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Abstract. 
We prove that a homeomorphism 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 is a quasiconformal mapping if and only if 
	
		
			
				𝑓
				(
				𝐷
				)
			

		
	
 is an arcwise connected domain for any arcwise connected domain 
	
		
			
				𝐷
				⊆
				𝑅
			

			

				2
			

		
	
, and 
	
		
			

				𝐷
			

		
	
 is a quasidisk if and only if both 
	
		
			

				𝐷
			

		
	
 and its exterior 
	
		
			

				𝐷
			

			

				∗
			

			
				=
				𝑅
			

			

				2
			

			

				⧵
			

			
				
			
			

				𝐷
			

		
	
 are arcwise connected domains.


1. Introduction
We shall assume throughout this paper that 
	
		
			

				𝐷
			

		
	
 is a Jordan proper subdomain of the complex plane 
	
		
			

				𝑅
			

			

				2
			

		
	
 with a boundary containing at least three points. For convenience we shall adopt the notation and terminology as in paper [1]. For 
	
		
			
				𝑥
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				∞
			

		
	
, let 
	
		
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				=
				{
				𝑧
				∈
				𝑅
			

			

				2
			

			
				∶
				|
				𝑧
				−
				𝑥
				|
				<
				𝑟
				}
			

		
	
, 
	
		
			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
 be the closure of 
	
		
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
, 
	
		
			

				𝑆
			

			

				1
			

			
				(
				𝑥
				,
				𝑟
				)
				=
				𝜕
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
, 
	
		
			

				𝐵
			

			

				2
			

			
				(
				𝑟
				)
				=
				𝐵
			

			

				2
			

			
				(
				0
				,
				𝑟
				)
			

		
	
, and 
	
		
			

				𝐵
			

			

				2
			

			
				=
				𝐵
			

			

				2
			

			
				(
				1
				)
			

		
	
. Suppose that 
	
		
			

				𝑓
			

		
	
 is a homeomorphism in 
	
		
			

				𝑅
			

			

				2
			

		
	
, 
	
		
			
				𝑥
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				∞
			

		
	
, let  
	
		
			
				𝐿
				(
				𝑥
				,
				𝑓
				,
				𝑟
				)
				=
				m
				a
				x
			

			
				|
				𝑦
				−
				𝑥
				|
				=
				𝑟
			

			
				|
				𝑓
				(
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
				|
			

		
	
, and 
	
		
			
				𝑙
				(
				𝑥
				,
				𝑓
				,
				𝑟
				)
				=
				m
				i
				n
			

			
				|
				𝑦
				−
				𝑥
				|
				=
				𝑟
			

			
				|
				𝑓
				(
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
				|
			

		
	
.
Suppose that 
	
		
			
				𝑏
				≥
				1
			

		
	
 is a constant, we say that 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-arcwise connected domain if each pair of points 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 in 
	
		
			

				𝐷
			

		
	
 can be joined by an arc 
	
		
			
				𝛾
				⊆
				𝐷
			

		
	
 with 
	
		
			
				d
				i
				a
				(
				𝛾
				)
				≤
				𝑏
				|
				𝑥
				−
				𝑦
				|
			

		
	
. Here 
	
		
			
				d
				i
				a
				(
				𝛾
				)
			

		
	
 is the Euclidean diameter of 
	
		
			

				𝛾
			

		
	
. And we call 
	
		
			

				𝐷
			

		
	
 an arcwise connected domain if 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-arcwise connected domain for some 
	
		
			
				𝑏
				≥
				1
			

		
	
.
Arcwise connected domain is an important concept; it has been used extensively in the research fields of superspaces [2], multiobjective programmings [3], color images [4], continuous mappings [5], fixed points theory [6], continuity and differential problems [7], and topology groups theory [8].

	
		
			

				𝐷
			

		
	
 is called a quasidisk if there exists a 
	
		
			

				𝐾
			

		
	
-quasiconformal mapping (
	
		
			
				𝐾
				≥
				1
			

		
	
) 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 such that 
	
		
			

				𝐷
			

		
	
 is the image of the unit disk 
	
		
			

				𝐵
			

			

				2
			

		
	
 under 
	
		
			

				𝑓
			

		
	
.
It is well-known that quasidisks play a very important role in quasiconformal mappings, complex dynamics, Fuchsian groups, and Teichmüller space theory [9–12].
The purpose of this paper is to prove the following Theorems 1 and 2.
Theorem 1.  A homeomorphism 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 is a quasiconformal mapping if and only if 
	
		
			
				𝑓
				(
				𝐷
				)
			

		
	
 is a arcwise connected domain for any arcwise connected domain 
	
		
			
				𝐷
				⊆
				𝑅
			

			

				2
			

		
	
.
Theorem 2.  
	
		
			

				𝐷
			

		
	
 is a quasidisk if and only if both 
	
		
			

				𝐷
			

		
	
 and 
	
		
			

				𝐷
			

			

				∗
			

			
				=
				𝑅
			

			

				2
			

			

				⧵
			

			
				
			
			

				𝐷
			

		
	
 are arcwise connected domains.
For convenience we shall introduce the following concepts and they will be used in the next section.
Let 
	
		
			
				𝑐
				≥
				1
			

		
	
 be a constant. 
	
		
			
				(
				1
				)
			

		
	
 If for any 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				+
				∞
			

		
	
, points in 
	
		
			
				𝐷
				∩
			

			
				
			
			
				𝐵
				(
				𝑥
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
 can be joined by an arc in 
	
		
			
				𝐷
				∩
			

			
				
			
			
				𝐵
				(
				𝑥
			

			

				0
			

			
				,
				𝑐
				𝑟
				)
			

		
	
; then we say that 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑐
			

		
	
-inner linearly locally connected domain, denoted by 
	
		
			
				𝐷
				∈
				𝑐
			

		
	
-
	
		
			
				I
				L
				C
			

		
	
; 
	
		
			
				(
				2
				)
			

		
	
 If for any 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				+
				∞
			

		
	
, points in 
	
		
			
				𝐷
				⧵
				𝐵
			

			

				2
			

			
				(
				𝑥
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
 can be joined by an arc in 
	
		
			
				𝐷
				⧵
				𝐵
			

			

				2
			

			
				(
				𝑥
			

			

				0
			

			
				,
				𝑟
				/
				𝑐
				)
			

		
	
; then we say that 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑐
			

		
	
-outer linearly locally connected domain, denoted by 
	
		
			
				𝐷
				∈
				𝑐
			

		
	
-
	
		
			
				O
				L
				C
			

		
	
.

	
		
			

				𝐷
			

		
	
 is said to be a linearly locally connected domain if there exists 
	
		
			
				𝑐
				≥
				1
			

		
	
 such that 
	
		
			
				𝐷
				∈
				𝑐
			

		
	
-
	
		
			
				I
				L
				C
			

		
	
 and 
	
		
			
				𝐷
				∈
				𝑐
			

		
	
-
	
		
			
				O
				L
				C
			

		
	
.
Let 
	
		
			
				𝑏
				>
				0
			

		
	
 be a constant; then 
	
		
			

				𝐷
			

		
	
 is said to be a 
	
		
			

				𝑏
			

		
	
-cigar domain if each pair of points 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				∈
				𝐷
			

		
	
 can be joined by an arc 
	
		
			
				𝛾
				⊆
				𝐷
			

		
	
 for which 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑥
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑥
				
				
				≤
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
				∀
				𝑥
				∈
				𝛾
				,
			

		
	

					where 
	
		
			
				𝛾
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝑥
				)
			

		
	
 is the part of 
	
		
			

				𝛾
			

		
	
 between 
	
		
			

				𝑥
			

			

				𝑗
			

		
	
 and 
	
		
			

				𝑥
			

		
	
, and 
	
		
			
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
			

		
	
 is the Euclidean distance from 
	
		
			

				𝑥
			

		
	
 to 
	
		
			
				𝜕
				𝐷
			

		
	
.
We say that 
	
		
			

				𝐷
			

		
	
 is a cigar domain if 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-cigar domain for some 
	
		
			
				𝑏
				>
				0
			

		
	
.
Gehring and Osgood proved the following result in [13].
Theorem A.  
	
		
			

				𝐷
			

		
	
 is a quasidisk if and only if 
	
		
			

				𝐷
			

		
	
 is a linearly locally connected domain.
2. Proof of Theorems 1 and 2
To prove our Theorems 1 and 2, we first establish and introduce several lemmas.
Lemma 3.  If 
	
		
			

				𝐷
			

		
	
 is an arcwise connected domain, then 
	
		
			

				𝐷
			

			

				∗
			

			
				=
				𝑅
			

			

				2
			

			

				⧵
			

			
				
			
			

				𝐷
			

		
	
 is a cigar domain.
Proof. For any 
	
		
			

				𝑧
			

			

				1
			

		
	
, 
	
		
			

				𝑧
			

			

				2
			

			
				∈
				𝐷
			

			

				∗
			

		
	
, let 
	
		
			

				𝛾
			

		
	
 be the hyperbolic geodesic joining 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 in 
	
		
			

				𝐷
			

			

				∗
			

		
	
, for any 
	
		
			
				𝑧
				∈
				𝛾
				⧵
				{
				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

			

				}
			

		
	
; suppose that 
	
		
			
				𝑓
				∶
				𝐵
			

			

				2
			

			
				→
				𝐷
			

			

				∗
			

		
	
 is a conformal mapping with 
	
		
			
				𝑓
				(
				0
				)
				=
				𝑧
			

		
	
 and 
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				(
				𝛾
				)
				⊆
				𝑅
				=
				𝑧
				∶
				𝑧
				∈
				𝑅
			

			

				2
			

			
				
				,
				,
				I
				m
				𝑧
				=
				0
			

		
	

						where 
	
		
			

				𝑓
			

			
				−
				1
			

		
	
 is the inverse of 
	
		
			

				𝑓
			

		
	
. Then there exist 
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				∈
				
				𝑧
				∶
				𝑧
				∈
				𝑆
			

			

				1
			

			
				
				,
				I
				m
				𝑧
				>
				0
				,
				𝑥
			

			

				2
			

			
				∈
				
				𝑧
				∶
				𝑧
				∈
				𝑆
			

			

				1
			

			
				
				,
				I
				m
				𝑧
				<
				0
			

		
	

						by [14, Corollary 10.3] such that 
	
		
			

				𝛼
			

			

				𝑗
			

			
				=
				𝑓
				(
				[
				0
				,
				𝑥
			

			

				𝑗
			

			
				)
				)
			

		
	
 is rectifiable with 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑙
				
				𝛼
			

			

				𝑗
			

			
				
				<
				𝑎
			

			

				0
			

			
				𝑑
				
				𝑧
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				,
				𝑗
				=
				1
				,
				2
				,
			

		
	

						where 
	
		
			

				𝑎
			

			

				0
			

		
	
 is an absolute constant, and 
	
		
			
				[
				0
				,
				𝑥
			

			

				𝑗
			

			

				)
			

		
	
 is the half open segment joining the origin 
	
		
			

				𝑂
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑗
			

		
	
; 
	
		
			
				𝑗
				=
				1
				,
				2
			

		
	
.Let 
	
		
			

				𝑦
			

			

				𝑗
			

			
				=
				𝑓
				(
				𝑥
			

			

				𝑗
			

			

				)
			

		
	
, 
	
		
			
				𝛼
				=
				𝛼
			

			

				1
			

			
				∪
				𝛼
			

			

				2
			

		
	
, then 
	
		
			

				𝑦
			

			

				𝑗
			

			
				∈
				𝜕
				𝐷
			

		
	
 and 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				
				𝛼
				𝑙
				(
				𝛼
				)
				≤
				𝑙
			

			

				1
			

			
				
				
				𝛼
				+
				𝑙
			

			

				2
			

			
				
				<
				2
				𝑎
			

			

				0
			

			
				𝑑
				
				𝑧
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				.
			

		
	
For above 
	
		
			

				𝑦
			

			

				1
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			
				∈
				𝜕
				𝐷
			

			

				∗
			

			
				=
				𝜕
				𝐷
			

		
	
, there exist a constant 
	
		
			
				𝑏
				≥
				1
			

		
	
 and a simple curve 
	
		
			
				𝛽
				⊆
				𝐷
			

		
	
 joining 
	
		
			

				𝑦
			

			

				1
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

		
	
 such that 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑦
				d
				i
				a
				(
				𝛽
				)
				≤
				𝑏
			

			

				1
			

			
				−
				𝑦
			

			

				2
			

			
				|
				|
				≤
				𝑏
				𝑙
				(
				𝛼
				)
			

		
	

						by 
	
		
			

				𝐷
			

		
	
 is an arcwise connected domain.If we denote by 
	
		
			

				𝐷
			

			

				0
			

		
	
 the bounded domain with boundary 
	
		
			
				𝛼
				∪
				𝛽
			

		
	
, then one of the points 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 must be in 
	
		
			

				𝐷
			

			

				0
			

		
	
. Without loss of generality, we may assume that 
	
		
			

				𝑧
			

			

				1
			

			
				∈
				𝐷
			

			

				0
			

		
	
; then it follows from (5) and (6) that 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				𝛾
				
				𝑧
				d
				i
				a
			

			

				1
			

			
				
				𝐷
				,
				𝑧
				
				
				≤
				d
				i
				a
			

			

				0
			

			
				
				
				=
				d
				i
				a
				𝜕
				𝐷
			

			

				0
			

			
				
				≤
				d
				i
				a
				(
				𝛼
				)
				+
				d
				i
				a
				(
				𝛽
				)
				≤
				𝑙
				(
				𝛼
				)
				+
				d
				i
				a
				(
				𝛽
				)
				<
				2
				𝑎
			

			

				0
			

			
				
				(
				𝑏
				+
				1
				)
				𝑑
				𝑧
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				.
			

		
	

						Inequality (7) leads to 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑧
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑧
				
				
				<
				2
				𝑎
			

			

				0
			

			
				
				(
				𝑏
				+
				1
				)
				𝑑
				𝑧
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				.
			

		
	
Therefore, 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a cigar domain that follows from (8).
Lemma 4.  If 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑐
			

		
	
-cigar domain, then 
	
		
			
				𝐷
				∈
				(
				2
				𝑐
				+
				2
				)
			

		
	
-OLC.
Proof. Let 
	
		
			
				𝑏
				=
				2
				𝑐
				+
				2
			

		
	
. If 
	
		
			
				𝐷
				∉
				𝑏
			

		
	
-
	
		
			
				O
				L
				C
			

		
	
, then there exist 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝑅
			

			

				2
			

		
	
, 
	
		
			
				0
				<
				𝑟
				<
				∞
			

		
	
 and 
	
		
			

				𝑥
			

			

				1
			

		
	
, 
	
		
			

				𝑥
			

			

				2
			

			
				∈
				𝐷
				⧵
				𝐵
			

			

				2
			

			
				(
				𝑦
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
, such that 
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 can not be joined by any arc in 
	
		
			
				𝐷
				⧵
				𝐵
			

			

				2
			

			
				(
				𝑦
			

			

				0
			

			
				,
				𝑟
				/
				𝑏
				)
			

		
	
.Since 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑐
			

		
	
-cigar domain, there exists an arc 
	
		
			
				𝛾
				⊂
				𝐷
			

		
	
 such that 
	
		
			

				𝛾
			

		
	
 joining 
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 with 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑥
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑥
				
				
				≤
				𝑐
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝛾
			

		
	
.It is obvious that 
	
		
			
				𝛾
				∩
				𝑆
			

			

				1
			

			
				(
				𝑦
			

			

				0
			

			
				,
				𝑟
				/
				𝑏
				)
				≠
				∅
			

		
	
. Let 
	
		
			
				𝑦
				∈
				𝛾
				∩
				𝑆
			

			

				1
			

			
				(
				𝑦
			

			

				0
			

			
				,
				𝑟
				/
				𝑏
				)
			

		
	
; then (9) implies 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				1
				𝑑
				(
				𝑦
				,
				𝜕
				𝐷
				)
				≥
			

			
				
			
			
				𝑐
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑥
				d
				i
				a
			

			

				𝑗
			

			
				≥
				1
				,
				𝑦
				
				
			

			
				
			
			
				𝑐
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				|
				|
				𝑥
			

			

				𝑗
			

			
				|
				|
				≥
				1
				−
				𝑦
			

			
				
			
			
				𝑐
				
				1
				1
				−
			

			
				
			
			
				𝑏
				
				𝑟
				.
			

		
	

						But
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑑
				
				𝑦
			

			

				0
			

			
				
				≤
				𝑟
				,
				𝜕
				𝐷
			

			
				
			
			
				𝑏
				.
			

		
	

						Inequalities (10) and (11) together with the triangular inequality yield 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				𝑐
				
				1
				1
				−
			

			
				
			
			
				𝑏
				
				|
				|
				𝑟
				≤
				𝑑
				(
				𝑦
				,
				𝜕
				𝐷
				)
				≤
				𝑦
				−
				𝑦
			

			

				0
			

			
				|
				|
				
				𝑦
				+
				𝑑
			

			

				0
			

			
				
				≤
				2
				,
				𝜕
				𝐷
			

			
				
			
			
				𝑏
				𝑟
				,
				𝑏
				≤
				2
				𝑐
				+
				1
				.
			

		
	

						Inequality (12) contradicts with 
	
		
			
				𝑏
				=
				2
				𝑐
				+
				2
			

		
	
. Hence 
	
		
			
				𝐷
				∈
				(
				2
				𝑐
				+
				2
				)
			

		
	
-
	
		
			
				O
				L
				C
			

		
	
.
Lemma 5.  If 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a 
	
		
			

				𝑐
			

			

				0
			

		
	
-cigar domain, then 
	
		
			
				𝐷
				∈
				(
				1
				6
				𝑐
			

			

				0
			

			
				+
				2
				1
				)
			

		
	
-ILC.
Proof. Let 
	
		
			
				𝛿
				=
				8
				𝑐
			

			

				0
			

			
				+
				1
				0
			

		
	
. For any 
	
		
			
				𝑢
				∈
				𝑅
			

			

				2
			

		
	
, 
	
		
			
				𝑠
				>
				0
			

		
	
, and 
	
		
			

				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

			
				∈
				𝐷
				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑢
				,
				𝑠
				)
			

		
	
, 
	
		
			

				𝑧
			

			

				1
			

			
				≠
				𝑧
			

			

				2
			

		
	
. Denote 
	
		
			
				𝑧
				=
				(
				1
				/
				2
				)
				(
				𝑧
			

			

				1
			

			
				+
				𝑧
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				𝑟
				=
				|
				𝑧
			

			

				1
			

			
				−
				𝑧
			

			

				2
			

			

				|
			

		
	
. We first prove that 
	
		
			

				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

		
	
 must be in the same component of 
	
		
			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
				,
				(
				1
				/
				2
				)
				𝛿
				𝑟
				)
				⧵
				𝐷
			

			

				∗
			

		
	
.If 
	
		
			

				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

		
	
 belong to different components of 
	
		
			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
				,
				(
				1
				/
				2
				)
				𝛿
				𝑟
				)
				⧵
				𝐷
			

			

				∗
			

		
	
, then 
	
		
			

				𝑧
			

			

				1
			

			
				,
				𝑧
			

			

				2
			

		
	
 must be in the different components of 
	
		
			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
				,
				(
				1
				/
				2
				)
				𝑟
				)
				⧵
				𝐷
			

			

				∗
			

		
	
. Let 
	
		
			

				𝛽
			

		
	
 be the line segment which joins 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
; then 
	
		
			

				𝛽
			

		
	
 contains a subcurve 
	
		
			
				𝛼
				⊆
				𝐷
			

			

				∗
			

		
	
 such that 
	
		
			

				𝛼
			

		
	
 divides 
	
		
			

				𝐷
			

			

				∗
			

		
	
 into 
	
		
			

				𝐷
			

			

				1
			

		
	
 and 
	
		
			

				𝐷
			

			

				2
			

		
	
, and 
	
		
			
				d
				i
				a
				(
				𝐷
			

			

				𝑗
			

			
				)
				≥
				(
				1
				/
				2
				)
				𝑟
				(
				𝛿
				−
				1
				)
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
			

		
	
. This yields 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝐷
				d
				i
				a
			

			

				𝑗
			

			
				
				≥
				1
			

			
				
			
			
				2
				𝑟
				(
				𝛿
				−
				1
				)
				.
			

		
	
For any 
	
		
			
				𝑥
				∈
				𝛼
			

		
	
, if 
	
		
			

				𝐷
			

			

				1
			

			

				/
			

			
				⊆
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				(
				2
				𝑐
			

			

				0
			

			
				+
				2
				)
				d
				i
				a
				(
				𝛼
				)
				)
			

		
	
 and 
	
		
			

				𝐷
			

			

				2
			

			

				/
			

			
				⊆
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				(
				2
				𝑐
			

			

				0
			

			
				+
				2
				)
				d
				i
				a
				(
				𝛼
				)
				)
			

		
	
, then take 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑗
			

			
				∈
				𝐷
			

			

				𝑗
			

			

				⧵
			

			
				
			
			

				𝐵
			

			

				2
			

			
				
				
				𝑥
				,
				2
				𝑐
			

			

				0
			

			
				
				
				+
				2
				d
				i
				a
				(
				𝛼
				)
				,
				𝑗
				=
				1
				,
				2
				.
			

		
	
Since 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a 
	
		
			

				𝑐
			

			

				0
			

		
	
-cigar domain, there exists an arc 
	
		
			
				𝛾
				⊆
				𝐷
			

			

				∗
			

		
	
 joining 
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 with 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑥
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑤
				
				
				≤
				𝑐
			

			

				0
			

			
				𝑑
				
				𝑤
				,
				𝜕
				𝐷
			

			

				∗
			

			

				
			

		
	

						for all 
	
		
			
				𝑤
				∈
				𝛾
			

		
	
.Let 
	
		
			
				𝑦
				∈
				𝛾
				∩
				𝑆
			

			

				1
			

			
				(
				𝑥
				,
				d
				i
				a
				(
				𝛼
				)
				)
			

		
	
; then
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑦
				−
				𝑥
			

			

				𝑗
			

			
				|
				|
				≥
				
				2
				𝑐
			

			

				0
			

			
				
				+
				1
				d
				i
				a
				(
				𝛼
				)
				,
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑥
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑦
				
				
				≤
				𝑐
			

			

				0
			

			
				𝑑
				
				𝑦
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				,
				𝑗
				=
				1
				,
				2
				.
			

		
	

						This implies 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝑑
				
				𝑦
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				≥
				2
				𝑐
			

			

				0
			

			
				+
				1
			

			
				
			
			

				𝑐
			

			

				0
			

			
				d
				i
				a
				(
				𝛼
				)
				.
			

		
	

						But 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑑
				
				𝑥
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				≤
				d
				i
				a
				(
				𝛼
				)
				.
			

		
	

						Inequalities (17) and (18) together with the triangular inequality yield 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				2
				𝑐
			

			

				0
			

			
				+
				1
			

			
				
			
			

				𝑐
			

			

				0
			

			
				
				d
				i
				a
				(
				𝛼
				)
				≤
				𝑑
				𝑦
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				≤
				|
				|
				|
				|
				
				𝑦
				−
				𝑥
				+
				𝑑
				𝑥
				,
				𝜕
				𝐷
			

			

				∗
			

			
				
				≤
				2
				d
				i
				a
				(
				𝛼
				)
				,
			

		
	

						so 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				d
				i
				a
				(
				𝛼
				)
				≤
				0
				.
			

		
	

						This is obviously impossible. Hence 
	
		
			

				𝐷
			

			

				1
			

			

				⊆
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				(
				2
				𝑐
			

			

				0
			

			
				+
				2
				)
				d
				i
				a
				(
				𝛼
				)
				)
			

		
	
 or 
	
		
			

				𝐷
			

			

				2
			

			

				⊆
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				(
				2
				𝑐
			

			

				0
			

			
				+
				2
				)
				d
				i
				a
				(
				𝛼
				)
				)
			

		
	
, and we obtain 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝐷
				d
				i
				a
			

			

				𝑗
			

			
				
				
				≤
				2
				2
				𝑐
			

			

				0
			

			
				
				+
				2
				d
				i
				a
				(
				𝛼
				)
				.
			

		
	

						Inequalities (13) and (21) together with 
	
		
			
				d
				i
				a
				(
				𝛼
				)
				≤
				𝑟
			

		
	
 imply 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝛿
				≤
				8
				𝑐
			

			

				0
			

			
				+
				9
				.
			

		
	

						This contradicts with 
	
		
			
				𝛿
				=
				8
				𝑐
			

			

				0
			

			
				+
				1
				0
			

		
	
. Hence 
	
		
			

				𝑧
			

			

				1
			

		
	
, 
	
		
			

				𝑧
			

			

				2
			

		
	
 must be in the same component of 
	
		
			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
				,
				(
				1
				/
				2
				)
				𝛿
				𝑟
				)
				⧵
				𝐷
			

			

				∗
			

		
	
, and there exists an arc 
	
		
			
				𝛾
				⊆
				𝐷
			

		
	
 joining 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 with 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑧
				d
				i
				a
				(
				𝛾
				)
				≤
				𝛿
				𝑟
				=
				𝛿
			

			

				1
			

			
				−
				𝑧
			

			

				2
			

			
				|
				|
				≤
				2
				𝛿
				𝑠
				.
			

		
	
It follows from (23) that 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝛾
				⊆
				𝐷
				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑢
				,
				𝑠
				+
				d
				i
				a
				(
				𝛾
				)
				)
				⊆
				𝐷
				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑢
				,
				(
				2
				𝛿
				+
				1
				)
				𝑠
				)
				=
				𝐷
				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				
				
				𝑢
				,
				1
				6
				𝑐
			

			

				0
			

			
				
				𝑠
				
				.
				+
				2
				1
			

		
	
Hence 
	
		
			
				𝐷
				∈
				(
				1
				6
				𝑐
			

			

				0
			

			
				+
				2
				1
				)
			

		
	
-
	
		
			
				I
				L
				C
			

		
	
; this completes the proof of Lemma 5.
Lemma 6.  If 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-cigar domain, then 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a 
	
		
			
				(
				4
				𝑏
				+
				3
				)
			

		
	
-arcwise connected domain.
Proof. For any 
	
		
			

				𝑧
			

			

				1
			

		
	
, 
	
		
			

				𝑧
			

			

				2
			

			
				∈
				𝐷
			

			

				∗
			

		
	
, 
	
		
			

				𝑧
			

			

				1
			

			
				≠
				𝑧
			

			

				2
			

		
	
, let 
	
		
			

				𝑧
			

			

				0
			

			
				=
				(
				𝑧
			

			

				1
			

			
				+
				𝑧
			

			

				2
			

			
				)
				/
				2
			

		
	
, 
	
		
			
				𝑟
				=
				|
				𝑧
			

			

				1
			

			
				−
				𝑧
			

			

				2
			

			
				|
				/
				2
			

		
	
, and 
	
		
			
				𝑑
				=
				4
				𝑏
				+
				3
			

		
	
. We shall prove that 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 can be joined by an arc in 
	
		
			

				𝐷
			

			

				∗
			

			

				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				𝑑
				𝑟
				)
			

		
	
.If 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 can not be joined by any arc in 
	
		
			

				𝐷
			

			

				∗
			

			

				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				𝑑
				𝑟
				)
			

		
	
, then 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 must be in the different components of 
	
		
			

				𝐷
			

			

				∗
			

			

				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				𝑑
				𝑟
				)
			

		
	
, and hence 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 must be in the different components of 
	
		
			

				𝐷
			

			

				∗
			

			

				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				(
				𝑑
				/
				2
				)
				𝑟
				)
			

		
	
. There exist points 
	
		
			

				𝑦
			

			

				1
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			
				∈
				𝜕
				𝐷
			

			

				∗
			

			

				⧵
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				(
				𝑑
				/
				2
				)
				𝑟
				)
			

		
	
 such that 
	
		
			
				𝛽
				∩
				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
				≠
				∅
			

		
	
 for any arc 
	
		
			
				𝛽
				⊆
				𝐷
			

		
	
 joining 
	
		
			

				𝑦
			

			

				1
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

		
	
.Since 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-cigar domain, hence there exists an arc 
	
		
			
				𝛾
				⊆
				𝐷
			

		
	
 joining 
	
		
			

				𝑦
			

			

				1
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

		
	
 such that 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑦
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑦
				
				
				≤
				𝑏
				𝑑
				(
				𝑦
				,
				𝜕
				𝐷
				)
			

		
	

						for all 
	
		
			
				𝑦
				∈
				𝛾
			

		
	
.Let 
	
		
			

				𝑦
			

			

				0
			

			
				∈
				𝛾
				∩
				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
; then
							
	
 		
 			
				(
				2
				6
				)
			
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑦
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑦
			

			

				0
			

			
				
				𝑦
				
				
				≤
				𝑏
				𝑑
			

			

				0
			

			
				
				,
				𝑑
				
				𝑦
				,
				𝜕
				𝐷
			

			

				0
			

			
				
				≤
				|
				|
				𝑦
				,
				𝜕
				𝐷
			

			

				0
			

			
				−
				𝑧
			

			

				𝑗
			

			
				|
				|
				≤
				2
				𝑟
				,
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑦
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑦
			

			

				0
			

			
				
				
				≥
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				|
				|
				𝑦
			

			

				𝑗
			

			
				−
				𝑦
			

			

				0
			

			
				|
				|
				≥
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				|
				|
				𝑦
			

			

				𝑗
			

			
				−
				𝑧
			

			

				0
			

			
				|
				|
				−
				|
				|
				𝑦
			

			

				0
			

			
				−
				𝑧
			

			

				0
			

			
				|
				|
				
				≥
				
				𝑑
			

			
				
			
			
				2
				
				−
				1
				𝑟
				.
			

		
	

						It follows from (26) and (27) that 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑑
				≤
				4
				𝑏
				+
				2
				,
			

		
	

						which contradicts with 
	
		
			
				𝑑
				=
				4
				𝑏
				+
				3
			

		
	
. Hence 
	
		
			

				𝑧
			

			

				1
			

		
	
 and 
	
		
			

				𝑧
			

			

				2
			

		
	
 can be joined by an arc 
	
		
			
				𝛼
				⊆
				𝐷
			

			

				∗
			

			

				∩
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑧
			

			

				0
			

			
				,
				𝑑
				𝑟
				)
			

		
	
 with 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑧
				d
				i
				a
				(
				𝛼
				)
				≤
				2
				𝑑
				𝑟
				=
				(
				4
				𝑏
				+
				3
				)
			

			

				1
			

			
				−
				𝑧
			

			

				2
			

			
				|
				|
				.
			

		
	

						This shows that 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a 
	
		
			
				(
				4
				𝑏
				+
				3
				)
			

		
	
-arcwise connected domain.
Lemma 7.  If 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 is a 
	
		
			

				𝐾
			

		
	
-quasiconformal mapping, and 
	
		
			
				𝑐
				≥
				1
			

		
	
 is a constant, then for any 
	
		
			
				𝑥
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				+
				∞
			

		
	
, we have 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐿
				
				
				𝑥
				𝑥
				,
				𝑓
				,
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				
				
				≤
				𝑎
				𝑟
				,
			

		
	

						where 
	
		
			

				𝑥
			

			

				
			

			
				=
				𝑓
				(
				𝑥
				)
			

		
	
, 
	
		
			

				𝑓
			

			
				−
				1
			

		
	
 is the inverse of 
	
		
			

				𝑓
			

		
	
, and 
	
		
			
				𝑎
				=
				𝑎
				(
				𝐾
				,
				𝑐
				)
			

		
	
 is a constant which depends only on 
	
		
			

				𝐾
			

		
	
 and 
	
		
			

				𝑐
			

		
	
.
Proof. Let 
	
		
			

				Γ
			

		
	
 be the curve family which joins 
	
		
			

				𝑆
			

			

				1
			

			
				(
				𝑥
				,
				𝑐
				𝐿
				(
				𝑥
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				)
				)
			

		
	
 and 
	
		
			
				𝜕
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
			

			

				
			

			
				,
				𝑟
				)
				)
				)
			

		
	
 in 
	
		
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑐
				𝐿
				(
				𝑥
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				)
				)
				⧵
			

			
				
			
			

				𝑓
			

			
				−
				1
			

			
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
			

			

				
			

			
				,
				𝑟
				)
				)
			

		
	
; 
	
		
			
				𝑀
				(
				Γ
				)
			

		
	
 denotes the modulus of 
	
		
			

				Γ
			

		
	
, 
	
		
			

				Γ
			

			

				
			

			
				=
				𝑓
				(
				Γ
				)
			

		
	
. Then from the comparison principle of modulus and the result given in [1, 7.5] we get 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝑀
				(
				Γ
				)
				≥
				2
				𝜋
			

			
				
			
			
				
				
				𝑥
				l
				o
				g
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				
				
				𝑥
				,
				𝑟
				/
				𝑙
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑀
				
				Γ
				,
				𝑟
				
				
			

			

				
			

			
				
				≤
				2
				𝜋
			

			
				
			
			
				
				𝑙
				
				
				𝑥
				l
				o
				g
				𝑥
				,
				𝑓
				,
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				
				.
				,
				𝑟
				
				
				/
				𝑟
			

		
	

						According to the properties of 
	
		
			

				𝐾
			

		
	
-quasiconformal mapping in [1], we have 
							
	
 		
 			
				(
				3
				2
				)
			
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				Γ
				𝐾
				𝑀
			

			

				
			

			
				
				𝑀
				
				Γ
				≥
				𝑀
				(
				Γ
				)
				≥
			

			

				
			

			

				
			

			
				
			
			
				𝐾
				𝐿
				
				𝑥
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				
				,
				𝑟
			

			
				
			
			
				𝑙
				
				𝑥
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				
				,
				𝑟
				≤
				𝑐
			

			

				
			

			
				=
				𝑐
			

			

				
			

			
				(
				𝐾
				)
				,
			

		
	

						where 
	
		
			

				𝑐
			

			

				
			

			
				(
				𝐾
				)
			

		
	
 is a constant which depends only on 
	
		
			

				𝐾
			

		
	
.It follows from (31)–(33) that 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑙
				
				
				𝑥
				𝑥
				,
				𝑓
				,
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				
				
			

			
				
			
			
				𝑟
				≤
				
				𝑐
				𝑐
			

			

				
			

			

				
			

			

				𝐾
			

			

				.
			

		
	

						The same reason to get (33) implies 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝐿
				
				
				𝑥
				𝑥
				,
				𝑓
				,
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				
				
			

			
				
			
			
				𝑙
				
				
				𝑥
				𝑥
				,
				𝑓
				,
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				
				
				≤
				𝑐
			

			

				
			

			

				.
			

		
	

						It follows from (34) and (35) that 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝐿
				
				
				𝑥
				𝑥
				,
				𝑓
				,
				𝑐
				𝐿
			

			

				
			

			
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑟
				
				
			

			
				
			
			
				𝑟
				≤
				𝑐
			

			

				
			

			
				
				𝑐
				𝑐
			

			

				
			

			

				
			

			

				𝐾
			

			
				=
				𝑎
				.
			

		
	

Lemma 8.  Suppose that 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 is a 
	
		
			

				𝐾
			

		
	
-quasiconformal mapping. If 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-cigar domain for some 
	
		
			
				𝑏
				>
				0
			

		
	
, then 
	
		
			

				𝐷
			

			

				
			

			
				=
				𝑓
				(
				𝐷
				)
			

		
	
 is a 
	
		
			

				𝑏
			

			

				
			

		
	
-cigar domain. In here 
	
		
			

				𝑏
			

			

				
			

			
				=
				𝑏
			

			

				
			

			
				(
				𝑏
				,
				𝐾
				)
			

		
	
 is a constant which depends only on 
	
		
			

				𝑏
			

		
	
 and 
	
		
			

				𝐾
			

		
	
.
Proof. For any points 
	
		
			

				𝑦
			

			

				1
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			
				∈
				𝐷
			

			

				
			

		
	
, let 
	
		
			

				𝑥
			

			

				1
			

			
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝑦
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				𝑥
			

			

				2
			

			
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝑦
			

			

				2
			

			

				)
			

		
	
. Since 
	
		
			

				𝐷
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-cigar domain, hence there exists an arc 
	
		
			
				𝛾
				⊆
				𝐷
			

		
	
 joining 
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 such that 
	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				d
				i
				a
				(
				𝛾
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝑥
				)
				)
				≤
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝛾
			

		
	
. Let 
	
		
			

				𝛾
			

			

				
			

			
				=
				𝑓
				(
				𝛾
				)
			

		
	
; then 
	
		
			

				𝛾
			

			

				
			

		
	
 is an arc joining 
	
		
			

				𝑦
			

			

				1
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

		
	
 in 
	
		
			

				𝐷
			

			

				
			

		
	
. For any 
	
		
			
				𝑦
				∈
				𝛾
			

			

				
			

		
	
, let 
	
		
			
				𝑥
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝑦
				)
			

		
	
; then 
	
		
			
				𝑥
				∈
				𝛾
			

		
	
 with 
	
		
			
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				d
				i
				a
				(
				𝛾
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝑥
				)
				)
				≤
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
			

		
	
.Without loss of generality, we assume that 
	
		
			
				d
				i
				a
				(
				𝛾
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
				)
				)
				≤
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
			

		
	
; then 
	
		
			
				𝛾
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
				)
				⊆
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
				)
			

		
	
 and 
	
		
			

				𝛾
			

			

				
			

			
				(
				𝑦
			

			

				1
			

			
				,
				𝑦
				)
				=
				𝑓
				(
				𝛾
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
				)
				)
				⊆
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑦
				,
				𝐿
				(
				𝑥
				,
				𝑓
				,
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
				)
				)
			

		
	
. From Lemma 7 and the fact 
	
		
			
				𝐿
				(
				𝑥
				,
				𝑓
				,
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
				)
				≤
				𝐿
				(
				𝑥
				,
				𝑓
				,
				𝑏
				𝐿
				(
				𝑦
				,
				𝑓
			

			
				−
				1
			

			
				,
				𝑑
				(
				𝑦
				,
				𝜕
				𝐷
			

			

				
			

			
				)
				)
				)
			

		
	
 we know that there exists constant 
	
		
			

				𝑏
			

			

				
			

			
				=
				𝑏
			

			

				
			

			
				(
				𝑏
				,
				𝐾
				)
			

		
	
 which depends only on 
	
		
			

				𝑏
			

		
	
 and 
	
		
			

				𝐾
			

		
	
 such that 
	
		
			
				𝐿
				(
				𝑥
				,
				𝑓
				,
				𝑏
				𝑑
				(
				𝑥
				,
				𝜕
				𝐷
				)
				)
				≤
				(
				𝑏
			

			

				
			

			
				/
				2
				)
				𝑑
				(
				𝑦
				,
				𝜕
				𝐷
			

			

				
			

			

				)
			

		
	
. This implies 
	
		
			

				𝛾
			

			

				
			

			
				(
				𝑦
			

			

				1
			

			
				,
				𝑦
				)
				⊆
			

			
				
			
			

				𝐵
			

			

				2
			

			
				(
				𝑦
				,
				(
				𝑏
			

			

				
			

			
				/
				2
				)
				𝑑
				(
				𝑦
				,
				𝜕
				𝐷
			

			

				
			

			
				)
				)
			

		
	
. Therefore, 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				
				𝛾
				d
				i
				a
			

			

				
			

			
				
				𝑦
			

			

				1
			

			
				,
				𝑦
				
				
				≤
				𝑏
			

			

				
			

			
				𝑑
				
				𝑦
				,
				𝜕
				𝐷
			

			

				
			

			
				
				,
				m
				i
				n
			

			
				𝑗
				=
				1
				,
				2
			

			
				
				𝛾
				
				𝑦
				d
				i
				a
			

			

				𝑗
			

			
				,
				𝑦
				
				
				≤
				𝑏
			

			

				
			

			
				𝑑
				
				𝑦
				,
				𝜕
				𝐷
			

			

				
			

			
				
				.
			

		
	

						This shows that 
	
		
			

				𝐷
			

			

				
			

		
	
 is a 
	
		
			

				𝑏
			

			

				
			

		
	
-cigar domain.
Lemma 9 (see [15]).  Let 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 be a homeomorphism. If there exists a constant 
	
		
			
				𝑐
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				d
				i
				a
				(
				𝑓
				(
				𝐵
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑟
				)
				)
				)
			

			

				2
			

			
				
				𝑓
				
				𝐵
				≤
				𝑐
				⋅
				𝑚
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				
				
			

		
	

						for all 
	
		
			
				𝑥
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				∞
			

		
	
; then 
	
		
			

				𝑓
			

		
	
 is a quasiconformal mapping, where 
	
		
			
				𝑚
				[
				𝑓
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				)
				]
			

		
	
 denotes the 
	
		
			

				2
			

		
	
-dimensional 
	
		
			
				𝐿
				𝑒
				𝑏
				𝑒
				𝑠
				𝑔
				𝑢
				𝑒
			

		
	
 measure of 
	
		
			
				𝑓
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				)
			

		
	
.
Lemma 10.  Let 
	
		
			
				𝑓
				;
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 be a homeomorphism. If 
	
		
			

				𝑓
			

		
	
 maps any cigar domain 
	
		
			

				𝐷
			

		
	
 onto a cigar domain 
	
		
			

				𝐷
			

			

				
			

			
				=
				𝑓
				(
				𝐷
				)
			

		
	
, then 
	
		
			

				𝑓
			

		
	
 is a quasiconformal mapping.
Proof. For any 
	
		
			
				𝑥
				∈
				𝑅
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				∞
			

		
	
, choose 
	
		
			
				𝑦
				∈
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
 such that 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				
				𝑓
				
				𝐵
				d
				i
				a
			

			

				2
			

			
				|
				|
				|
				|
				.
				(
				𝑥
				,
				𝑟
				)
				
				
				≤
				3
				𝑓
				(
				𝑦
				)
				−
				𝑓
				(
				𝑥
				)
			

		
	
It is easy to see that 
	
		
			

				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
 is a 1-cigar domain if we take 
	
		
			
				𝛾
				=
				[
				𝑥
			

			

				1
			

			
				,
				𝑥
				]
				∪
				[
				𝑥
			

			

				2
			

			
				,
				𝑥
				]
			

		
	
 for any 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				∈
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
, where 
	
		
			
				[
				𝑥
			

			

				𝑗
			

			
				,
				𝑥
				]
			

		
	
 denotes the closed line segment joining 
	
		
			

				𝑥
			

			

				𝑗
			

		
	
 and 
	
		
			

				𝑥
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
			

		
	
. By the assumption of Lemma 10 we know that there exists a constant 
	
		
			
				𝑏
				>
				0
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				)
			

		
	
 is a 
	
		
			

				𝑏
			

		
	
-cigar domain; hence there exists an arc 
	
		
			
				𝛾
				⊆
				𝑓
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				)
			

		
	
 joining 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝑦
				)
			

		
	
 with 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				
				𝐵
				m
				i
				n
				{
				d
				i
				a
				(
				𝛾
				(
				𝑓
				(
				𝑥
				)
				,
				𝑧
				)
				)
				,
				d
				i
				a
				(
				𝛾
				(
				𝑓
				(
				𝑦
				)
				,
				𝑧
				)
				)
				}
				≤
				𝑏
				𝑑
				𝑧
				,
				𝜕
				𝑓
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				
				
			

		
	

						for all 
	
		
			
				𝑧
				∈
				𝛾
			

		
	
. If we choose 
	
		
			

				𝑧
			

			

				0
			

			
				∈
				𝛾
			

		
	
 such that 
	
		
			
				d
				i
				a
				(
				𝛾
				(
				𝑓
				(
				𝑥
				)
				,
				𝑧
			

			

				0
			

			
				)
				)
				=
				d
				i
				a
				(
				𝛾
				(
				𝑓
				(
				𝑦
				)
				,
				𝑧
			

			

				0
			

			
				)
				)
			

		
	
, then (39) and (40) imply 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				
				𝑧
				d
				i
				a
			

			

				0
			

			
				
				𝐵
				,
				𝜕
				𝑓
			

			

				2
			

			
				≥
				
				𝛾
				
				(
				𝑥
				,
				𝑟
				)
				
				
				d
				i
				a
				𝑓
				(
				𝑥
				)
				,
				𝑧
			

			

				0
			

			
				
				
			

			
				
			
			
				𝑏
				≥
				d
				i
				a
				(
				𝛾
				(
				𝑓
				(
				𝑥
				)
				,
				𝑓
				(
				𝑦
				)
				)
				)
			

			
				
			
			
				≥
				|
				|
				|
				|
				2
				𝑏
				𝑓
				(
				𝑥
				)
				−
				𝑓
				(
				𝑦
				)
			

			
				
			
			
				≥
				
				𝑓
				
				𝐵
				2
				𝑏
				d
				i
				a
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				
				
			

			
				
			
			
				.
				6
				𝑏
			

		
	

						This yields
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝐵
			

			

				2
			

			
				
				𝑧
			

			

				0
			

			
				,
				
				𝑓
				
				𝐵
				d
				i
				a
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				
				
			

			
				
			
			
				
				
				𝐵
				6
				𝑏
				⊆
				𝑓
			

			

				2
			

			
				
				,
				𝜋
				
				(
				𝑥
				,
				𝑟
				)
				d
				i
				a
				[
				𝑓
				(
				𝐵
			

			

				2
			

			
				(
				𝑥
				,
				𝑟
				)
				)
				]
			

			
				
			
			
				
				6
				𝑏
			

			

				2
			

			
				
				𝑓
				
				𝐵
				≤
				𝑚
			

			

				2
			

			
				,
				
				(
				𝑥
				,
				𝑟
				)
				
				
				d
				i
				a
				(
				𝑓
				(
				𝐵
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑟
				)
				)
				)
			

			

				2
			

			
				≤
				3
				6
				𝑏
			

			

				2
			

			
				
			
			
				𝜋
				𝑚
				
				𝑓
				
				𝐵
			

			

				2
			

			
				.
				(
				𝑥
				,
				𝑟
				)
				
				
			

		
	

						From the above argument and Lemma 9 we know that 
	
		
			

				𝑓
			

		
	
 is a quasiconformal mapping.
Proof of Theorem 1. Consider the following. Necessity. For any quasiconformal mapping 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 and any arcwise connected domain 
	
		
			
				𝐷
				⊆
				𝑅
			

			

				2
			

		
	
, we know that 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a cigar domain by Lemma 3. This and Lemma 8 imply that 
	
		
			
				𝑓
				(
				𝐷
			

			

				∗
			

			

				)
			

		
	
 is a cigar domain, and then 
	
		
			

				𝐷
			

			

				
			

			
				=
				𝑓
				(
				𝐷
				)
				=
				(
				𝑓
				(
				𝐷
			

			

				∗
			

			
				)
				)
			

			

				∗
			

		
	
 is an arcwise connected domain by Lemma 6.Sufficiency. To prove a homeomorphism 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 is a quasiconformal mapping, making use of Lemma 10, we need only to prove that 
	
		
			

				𝐷
			

			

				
			

			
				=
				𝑓
				(
				𝐷
				)
			

		
	
 is a cigar domain for any cigar domain 
	
		
			

				𝐷
			

		
	
. In fact, for any cigar domain 
	
		
			

				𝐷
			

		
	
, Lemma 6 implies 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is an arcwise connected domain. From this and the condition of Theorem 1 we know that 
	
		
			
				𝑓
				(
				𝐷
			

			

				∗
			

			

				)
			

		
	
 is an arcwise connected domain; then from Lemma 3 we know that 
	
		
			
				(
				𝑓
				(
				𝐷
			

			

				∗
			

			
				)
				)
			

			

				∗
			

			
				=
				𝑓
				(
				𝐷
				)
				=
				𝐷
			

			

				
			

		
	
 is a cigar domain.
Proof of Theorem 2. Consider the following.Necessity. Let 
	
		
			

				𝐷
			

		
	
 be a quasidisk; then there exists a quasiconformal mapping 
	
		
			
				𝑓
				∶
				𝑅
			

			

				2
			

			
				→
				𝑅
			

			

				2
			

		
	
 such that 
	
		
			
				𝐷
				=
				𝑓
				(
				𝐵
			

			

				2
			

			

				)
			

		
	
.(1)It is obvious that 
	
		
			

				𝐵
			

			

				2
			

		
	
 is a 1-arcwise connected domain; then from Theorem 1 we know that 
	
		
			
				𝐷
				=
				𝑓
				(
				𝐵
			

			

				2
			

			

				)
			

		
	
 is an arcwise connected domain.(2)Since 
	
		
			

				𝐵
			

			

				2
			

		
	
 is a 1-cigar domain, hence 
	
		
			
				(
				𝐵
			

			

				2
			

			

				)
			

			

				∗
			

		
	
 is an arcwise connected domain; then Theorem 1 implies that 
	
		
			
				𝑓
				(
				(
				𝐵
			

			

				2
			

			

				)
			

			

				∗
			

			
				)
				=
				𝐷
			

			

				∗
			

		
	
 is an arcwise connected domain.Sufficiency. Suppose that both 
	
		
			

				𝐷
			

		
	
 and 
	
		
			

				𝐷
			

			

				∗
			

		
	
 are arcwise connected domains.(1)Since 
	
		
			

				𝐷
			

		
	
 is an arcwise connected domain, hence 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is a cigar domain by Lemma 3; then Lemma 5 implies that 
	
		
			
				𝐷
				∈
				I
				L
				C
			

		
	
.(2)Since 
	
		
			

				𝐷
			

			

				∗
			

		
	
 is an arcwise connected domain, hence 
	
		
			

				𝐷
			

		
	
 is a cigar domain by Lemma 3; then Lemma 4 implies that 
	
		
			
				𝐷
				∈
				O
				L
				C
			

		
	
.From the above 
	
		
			
				(
				1
				)
			

		
	
 and 
	
		
			
				(
				2
				)
			

		
	
 together with Theorem A we know that 
	
		
			

				𝐷
			

		
	
 is a quasidisk.
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