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This paper addresses the global consensus of nonlinear multiagent systems with asymmetrically coupled identical agents. By
employing a Lyapunov function and graph theory, a sufficient condition is presented for the global exponential consensus of the
multiagent system. The analytical result shows that, for a weakly connected communication graph, the algebraic connectivity of a
redefined symmetricmatrix associatedwith the directed graph is used to evaluate the global consensus of themultiagent systemwith
nonlinear dynamics under the common linear consensus protocol.Thepresented condition is quite simple and easily verified, which
can be effectively used to design consensus protocols of various weighted and directed communications. A numerical simulation
is also given to show the effectiveness of the analytical result.

1. Introduction

Cooperative collective behavior in networked systems of
autonomous agents has received a great deal of attention
in the past decade. This is partially due to the growing
interest in understanding group behaviors in nature, such as
flocking and swarming, and also due to its broad applications
of multiagent systems in many areas in sensor networks
[1] and mobile robots [2], to name a few. In all cases, the
aim is to control a group of agents connected through a
communication network. Consensus problem that enables all
agents to reach an agreement on a certain value of interest is
a fundamental issue of controlling multiagent systems.

With the fundamental “nearest neighbor rule,” various
models have been introduced to study the consensus prob-
lem. In [3], Vicsek et al. proposed a simple model for
the phase transition of a group of autonomous agents and
demonstrated by simulations the headings of agents converge
to a common value. Jadbabaie et al. [4] provided a theoretical
explanation for the collective behavior observed in [3] by
using graph theory. In particular, Olfati-Saber and Murray
presented a general framework of the consensus problem for

multiagent systems with fixed or switching topologies and
established the relationship between the algebraic connectiv-
ity and the convergence for a balanced directed network [5].
Moreover, some more relaxable conditions were presented
for consensus with switching topology [6, 7]. Thereafter,
many researchers extended these earlier works and proposed
different protocols for agents that process second-order and
higher-order dynamics in linear multiagent systems [8–
18]. Recently, the consensus problem in multiagent systems
with nonlinear dynamics has been investigated [19–25]. In
particular, a passivity-based design tool was introduced to
reach the velocity consensus among agents in [19]. A finite-
time consensus algorithmwas proposed to achieve consensus
by using nonsmooth gradient flows [21]. By constructing a
Lyapunov function, sufficient conditions in the form of gen-
eralized algebraic connectivity were established for reaching
local and global consensus in [26].

In this paper, we present a sufficient condition of global
consensus for multiagent systems with nonlinear dynamics
by using a Lyapunov function and some graph theory
techniques. A simple linear protocol is designed to generalize
the tools developed for undirected graph in order to make
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them applicable to directed graphs. Similar to the idea in [26],
the algebraic connectivity of a redefined symmetric matrix
associated with the directed graph is used to evaluate the
consensus of the considered system. The obtained result is
quite simple and powerful, especially for those multiagent
systems containing spanning trees.

The rest of this paper is organized as follows. Section 2
presents some preliminaries. In Section 3, we derive a suffi-
cient condition to guarantee the global consensus under the
designed protocol. A numerical validation is given to show
the effectiveness of the presented result in Section 4. Section 5
concludes the investigation.

2. Preliminaries

Suppose that the multiagent system under consideration
consists of 𝑁 identical agents, each of which evolves as a
nonlinear behavior and is described by the equation

�̇�
𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑢𝑖 (𝑡) , 1 ≤ 𝑖 ≤ 𝑁, (1)

where 𝑥
𝑖
(𝑡) ∈ 𝑅

𝑛 and 𝑢
𝑖
∈ 𝑅
𝑝 denote the state and the control

input of agent 𝑖, respectively, 𝑓 : 𝑅𝑛 → 𝑅
𝑛 is continuously

differentiable, describing the intrinsic nonlinear dynamics
of the isolated agent, and constant matrix 𝐵 ∈ 𝑅

𝑛×𝑝 is the
input matrix. The consensus protocol in multiagent system
(1) considered in [27, 28] is chosen as

𝑢
𝑖 (𝑡) = −𝑐𝐾

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗 (𝑡) , (2)

where 𝑐 is the overall coupling strength, 𝐾 ∈ 𝑅
𝑝×𝑛 is the

feedback gain matrix to be determined, and the commu-
nication topology among agents is represented by digraph
G and described in a matrix form by the Laplacian 𝐿 =

(𝑙
𝑖𝑗
) ∈ 𝑅

𝑁×𝑁. The Laplacian matrix of digraph G is defined
as follows: if there is a directed connection from agent 𝑖 to
agent 𝑗 (𝑗 ̸= 𝑖), then 𝑙

𝑖𝑗
< 0; otherwise, 𝑙

𝑖𝑗
= 0, and the

diagonal entries of matrix 𝐿 are defined by 𝑙
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑖 ̸= 𝑗
𝑙
𝑖𝑗
.

It is noted that network (1) is said to be a multiagent system
with asymmetrically coupled identical agents if the Laplacian
matrix 𝐿 is not assumed to be symmetric and irreducible.

Clearly, under the diffusive condition, if a consensus
is achieved, the solution 𝑠(𝑡) of system (1) is expected to
be a possible trajectory of an individual agent satisfying
̇𝑠(𝑡) = 𝑓(𝑠(𝑡)), where 𝑠(𝑡) can be an equilibrium or a periodic
or chaotic orbit.

Let

𝑋 (𝑡) = (𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇

∈ 𝑅
𝑛𝑁
,

𝐹 (𝑋) = (𝑓
𝑇

1
(𝑥
1
) , . . . , 𝑓

𝑇

𝑁
(𝑥
𝑁
))
𝑇

∈ 𝑅
𝑛𝑁
;

(3)

then the multiagent system (1) with protocol (2) can be
written in a block form as

�̇� (𝑡) = 𝐹 (𝑋) − 𝑐 (𝐿 ⊗ 𝐵𝐾)𝑋 (𝑡) , (4)

where the notation ⊗ represents the Kronecker product. For
the subsequent analysis, we decompose 𝐿 into 𝐿 = 𝐿+ + 𝐿−,
where symmetric matrix 𝐿+ = (𝑙+

𝑖𝑗
)
𝑁×𝑁

and antisymmetric
matrix 𝐿− = (𝑙−

𝑖𝑗
)
𝑁×𝑁

satisfy the zero-row-sum conditionwith
nondiagonal entries

𝑙
+

𝑖𝑗
= 𝑙
+

𝑗𝑖
=
1

2
(𝑙
𝑖𝑗
+ 𝑙
𝑗𝑖
)

𝑙
−

𝑖𝑗
= −𝑙
−

𝑗𝑖
=
1

2
(𝑙
𝑖𝑗
− 𝑙
𝑗𝑖
) .

(5)

Throughout this paper, two important hypotheses are
introduced.

Hypothesis 1 (H1). Suppose that the directed graph G is
weakly connected. That is, there exists a path between any
two agents in graph G if one replaces all the directed edges
of graphG with undirected edges.

Noting that all nondiagonal entries of matrix 𝐿+ are
nonnegative, then 𝐿+ can be regarded as the Laplacianmatrix
associated with an undirected graph G̃. Moreover, under
(H1), 𝐿+ has an eigenvalue 0 with multiplicity 1 and the
eigenvector 𝜉 = (1/√𝑁)(1, 1, . . . , 1)𝑇 ∈ 𝑅𝑁 and the algebraic
connectivity (the second smallest eigenvalue), denoted by
𝜆
2
(𝐿
+
), is positive [29].

Hypothesis 2 (H2). Suppose that there exist a symmetric
matrix 𝑃 ∈ 𝑅𝑛×𝑛 > 0 and constants 𝛼 > 0 and 𝛽 > 0 such
that, for all 𝑖, 𝑗 = 1, . . . , 𝑁,

(𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑗
))
𝑇

𝑃𝑋
𝑖𝑗 (𝑡) − 𝛼𝑋

𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑋
𝑖𝑗 (𝑡)

+ 𝛽𝑋
𝑇

𝑖𝑗
(𝑡) 𝑋𝑖𝑗 (𝑡) ≤ 0,

(6)

where𝑋
𝑖𝑗
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡).

As shown in [30], (H2) is solvable for many coupled
limit-cycle or chaotic systems, such as Hindmarsh-Rose
neuron models, Lorenz systems, and coupled double-scrolls.
Considering a special case that 𝑓(𝑥

𝑖
) = 𝐴𝑥

𝑖
, then (6) reduces

to the following linear matrix inequality:

𝐴
𝑇
𝑃 + 𝑃𝐴 − 2𝛼𝑃𝐵𝐵

𝑇
𝑃 + 2𝛽𝐼

𝑛
≤ 0, (7)

or equivalently written as

𝐴
𝑇
𝑃 + 𝑃𝐴 − 2𝛼𝑃𝐵𝐵

𝑇
𝑃 < 0. (8)

Recalling the result in [27], a necessary and sufficient
condition for the existence of a 𝑃 > 0 to (8) is that
(𝐴, 𝐵) is stabilizable. For nonlinear vector-valued function 𝑓
satisfying the Lipschitz condition, a feasible operation is to
convert inequality (6) into some linear matrix inequalities;
see (35)-(36) for details.

3. Main Results

For a multiagent system of coupled identical agents, a typical
approach that handles the consensus issue is to investigate
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the stability of errors between the dynamics of an individual
agent and the average dynamics [25]; that is,

𝑦
𝑖 (𝑡) = 𝑥𝑖 (𝑡) −

1

𝑁

𝑁

∑

𝑗=1

𝑥
𝑗 (𝑡) , (9)

or equivalently written in a block form as

𝑌 (𝑡) = (Π ⊗ 𝐼𝑛)𝑋 (𝑡) , (10)

where 𝑌(𝑡) = (𝑦𝑇
1
(𝑡), . . . , 𝑦

𝑇

𝑁
(𝑡))
𝑇
∈ 𝑅
𝑛𝑁 is the error vector,

Π = 𝐼
𝑁
− 𝜉𝜉
𝑇, and 𝐼

𝑁
is an 𝑁 × 𝑁 identity matrix. Then we

have the following results.

Theorem 1. Suppose that (H1) and (H2) hold. If

𝜆
2
(�̃�) ≥

𝛼

𝑐
, (11)

then the multiagent system (1) achieves global exponential
consensus under the designed controller (2) and 𝐾 = 𝐵

T
𝑃,

where 𝜆
2
(�̃�) is the algebraic connectivity of matrix �̃� =

(̃𝑙
𝑖𝑗
)
𝑁×𝑁

, which is a zero-row-sum symmetric matrix with
nondiagonal entries

�̃�
𝑖𝑗
= 𝑙
+

𝑖𝑗
−
1

𝑁
(𝑙
−

𝑖𝑖
+ 𝑙
−

𝑗𝑗
) , ∀𝑖 ̸= 𝑗. (12)

Proof. Solving (H2) to obtain a symmetricmatrix𝑃 > 0, then
one can choose the Lyapunov function as

𝑉 (𝑡) =
1

2
𝑋
𝑇
(𝑡) (Π ⊗ 𝑃)𝑋 (𝑡) . (13)

Differentiating 𝑉(𝑡) along the trajectory of system (4)
gives

�̇� (𝑡) = 𝑋
𝑇
(𝑡) (Π ⊗ 𝑃) 𝐹 (𝑋)

− 𝑐𝑋
𝑇
(𝑡) (Π ⊗ 𝑃) (𝐿 ⊗ 𝐵𝐾)𝑋 (𝑡)

≜ 𝑆
1 (𝑡) − 𝑐𝑆2 (𝑡) ,

(14)

where the term 𝑆
1
(𝑡) satisfies the following equality:

𝑆
1 (𝑡) =

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑥
𝑇

𝑖
(𝑡) 𝑃 [𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗)] . (15)

Renaming the sum 𝑆
1
(𝑡) 𝑗 by 𝑖 and vice versa yields

𝑆
1 (𝑡) = −

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑥
𝑇

𝑗
(𝑡) 𝑃 [𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗)]

=
1

2𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃 (𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗)) .

(16)

Substituting (6) into (16) obtains

𝑆
1 (𝑡) ≤

1

2𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛼𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑋
𝑖𝑗 (𝑡)

−
1

2𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛽𝑋
𝑇

𝑖𝑗
(𝑡) 𝑋𝑖𝑗 (𝑡)

= 𝛼𝑋
𝑇
(𝑡) [Π ⊗ (𝑃𝐵𝐵

𝑇
𝑃)]𝑋 (𝑡)

− 𝛽𝑋
𝑇
(𝑡) (Π ⊗ 𝐼𝑛)𝑋 (𝑡) .

(17)

And the term 𝑆
2
(𝑡) satisfies the equation

𝑆
2 (𝑡) = 𝑋

𝑇
(𝑡) [(Π𝐿) ⊗ (𝑃𝐵𝐾)]𝑋 (𝑡)

=
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

(𝑙
𝑖𝑘
− 𝑙
𝑗𝑘
) 𝑥
𝑇

𝑖
(𝑡) 𝑃𝐵𝐾𝑥𝑘 (𝑡) .

(18)

By the diffusive condition of the Laplacian matrix 𝐿, we have

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑙
𝑖𝑘
𝑥
𝑇

𝑖
(𝑡) 𝑃𝐵𝐾𝑥𝑖 (𝑡) = 0. (19)

Also by renaming 𝑗 by 𝑖 and vice versa, one obtains

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑙
𝑖𝑘
𝑥
𝑇

𝑗
(𝑡) 𝑃𝐵𝐾𝑥𝑘 (𝑡)

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑙
𝑗𝑘
𝑥
𝑇

𝑖
(𝑡) 𝑃𝐵𝐾𝑥𝑘 (𝑡) .

(20)

Substituting (19)-(20) into 𝑆
2
(𝑡) we obtain

𝑆
2 (𝑡) =

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

(𝑙
+

𝑖𝑘
+ 𝑙
−

𝑖𝑘
)𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑘𝑖 (𝑡)

≜ 𝑆
21 (𝑡) + 𝑆22 (𝑡) .

(21)

Note that

𝑆
21 (𝑡) =

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

[𝑙
+

𝑖𝑘
(𝑋
𝑖𝑘 (𝑡) + 𝑋𝑘𝑗 (𝑡))

𝑇

𝑃𝐵𝐾𝑋
𝑘𝑖 (𝑡)]

= −

𝑁

∑

𝑖=1

𝑁

∑

𝑘=1

𝑙
+

𝑖𝑘
𝑋
𝑇

𝑖𝑘
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑘 (𝑡)

+
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑙
+

𝑖𝑘
𝑋
𝑇

𝑘𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑘𝑖 (𝑡) .

(22)

Renaming the second sum in 𝑆
21
(𝑡) 𝑘 by 𝑖 and vice versa,

we get

𝑆
21 (𝑡) = −

𝑁

∑

𝑖=1

𝑁

∑

𝑘=1

𝑙
+

𝑖𝑘
𝑋
𝑇

𝑖𝑘
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑘 (𝑡) − 𝑆21 (𝑡) . (23)
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Thus,

𝑆
21 (𝑡) = −

1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑙
+

𝑖𝑗
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑗 (𝑡) . (24)

And, for the sum 𝑆
22
(𝑡), we have

𝑆
22 (𝑡) =

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑙
−

𝑖𝑘
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾 (𝑋𝑘𝑗 (𝑡) + 𝑋𝑗𝑖 (𝑡))

=
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑙
−

𝑖𝑘
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑘𝑗 (𝑡)

=
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑙
−

𝑖𝑖
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑗 (𝑡)

+
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1,𝑘 ̸= 𝑖

𝑙
−

𝑖𝑘
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑘𝑗 (𝑡) .

(25)

Renaming the second sum in the above equation 𝑖 by 𝑘 and
vice versa, we have

𝑆
22 (𝑡) =

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑙
−

𝑖𝑖
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑗 (𝑡)

=
1

2𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑙
−

𝑖𝑖
+ 𝑙
−

𝑗𝑗
)𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑗 (𝑡) .

(26)

Then 𝑆
2
(𝑡) can be rewritten as

𝑆
2 (𝑡) = −

1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

[𝑙
+

𝑖𝑗
−
1

𝑁
(𝑙
−

𝑖𝑖
+ 𝑙
−

𝑗𝑗
)]𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐾𝑋𝑖𝑗 (𝑡) .

(27)

Since𝑋
𝑖𝑖
(𝑡) = 0, then

𝑆
2 (𝑡) = −

1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

�̃�
𝑖𝑗
𝑋
𝑇

𝑖𝑗
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑋
𝑖𝑗 (𝑡)

= −

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

�̃�
𝑖𝑗
[𝑥
𝑇

𝑖
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑥
𝑖 (𝑡) − 𝑥

𝑇

𝑖
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑥
𝑗 (𝑡)]

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

�̃�
𝑖𝑗
𝑥
𝑇

𝑖
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑥
𝑗 (𝑡)

= 𝑋
𝑇
(𝑡) [�̃� ⊗ (𝑃𝐵𝐵

𝑇
𝑃)]𝑋 (𝑡) .

(28)

Substituting 𝑆
1
(𝑡) and 𝑆

2
(𝑡) into the derivative of 𝑉(𝑡)

gives

�̇� (𝑡) ≤ 𝑋
𝑇
(𝑡) [(Π (𝛼𝐼𝑁 − 𝑐�̃�)Π) ⊗ (𝑃𝐵𝐵

𝑇
𝑃)]𝑋 (𝑡)

− 𝛽𝑋
𝑇
(𝑡) (Π ⊗ 𝐼𝑛)𝑋 (𝑡) .

(29)

Notice that �̃� is a symmetric matrix; then there exists
an orthogonal matrix 𝑈 ∈ 𝑅

𝑁×𝑁 such that 𝑈�̃�𝑈𝑇 = Λ =

diag(𝜆
1
(�̃�), 𝜆
2
(�̃�), . . . , 𝜆

𝑁
(�̃�)) with 𝜆

1
(�̃�) = 0. Therefore, the

derivative of 𝑉(𝑡) satisfies

�̇� (𝑡) ≤ 𝑌
𝑇
(𝑡) [(𝛼𝐼𝑁 − 𝑐Λ) ⊗ (𝑃𝐵𝐵

𝑇
𝑃)]𝑌 (𝑡)

− 𝛽𝑋
𝑇
(𝑡) (Π ⊗ 𝐼𝑛)𝑋 (𝑡)

=

𝑁

∑

𝑖=1

(𝛼 − 𝑐𝜆
𝑖
(�̃�)) 𝑦

𝑇

𝑖
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑦
𝑖 (𝑡)

− 𝛽𝑋
𝑇
(𝑡) (Π ⊗ 𝐼𝑛)𝑋 (𝑡)

≤ (𝛼 − 𝑐𝜆
2
(�̃�))

𝑁

∑

𝑖=1

𝑦
𝑇

𝑖
(𝑡) 𝑃𝐵𝐵

𝑇
𝑃𝑦
𝑖 (𝑡)

− 𝛽𝑋
𝑇
(𝑡) (Π ⊗ 𝐼𝑛)𝑋 (𝑡)

≤ −𝛽

𝑁

∑

𝑖=1

(𝑥
𝑖 (𝑡) − 𝑥 (𝑡))

𝑇
(𝑥
𝑖 (𝑡) − 𝑥 (𝑡)) ,

(30)

where 𝑌(𝑡) = ((𝑈Π) ⊗ 𝐼
𝑛
)𝑋(𝑡) = (𝑦

𝑇

1
(𝑡), . . . , 𝑦

𝑇

𝑁
(𝑡))
𝑇
∈

𝑅
𝑛𝑁 with 𝑦

1
(𝑡) = (𝜉

1
⊗ 𝐼
𝑛
)(𝑥
𝑖
(𝑡) − 𝑥(𝑡)) = 0, 𝑥(𝑡) =

(1/𝑁)∑
𝑁

𝑖=1
𝑥
𝑖
(𝑡) = (𝜉

𝑇
⊗ 𝐼
𝑛
)𝑋(𝑡).

It is obvious that �̇�(𝑡) ≤ 0 and �̇�(𝑡) = 0 if and only
if 𝑥
𝑖
(𝑡) = 𝑥(𝑡). By LaSalle’s invariance principle, it follows

that 𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡) exponentially converges to zero for all 𝑖 as

time approaches infinity. Hence, the multiagent system (4)
achieves global exponential consensus under the designed
protocol. The proof is thus completed.

Remark 2. In terms of graph, the symmetrization operation
in (12) amounts to replacing the edge directed from agent
𝑖 to agent 𝑗 by an undirected edge corresponding to the
coupling coefficients and node strengths of agents 𝑖 and 𝑗.
As a result, the consensus issue of a nonlinear multiagent
systemwith a weighted directed communication graphG can
be evaluated by the algebraic connectivity of a symmetric
matrix associated with asymmetric Laplacian matrix 𝐿. From
the above proof, the symmetrization operation in (12) can also
deal with a time-varying Laplacian matrix.

Remark 3. Consider a special case of node balance; that is,
∑
𝑁

𝑖=1
𝑙
𝑖𝑗
= 0. Then we have �̃� = 𝐿+ and the following result.

Corollary 4. Suppose that (H1) and (H2) hold. If

𝑐𝜆
2
(𝐿
+
) ≥ 𝛼, (31)

then multiagent system (1) with node balance achieves global
exponential consensus under the designed controller (2) and
𝐾 = 𝐵

T
𝑃.

It is noted that 𝜆
2
(𝐿
+
) > 0 under (H1). Then the consensus

of system (1) can be guaranteed by a sufficiently large coupling
strength 𝑐.
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4. An Example

In this section, amultiagent system consisting of five identical
agents will be constructed to demonstrate the efficiency of the
result proposed in the previous section. The agent dynamics
can be described by

𝑓 (𝑥
𝑖
) = 𝐴𝑥

𝑖
+ 𝑔 (𝑥

𝑖
) , (32)

where 𝑥
𝑖

= (𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, 𝑥
𝑖4
)
𝑇, 𝑔(𝑥

𝑖
) =

(0, 0, 0, −(1/3) sin(𝑥
𝑖3
))
𝑇, and

𝐴 = (

0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 10

1.95 0 −1.95 0

) . (33)

The input matrix is defined as 𝐵 = (0, 20, 0, 0)
𝑇 and

Laplacian matrix is chosen as

𝐿 =(

2 −2 0 0 0

0 2 −2 0 0

0 0 4 −4 0

0 0 0 2 −2

0 0 0 0 0

). (34)

By calculation, we have 𝜆
2
(�̃�) = 0.1728. Also notice that

(𝑔 (𝑥
𝑖
) − 𝑔 (𝑥

𝑗
))
𝑇

𝑃𝑋
𝑖𝑗 (𝑡)

≤

(𝑔 (𝑥
𝑖
) − 𝑔 (𝑥

𝑗
))
𝑇

𝑃𝑄
−1/2

⋅

𝑋
𝑖𝑗 (𝑡) 𝑄

1/2

≤ 𝛾

𝑋
𝑇

𝑖𝑗
𝑃𝑄
−1/2

⋅

𝑋
𝑖𝑗 (𝑡) 𝑄

1/2

≤
1

2
𝑋
𝑇

𝑖𝑗
(𝑡) (𝛾
2
𝑃𝑄
−1
𝑃 + 𝑄)𝑋

𝑖𝑗 (𝑡) ,

(35)

where 𝛾 = 1/3 and 𝑄 ∈ 𝑅𝑛×𝑛 is an arbitrary positive definite
matrix to be determined. Substituting (35) into (H2) gives the
following linear matrix inequality:

𝐴
𝑇
𝑃 + 𝑃𝐴 − 2𝛼𝑃𝐵𝐵

𝑇
𝑃 + 𝛾
2
𝑃𝑄
−1
𝑃 + 𝑄 + 2𝛽𝐼

𝑛
≤ 0. (36)

Solving (36) gives

𝑃 = (

18.2759 0.3099 −10.8809 28.4167

0.3099 0.0228 −0.1837 0.4840

−10.8809 −0.1837 8.4982 −14.1034

28.4167 0.4840 −14.1034 75.9731

) (37)

and 𝛼 = 0.57 by setting 𝛽 = 0.01 and𝑄 = 𝐼
4
. Then, according

toTheorem 1, the global consensus is achieved if 𝑐 > 3.3. The
state responses are depicted in Figure 1 with 𝑐 = 3.5.

5. Conclusions

This paper has investigated the global consensus problem of
multiagent systems with asymmetrically coupled noniden-
tical agents. By employing a Lyapunov function, a criterion
of global exponential consensus has been derived under the
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Figure 1: The state responses of the considered multiagent system.

designed consensus protocol. The presented framework is
quite simple and powerful, without assuming the symmetry
or irreducibility of the Laplacian matrix, just evaluating the
algebraic connectivity of a symmetric matrix derived by the
Laplacian matrix. A numerical simulation is given to show
the effectiveness of the analytical result.
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