𝐿
(𝑥) = 𝑎

𝐿
𝑥 + 1 − 𝑎

𝐿
𝑑 if 0 ≤ 𝑥 < 𝑑,

̃
𝑓
𝑅
(𝑥) = 𝑎

𝑅
𝑥 − 𝑎
𝑅
𝑑 if 𝑑 < 𝑥 ≤ 1.

(13)

In Figures 4 and 5, when the parameters belong to the straight
line 𝑑

𝐿
= 𝑑
𝑅
then the continuous bimodal map 𝑓 reduces to

the discontinuous one, ̃𝑓.
The dynamics of 1D discontinuous piecewise monotone

maps have been studied by many researchers (see, e.g., [17,
18, 28, 29]). In particular, the piecewise linear case has been
recently reconsidered (after [16]) in [19, 20]. In the cited
references, it is described as the period adding structure
which is characteristic for piecewise increasing maps, when
invertible on the absorbing interval. It is easy to check that
map ̃

𝑓 is invertible on the absorbing interval 𝐼 if 𝑓
𝐿
(𝑓(𝑑)) >

𝑓
𝑅
(𝑓(𝑑)), that is, if 𝑓

𝐿
(0) > 𝑓

𝑅
(1), in which case ̃

𝑓 is called
gap map. It is noninvertible if 𝑓

𝐿
(0) < 𝑓

𝑅
(1) being also called

overlappingmap, while for𝑓
𝐿
(0) = 𝑓

𝑅
(1)map ̃

𝑓 is called circle
map. The boundary defined by 𝑓

𝐿
(0) = 𝑓

𝑅
(1), that holds for

𝜅 = {(𝑎
𝐿
, 𝑎
𝑅
, 𝑑) : 𝑎

𝐿
> 0, 𝑎

𝑅
> 0,

0 < 𝑑 < 1, 1 − 𝑑𝑎
𝐿
= 𝑎
𝑅
(1 − 𝑑)} ,

(14)

is related to the changes of invertibility of ̃
𝑓. In Figure 6

we show the 2D bifurcation diagram of ̃
𝑓 in the (𝑑, 𝑎

𝑅
)-

parameter plane for 𝑎
𝐿
= 0.5, and the curve 𝜅 is there plotted.

Note that the dynamics along the straight line defined by
𝑎
𝑅
= 1.1 is related to the dynamics along the straight line

𝑑
𝐿
= 𝑑
𝑅
in Figure 4(a). Below the curve 𝜅 one can observe

the period adding structure. Above the curve 𝜑
𝑅
given in (8)

a generic trajectory of ̃𝑓 diverges, while in between 𝜑
𝑅
and 𝜅

the existing attractors of the map are chaotic intervals.
The period adding structure in map ̃

𝑓 is illustrated by the
1Dbifurcation diagram in Figure 7 corresponding to the cross
section along the horizontal line with an arrow indicated in
Figure 6. Note that for 𝜑

𝑅
< 𝑑 < 𝜅, where 𝜑

𝑅
≈ 0.167, 𝜅 ≈

0.286, the attractor is chaotic. It can be also clearly seen that
the boundaries of the periodicity regions, for example, of the
2-cycle, are related to the collision of the points of the cycle
with the border point 𝑥 = 𝑑.

In Appendix A we give the analytic equations of the
boundaries of the periodicity regions of the period adding
structure for map 𝑓, which holds also for map ̃

𝑓 substituting
𝑑
𝐿
= 𝑑
𝑅
= 𝑑. The periodicity regions of complexity level one

and two of map 𝑓, corresponding to the bifurcation diagram
presented in Figure 5, are shown in Figure 8 by light gray and
dark gray regions, respectively. In that figure, the boundaries
of the gray regions are plotted using the formulas given in
Appendix A. For example, after simplifications we get that
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Figure 6: 2D bifurcation diagram ofmap ̃
𝑓 in the (𝑑, 𝑎
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Figure 7: 1D bifurcation diagram of map ̃
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𝐿
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= 1.2,

and 𝑑 ∈ (𝜑
𝑅
, 1), where 𝜑

𝑅
≈ 0.167. The related parameter path is

indicated in Figure 6 by the horizontal line with an arrow.

periodicity region 𝑃
𝑅𝐿

related to the attracting 2-cycle 𝑅𝐿 of
map 𝑓 is defined as follows:

𝑃
𝑅𝐿

= {𝑝 ∈ 𝑃 : 1 −

𝑑
𝐿

𝑎
𝑅

< 𝑑
𝑅
< 1 − 𝑎

𝐿
𝑑
𝐿
} , (15)

and the equations 𝑑
𝑅
= 1 − (𝑑

𝐿
/𝑎
𝑅
), 𝑑
𝑅
= 1 − 𝑎

𝐿
𝑑
𝐿
define

the two BCB curves giving the boundaries of 𝑃
𝑅𝐿
. For fixed

𝑑
𝐿
= 0.4, 𝑑

𝑅
= 0.8, as in Figure 3, the boundaries of 𝑃

𝑅𝐿

are just segments of the vertical and horizontal straight lines
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Figure 8: Periodicity regions of the cycles 𝐿𝑅𝑛 and 𝑅𝐿
𝑛, 𝑛 =

1, . . . , 11, of complexity level one are shown in light gray. A few
periodicity regions of complexity level two are shown in dark gray.
Here 𝑎

𝐿
= 0.7, 𝑎

𝑅
= 0.8 as in Figure 5.

defined by 𝑎
𝐿
= (1 − 𝑑

𝑅
)/𝑑
𝐿
= 0.5 and 𝑎

𝑅
= 𝑑
𝐿
/(1 − 𝑑

𝑅
) = 2,

respectively.

3.3. Fin Structure. As already mentioned, the fin structure
in the parameter space of a 1D bimodal piecewise linear
map consists of periodicity regions which are attached to
the regions of the period adding structure described in the
previous section. For example, one can clearly see in Figure 5
two 2 ⋅ 2-periodicity regions and two 2 ⋅ 3-periodicity regions
attached on both sides to the period-2 region 𝑃

𝑅𝐿
, as well as

3 ⋅ 2-, 3 ⋅ 3- and 3 ⋅ 4-periodicity regions attached on both
sides to the period-3 regions 𝑃

𝑅𝐿
2 and 𝑃

𝐿𝑅
2 , and so on. These

regions belong to the fin structure which is formed by the
periodicity regions called 𝑛⋅𝑘-fins, 𝑘 ≥ 1, related to attracting
cycles having only one point in the interval 𝐼

𝑀
and all the

other points are in 𝐼
𝐿
and 𝐼
𝑅
. The 𝑛-periodicity region of the

period adding structure to which a fin is attached is called
trunk region, and its fins have the same complexity level as the
complexity level of the trunk. In fact, in Figure 5, two 2⋅1-fins
of complexity level one of the trunk regions 𝑃

𝑅𝐿
can also be

seen.
A fin cycle can appear if the parameter point crosses one

of two BCB boundaries of a trunk, due to which one periodic
point enters the partition 𝐼

𝑀
. As explained in [15], for an 𝑛 ⋅

𝑘-cycle whose periodicity region has the common boundary
with the region 𝑃

𝐿𝑅
𝑛−1 , the symbolic sequences of the cycles

in the fins are (𝐿𝑅𝑛−1)𝑘−1𝑀𝑅
𝑛−1, 𝑘 = 1, 2, . . ., on one side of

the region 𝑃
𝐿𝑅
𝑛−1 , and (𝐿𝑅𝑛−1)𝑘−1𝐿𝑅𝑛−2𝑀 on the other side.

Interchanging 𝐿 and𝑅 in these sequences we get the symbolic
sequences of the cycles related to 𝑛 ⋅ 𝑘-fins whose trunks are
𝑃
𝑅𝐿
𝑛−1 regions. The number of existing fins depends on the

parameters and, in fact, some trunk regions may have fins on
one side only, or have no fins at all, as can be seen, for example,
in Figure 4(b).

As for the boundaries of a fin, it can be shown that each
𝑛⋅𝑘-fin region for 𝑘 ≥ 2, 𝑛 ≥ 2, related to a cyclewith symbolic
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sequence 𝜎, has at most four boundaries, among which one
is the common BCB boundary with the related trunk region,
one boundary is related toDFBof the cycle (whose eigenvalue
is 𝜆
𝜎
= 𝑎
𝑚

𝐿
𝑎
𝑛𝑘−𝑚−1

𝑅
/(𝑑
𝐿
− 𝑑
𝑅
) < 0, where 𝑚 is the number

of symbols 𝐿 in 𝜎), and two other boundaries are related to
two more BCBs of the cycle. Each 𝑛 ⋅ 1-fin region has only
three boundaries, namely, one DFB boundary and two BCB
boundaries. The DFB boundary is defined by the condition
𝜆
𝜎
= −1, while the BCB boundaries are obtained using the

skew tent map as border collision normal form.
InAppendix B, some basic formulas related to the bound-

aries of a fin region are given, while below, as an example, we
describe the 2 ⋅ 1- and 2 ⋅ 2-fins of the region 𝑃

𝑅𝐿
shown in

Figure 9.There are two 2 ⋅ 1-fins, 𝑃
𝑀𝑅

and 𝑃
𝐿𝑀

, contiguous to
the trunk regions 𝑃

𝑅𝐿
. As we mentioned above, the 2 ⋅ 1-fins

are exceptional being confined by three boundaries instead
of four. In particular, the fin 𝑃

𝑀𝑅
is confined by the BCB and

DFB boundaries

𝐵𝐶
𝐿𝑅

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 1 −

𝑑
𝐿

𝑎
𝑅

} ,

𝐷𝐹
𝑀𝑅

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 𝑑
𝐿
+ 𝑎
𝑅
} ,

(16)

respectively, and the boundary defined by 𝑑
𝐿
= 0.The fin𝑃

𝐿𝑀

is confined by the BCB and DFB boundaries

𝐵𝐶
𝑅𝐿

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 1 − 𝑎

𝐿
𝑑
𝐿
} ,

𝐷𝐹
𝐿𝑀

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 𝑑
𝐿
+ 𝑎
𝐿
} ,

(17)

respectively, and the boundary 𝑑
𝑅
= 1.

Next, let us consider the 2 ⋅ 2-fins, 𝑃
𝐿𝑅𝑀𝑅

and 𝑃
𝐿𝑅𝐿𝑀

,
which are also contiguous to the trunk regions 𝑃

𝑅𝐿
. Applying

the formulas given in Appendix B we get that the boundaries
of the fin 𝑃

𝐿𝑅𝑀𝑅
are given by the BCB curves satisfying the

equations given below:

𝐵𝐶
𝐿𝑅

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 1 −

𝑑
𝐿

𝑎
𝑅

} ,

𝐷𝐹
𝐿𝑅𝑀𝑅

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 𝑑
𝐿
+ 𝑎
2

𝑅
𝑎
𝐿
} ,

𝐵𝐶
1

𝐿𝑅𝑀𝑅
= {𝑝 ∈ 𝑃 : 𝑑

𝑅
= 𝑑
𝐿
+ 𝑎
𝑅
} ,

𝐵𝐶
2

𝐿𝑅𝑀𝑅
= {𝑝 ∈ 𝑃 : 𝑑

𝐿
=

𝑑
2

𝑅
− (𝑎
𝑅
+ 1) 𝑑

𝑅
+ 𝑎
𝑅

𝑎
𝑅
𝑎
𝐿
+ 𝑑
𝑅

} .

(18)

Note that 𝐵𝐶1
𝐿𝑅𝑀𝑅

= 𝐷𝐹
𝑀𝑅

; that is, the DFB of the cycle
𝐿𝑀 occurs simultaneously with the BCB of the cycle 𝐿𝑅𝑀𝑅

(see Figure 9). The fin 𝑃
𝐿𝑅𝐿𝑀

is confined by the following
boundaries:

𝐵𝐶
𝑅𝐿

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 1 − 𝑎

𝐿
𝑑
𝐿
} ,

𝐷𝐹
𝐿𝑅𝐿𝑀

= {𝑝 ∈ 𝑃 : 𝑑
𝑅
= 𝑑
𝐿
+ 𝑎
𝑅
𝑎
2

𝐿
} ,

𝐵𝐶
1

𝐿𝑅𝐿𝑀
= {𝑝 ∈ 𝑃 : 𝑑

𝑅
= 𝑑
𝐿
+ 𝑎
𝐿
} ,

𝐵𝐶
2

𝐿𝑅𝐿𝑀
= {𝑝 ∈ 𝑃 : 𝑑

𝑅
=

𝑑
2

𝐿
+ 𝑎
𝐿
(𝑑
𝐿
− 𝑎
𝑅
) − 1

𝑑
𝐿
− 1 − 𝑎

𝐿
𝑎
𝑅

} ,

(19)
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Figure 9:The 2 ⋅1-fins 𝑃
𝑀𝑅

and 𝑃
𝐿𝑀

, and 2 ⋅2-fins 𝑃
𝐿𝑅𝑀𝑅

and 𝑃
𝐿𝑅𝐿𝑀

,
contiguous to the trunk regions 𝑃

𝐿𝑅
. Here 𝑎

𝐿
= 0.7, 𝑎

𝑅
= 0.8 as in

Figure 5.

and, as already remarked in the previous case, here also we
have 𝐵𝐶1

𝐿𝑅𝐿𝑀
= 𝐷𝐹
𝐿𝑀

(see Figure 9).
We note, from the point of view of our specific economic

application, the presence of fin cycles is important because
it makes it possible to reach intermediate levels of income
(those belonging to the middle branch) that are excluded
in period adding cycles. Moreover, the fin structure makes
the bifurcation diagram even more complicated and as a
consequence it becomes quite hard to foresee what would
happen when a parameter of the map varies.

4. Conclusions

In this work we have considered a pioneering model by
Day and Shafer [3] which describes a business cycle by
using a bimodal piecewise linear map. Our investigation
shows how rich are the dynamic behaviors of the system,
going from attracting cycles of any period to robust chaotic
intervals, depending on the parameters values. By using
recently developed techniques, we have studied a typical
bifurcation diagram and obtained analytically the border
collision bifurcation curves that separate different periodicity
regions and degenerate flip bifurcation curves.The transition
to chaos was also studied.

Complex dynamics are usually the consequence of the
introduction of some nonlinearity in a system. Moreover,
specially in economics, it is quite natural to have a non-
linearity coming simply by some constraint. That is, an
economicmodel is often characterized by different functional
definitions depending on some threshold reached by the
dynamic variables (income, prices, etc.). In this way, the
models are described by piecewise smooth systems (in place
of smooth ones), whose theoretical results are still under
study among scholars in dynamical systems. Thus, results
similar to those of our model can be obtained in the study
of other continuous piecewise linear systems.
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Appendices

A.

Consider a generic family of 1D continuous piecewise linear
bimodal maps 𝑔 : R → R defined as

𝑔 : 𝑥 → 𝑔 (𝑥)

=

{
{

{
{

{

𝑔
𝐿
(𝑥) = 𝑎

𝐿
𝑥 + 𝜇
𝐿

if 𝑥 < 𝑑
𝐿
,

𝑔
𝑀
(𝑥) = 𝑎

𝑀
𝑥 + 𝜇
𝑀

if 𝑑
𝐿
≤ 𝑥 ≤ 𝑑

𝑅
,

𝑔
𝑅
(𝑥) = 𝑎

𝑅
𝑥 + 𝜇
𝑅

if 𝑥 > 𝑑
𝑅
,

(A.1)

where 𝑎
𝐿
> 0, 𝑎

𝑅
> 0, 𝑎

𝑀
< 0, 𝑑

𝐿
< 𝑑
𝑅
.

To describe the period adding structure observed in the
parameter space of map 𝑔 consider first the basic cycles 𝐿𝑅𝑛1
and𝑅𝐿𝑛1 belonging to the families Σ

1,1
and Σ

2,1
of complexity

level one defined in (9). As stated in [15], the periodicity
regions 𝑃

𝐿𝑅
𝑛1 and 𝑃𝑅𝐿𝑛1 of map 𝑔 are defined as

𝑃
𝐿𝑅
𝑛1 = {𝑝 : Ψ1,1

(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝑅
, 𝑛
1
) < 𝜇
𝐿

< Φ
1,1
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝐿
, 𝑛
1
)} ,

(A.2)

𝑃
𝑅𝐿
𝑛1 = {𝑝 : Ψ1,1

(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝐿
, 𝑑
𝐿
, 𝑛
1
) > 𝜇
𝑅

> Φ
1,1
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝐿
, 𝑑
𝑅
, 𝑛
1
)} ,

(A.3)

where

Φ
1,1
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇, 𝑑, 𝑛

1
) = −𝜓 (𝑎

𝑅
, 𝑛
1
) 𝜇

+ 𝜑 (𝑎
𝑅
, 𝑎
𝐿
, 𝑛
1
) 𝑑,

Ψ
1,1
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇, 𝑑, 𝑛

1
) = − (𝑎

𝐿
+ 𝜓 (𝑎

𝑅
, 𝑛
1
− 1)) 𝜇

+ 𝑎
𝑅
𝜑 (𝑎
𝑅
, 𝑎
𝐿
, 𝑛
1
) 𝑑,

(A.4)

with

𝜑 (𝑎, 𝑏, 𝑛) =

1 − 𝑎
𝑛
𝑏

𝑎
𝑛

, 𝜓 (𝑎, 𝑛) =

1 − 𝑎
𝑛

(1 − 𝑎) 𝑎
𝑛
. (A.5)

These formulas are valid for the map 𝑓 given in (2) substitut-
ing

𝜇
𝐿
= 1 − 𝑎

𝐿
𝑑
𝐿
, 𝜇

𝑅
= −𝑎
𝑅
𝑑
𝑅
. (A.6)

The periodicity regions related to cycles belonging to the
familiesΣ

1,2
andΣ

2,2
of complexity level two given in (11) have

the form

𝑃
𝜅
𝐿

𝑛2
(𝐿𝑅
𝑛1 )

= {𝑝 : Ψ
1,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝑅
, 𝑛
1
, 𝑛
2
) < 𝜇
𝐿

< Φ
1,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝐿
, 𝑛
1
, 𝑛
2
)} ,

(A.7)

𝑃
𝜅
𝑅

𝑛2
(𝐿𝑅
𝑛1 )

= {𝑝 : Ψ
2,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝑅
, 𝑛
1
, 𝑛
2
) < 𝜇
𝐿

< Φ
2,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝐿
, 𝑛
1
, 𝑛
2
)} ,

(A.8)

respectively, where 𝜅𝐿
𝑛
2

and 𝜅𝑅
𝑛
2

are defined in (10), and Φ
1,2
,

Ψ
1,2
, Φ
2,2
, and Ψ

2,2
are defined as

Φ
1,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇, 𝑑, 𝑛

1
, 𝑛
2
)

= −𝜓 (𝑎
𝑅
, 𝑛
2
) 𝜇

− (𝑎
𝐿
𝑎
𝑛
2

𝑅
𝜓 (𝑎
𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑛
1
) 𝜇 − 𝜑 (𝑎

𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑎
𝐿
𝑎
𝑛
2

𝑅
, 𝑛
1
) 𝑑)

× (𝑎
𝑛
2

𝑅
(1 + 𝜓 (𝑎

𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑛
1
)))

−1

,

Ψ
1,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇, 𝑑, 𝑛

1
, 𝑛
2
)

= − (𝑎
𝐿
𝑎
𝑛
2

𝑅
(𝑎
𝐿
𝑎
𝑛
2

𝑅
+ 𝜓 (𝑎

𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑛
1
− 1)) 𝜇)

× (𝑎
𝑛
2

𝑅
(1 + 𝑎

𝐿
𝑎
𝑛
2

𝑅
+ 𝜓 (𝑎

𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑛
1
) − 1))

−1

− 𝜓 (𝑎
𝑅
, 𝑛
2
) 𝜇

+

𝑎
𝐿
𝑎
𝑛
2
+1

𝑅
𝜑 (𝑎
𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑎
𝐿
𝑎
𝑛
2

𝑅
, 𝑛
1
) 𝑑

𝑎
𝑛
2

𝑅
(1 + 𝑎

𝐿
𝑎
𝑛
2

𝑅
+ 𝜓 (𝑎

𝐿
𝑎
𝑛
2
+1

𝑅
, 𝑛
1
) − 1)

,

Φ
2,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇, 𝑑, 𝑛

1
, 𝑛
2
)

=

𝜑 (𝑎
𝑛
2

𝐿
𝑎
𝑅
, 𝑎
𝑛
2
+1

𝐿
𝑎
𝑅
, 𝑛
1
) 𝑑 − 𝑎

𝑛
2

𝐿
(1 + 𝜓 (𝑎

𝑛
2

𝐿
𝑎
𝑅
, 𝑛
1
)) 𝜇

𝑎
𝑛
2

𝐿
(𝑎
𝑅
+ 𝜓 (𝑎

𝐿
, 𝑛
2
) (1 + 𝜓 (𝑎

𝑛
2

𝐿
𝑎
𝑅
, 𝑛
1
)))

,

Ψ
2,2
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇, 𝑑, 𝑛

1
, 𝑛
2
)

= (𝑎
𝑅
𝜑 (𝑎
𝑛
2

𝐿
𝑎
𝑅
, 𝑎
𝑛
2
+1

𝐿
𝑎
𝑅
, 𝑛
1
) 𝑑

− (1 + 𝑎
𝑛
2
+1

𝐿
𝑎
𝑅
+ 𝜓 (𝑎

𝑛
2

𝐿
𝑎
𝑅
, 𝑛
1
− 1)) 𝜇)

× (𝑎
𝑅
+ 𝜓 (𝑎

𝐿
, 𝑛
2
) (1 + 𝑎

𝑛
2
+1

𝐿
𝑎
𝑅
+ 𝜓 (𝑎

𝑛
2

𝐿
𝑎
𝑅
, 𝑛
1
− 1)))

−1

.

(A.9)

To get the periodicity regions of the cycles belonging to
the families Σ

3,2
and Σ

4,2
(12) one has to interchange the

indices 𝐿 and 𝑅, as well as to change the inequality signs to
the opposite ones in (A.8) and (A.7), respectively.

The periodicity regions of a complexity level 𝑘 are
obtained from the periodicity regions of the level 𝑘 − 1 by
a recursive algorithm described in detail in [15].

B.

Let us recall the analytic representation of the boundaries of
𝑛 ⋅ 𝑘-fins of map 𝑔 given in (A.1), which have the common
boundary with the trunk region 𝑃

𝐿𝑅
𝑛−1 . Consider first the fins

𝑃
𝜎
contiguous to𝑃

𝐿𝑅
𝑛−1 , corresponding to the attracting cycles

𝜎 = (𝐿𝑅
𝑛−1

)
𝑘−1

𝑀𝑅
𝑛−1, 𝑛 ≥ 2, 𝑘 ≥ 2. It is proved in [15] that
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any fin 𝑃
𝜎
, if it exists (as a fin region may be an empty set), is

confined by the boundaries defined as follows:

𝐵𝐶
𝐿𝑅
𝑛−1

= {𝑝 ∈ 𝑃 : 𝜇
𝐿
= −

1 − 𝑎
𝑛−1

𝑅

(1 − 𝑎
𝑅
) 𝑎
𝑛−1

𝑅

𝜇
𝑅
+

1 − 𝑎
𝑛−1

𝑅
𝑎
𝐿

𝑎
𝑛−1

𝑅

𝑑
𝐿
} ,

𝐷𝐹
𝜎
= {𝑝 ∈ 𝑃 : 𝑎

𝑀
𝑎
𝑘(𝑛−1)

𝑅
𝑎
𝑘−1

𝐿
= −1} ,

𝐵𝐶
1

𝜎
=

{
{

{
{

{

𝑝 ∈ 𝑃 : 𝑎
𝑀
𝑎
𝑛−1

𝑅
=

𝑎
𝐿
𝑎
𝑛−1

𝑅
((𝑎
𝐿
𝑎
𝑛−1

𝑅
)

−𝑘+1

− 1)

𝑎
𝐿
𝑎
𝑛−1

𝑅
− 1

}
}

}
}

}

,

𝐵𝐶
2

𝜎
=

{

{

{

𝑝 ∈ 𝑃 : 𝑎
𝑛−1

𝑅
𝑎
𝑀

(𝑎
𝑛−1

𝑅
𝑎
𝐿
)

𝑘−1

− 1

𝑎
𝑛−1

𝑅
𝑎
𝐿
− 1

× ((𝑎
𝑛−2

𝑅
𝑎
𝐿
+

𝑎
𝑛−2

𝑅
− 1

𝑎
𝑅
− 1

)𝜇
𝑅
+ 𝑎
𝑛−2

𝑅
𝜇
𝐿
)

+ 𝑎
(𝑛−1)𝑘

𝑅
𝑎
𝑀
𝑎
(𝑘−1)

𝐿
𝑑
𝑅

+(𝑎
𝑛−2

𝑅
𝑎
𝑀
+

𝑎
𝑛−2

𝑅
− 1

𝑎
𝑅
− 1

)𝜇
𝑅
+ 𝑎
𝑛−2

𝑅
𝜇
𝑀
= 𝑑
𝑅

}

}

}

,

(B.1)

where the BCB boundary 𝐵𝐶
𝐿𝑅
𝑛−1 which corresponds to 𝜇

𝐿
=

Φ
1,1
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝐿
, 𝑛 − 1) given in (A.2) is common with the

trunk region 𝑃
𝐿𝑅
𝑛−1 . The boundary 𝐷𝐹

𝜎
corresponds to the

degenerate flip bifurcation, and 𝐵𝐶1
𝜎
and 𝐵𝐶2

𝜎
are related to

two more BCBs of 𝜎.
The 𝑛 ⋅ 𝑘-fin 𝑃

𝜌
attached to the trunk region 𝑃

𝐿𝑅
𝑛−1 on the

other side and related to the cycle 𝜌 = (𝐿𝑅
𝑛−1

)
𝑘−1

𝐿𝑅
𝑛−2

𝑀,
𝑘 ≥ 2, is confined by the boundaries defined as follows:

𝐵𝐶
𝑅𝐿𝑅
𝑛−2 = {𝑝 ∈ 𝑃 : 𝜇

𝐿
= −(𝑎

𝐿
+

1 − 𝑎
𝑛−2

𝑅

(1 − 𝑎
𝑅
) 𝑎
𝑛−2

𝑅

)𝜇
𝑅

+ 𝑎
𝑅

1 − 𝑎
𝑛−1

𝑅
𝑎
𝐿

𝑎
𝑛−1

𝑅

𝑑
𝑅
} ,

𝐷𝐹
𝜌
= {𝑝 ∈ 𝑃 : 𝑎

𝑀
𝑎
𝑘(𝑛−1)−1

𝑅
𝑎
𝑘

𝐿
= −1} ,

𝐵𝐶
1

𝜌
=

{
{

{
{

{

𝑝 ∈ 𝑃 : 𝑎
𝐿
𝑎
𝑀
𝑎
𝑛−2

𝑅
=

𝑎
𝐿
𝑎
𝑛−1

𝑅
((𝑎
𝐿
𝑎
𝑛−1

𝑅
)

−𝑘+1

− 1)

𝑎
𝐿
𝑎
𝑛−1

𝑅
− 1

}
}

}
}

}

,

𝐵𝐶
2

𝜌
=

{

{

{

𝑝 ∈ 𝑃 : 𝑎
𝑛−2

𝑅
𝑎
𝑀
𝑎
𝐿

(𝑎
𝑛−1

𝑅
𝑎
𝐿
)

𝑘−1

− 1

𝑎
𝑛−1

𝑅
𝑎
𝐿
− 1

× (

𝑎
𝑛−1

𝑅
− 1

𝑎
𝑅
− 1

𝜇
𝑅
+ 𝑎
𝑛−1

𝑅
𝜇
𝐿
) + 𝑎
(𝑛−1)𝑘−1

𝑅
𝑎
𝑀
𝑎
𝑘

𝐿
𝑑
𝐿

+

𝑎
𝑛−2

𝑅
− 1

𝑎
𝑅
− 1

𝜇
𝑅
+ 𝑎
𝑀
𝑎
𝑛−2

𝑅
𝜇
𝐿
+ 𝜇
𝑀
= 𝑑
𝐿

}

}

}

.

(B.2)
Here the boundary 𝐵𝐶

𝑅𝐿𝑅
𝑛−2 corresponds to 𝜇

𝐿
=

Ψ
1,1
(𝑎
𝐿
, 𝑎
𝑅
, 𝜇
𝑅
, 𝑑
𝑅
, 𝑛 − 1) given in (A.2).

Theboundaries of the fins contiguous to the trunk regions
𝑃
𝑅𝐿
𝑛−1 are obtained interchanging the indexes 𝐿 and 𝑅 in the

above expressions. The fin regions of the higher complexity
levels are obtained using the map replacement technique (see
[15] for details).

Applying these results to map 𝑓 given in (2), we get
that the fin region 𝑃

𝜎
, associated with the cycles 𝜎 =

(𝐿𝑅
𝑛−1

)
𝑘−1

𝑀𝑅
𝑛−1, 𝑛 ≥ 2, 𝑘 > 1, is confined by the following

boundaries:

𝐵𝐶
𝐿𝑅
𝑛−1 = {𝑝 ∈ 𝑃 : 𝑑

𝐿
= 𝑎
𝑛−1

𝑅
−

(1 − 𝑎
𝑛−1

𝑅
) 𝑑
𝑅
𝑎
𝑅

(1 − 𝑎
𝑅
)

} ,

𝐷𝐹
𝜌
= {𝑝 ∈ 𝑃 : 𝑑

𝐿
= 𝑑
𝑅
− 𝑎
𝑘(𝑛−1)

𝑅
𝑎
𝑘−1

𝐿
} ,

𝐵𝐶
1

𝜎
=

{

{

{

𝑝 ∈ 𝑃 : 𝑑
𝐿
= 𝑑
𝑅
+

𝑎
𝐿
𝑎
𝑛−1

𝑅
− 1

𝑎
𝐿
((𝑎
𝐿
𝑎
𝑛−1

𝑅
)
1−𝑘

− 1)

}

}

}

,

𝐵𝐶
2

𝜎
=

{

{

{

𝑝 ∈ 𝑃 : 𝑑
𝑅
= −𝑎
𝑛−1

𝑅

(𝑎
𝑛−1

𝑅
𝑎
𝐿
)

𝑘−1

− 1

(𝑎
𝑛−1

𝑅
𝑎
𝐿
− 1) (𝑑

𝑅
− 𝑑
𝐿
)

× (−(𝑎
𝑛−2

𝑅
𝑎
𝐿
+

𝑎
𝑛−2

𝑅
− 1

𝑎
𝑅
− 1

) 𝑎
𝑅
𝑑
𝑅

+ 𝑎
𝑛−2

𝑅
(1 − 𝑎

𝐿
𝑑
𝐿
) )

−

𝑎
(𝑛−1)𝑘

𝑅
𝑎
(𝑘−1)

𝐿
𝑑
𝑅

𝑑
𝑅
− 𝑑
𝐿

− (−

𝑎
𝑛−2

𝑅

𝑑
𝑅
− 𝑑
𝐿

+

𝑎
𝑛−2

𝑅
− 1

𝑎
𝑅
− 1

)

× 𝑎
𝑅
𝑑
𝑅
+

𝑎
𝑛−2

𝑅
𝑑
𝑅

𝑑
𝑅
− 𝑑
𝐿

}

}

}

.

(B.3)
Accordingly, the 𝑛 ⋅ 𝑘-fin 𝑃

𝜌
related to the cycle 𝜌 =

(𝐿𝑅
𝑛−1

)
𝑘−1

𝐿𝑅
𝑛−2

𝑀, 𝑘 ≥ 2, is confined by the boundaries
defined as

𝐵𝐶
𝑅𝐿𝑅
𝑛−2 ={𝑝 ∈ 𝑃 : 1 − 𝑎

𝐿
𝑑
𝐿
= (𝑎
𝐿
+

1 − 𝑎
𝑛−2

𝑅

(1 − 𝑎
𝑅
) 𝑎
𝑛−2

𝑅

)

× 𝑎
𝑅
𝑑
𝑅
+ 𝑎
𝑅

1 − 𝑎
𝑛−1

𝑅
𝑎
𝐿

𝑎
𝑛−1

𝑅

𝑑
𝑅
} ,
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𝐷𝐹
𝜌
= {𝑝 ∈ 𝑃 : 𝑑

𝐿
= 𝑑
𝑅
− 𝑎
𝑘(𝑛−1)−1

𝑅
𝑎
𝑘

𝐿
} ,

𝐵𝐶
1

𝜌
=

{

{

{

𝑝 ∈ 𝑃 : 𝑑
𝐿
= 𝑑
𝑅
+

𝑎
𝐿
𝑎
𝑛−1

𝑅
− 1

𝑎
𝑅
((𝑎
𝐿
𝑎
𝑛−1

𝑅
)
−𝑘+1

− 1)

}

}

}

,

𝐵𝐶
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𝑅
𝑎
𝐿
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𝑅
𝑎
𝐿
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𝑅
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𝐿
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𝑎
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𝑅
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𝑎
𝑅
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𝑎
𝑅
𝑑
𝑅
+ 𝑎
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𝑅
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𝐿
𝑑
𝐿
))

−

𝑎
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𝑅
𝑎
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𝐿
𝑑
𝐿

𝑑
𝑅
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𝑎
𝑛−2
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𝑎
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𝑅
𝑑
𝑅
−

𝑎
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𝑅
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𝐿
𝑑
𝐿
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𝑑
𝑅
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+

𝑑
𝑅

𝑑
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𝐿

}

}
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