
Research Article
Rapidly Converging Series for 𝜁(2𝑛 + 1) from Fourier Series

Junesang Choi

Department of Mathematics, Dongguk University, Gyeongju 780-714, Republic of Korea

Correspondence should be addressed to Junesang Choi; junesang@mail.dongguk.ac.kr

Received 23 October 2013; Accepted 20 November 2013; Published 2 January 2014

Academic Editor: Kwang Ho Shon

Copyright © 2014 Junesang Choi.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ever since Euler first evaluated 𝜁(2) and 𝜁(2𝑚), numerous interesting solutions of the problem of evaluating the 𝜁(2𝑚) (𝑚 ∈ N)

have appeared in the mathematical literature. Until now no simple formula analogous to the evaluation of 𝜁(2𝑚) (𝑚 ∈ N) is known
for 𝜁(2𝑚 + 1) (𝑚 ∈ N) or even for any special case such as 𝜁(3). Instead, various rapidly converging series for 𝜁(2𝑚 + 1) have been
developed by many authors. Here, using Fourier series, we aim mainly at presenting a recurrence formula for rapidly converging
series for 𝜁(2𝑚 + 1). In addition, using Fourier series and recalling some indefinite integral formulas, we also give recurrence
formulas for evaluations of 𝛽(2𝑚 + 1) and 𝜁(2𝑚) (𝑚 ∈ N), which have been treated in earlier works.

1. Introduction and Preliminaries

The Riemann zeta function 𝜁(𝑠) is defined by (see, e.g., [1, p.
164])

𝜁 (𝑠) :=
∞

∑
𝑛=1

1

𝑛𝑠
for R (𝑠) > 1. (1)

The Riemann zeta function 𝜁(𝑠) in (1) plays a central role
in the applications of complex analysis to number theory.
The number-theoretic properties of 𝜁(𝑠) are exhibited by
the following result known as Euler’s formula, which gives a
relationship between the set of primes and the set of positive
integers:

𝜁 (𝑠) = ∏
𝑝

(1 − 𝑝
−𝑠

)
−1 for R (𝑠) > 1, (2)

where the product is taken over all primes.
The solution of the so-called Basler problem (cf., e.g., [2],

[3, p. xxii], [4, p.66], [5, pp. 197-198], and [6, p. 364])

𝜁 (2) =
∞

∑
𝑘=1

1

𝑘2
=

𝜋2

6
(3)

was first found in 1735 by Euler (1707–1783) [7], although
Jakob Bernoulli (1654–1705) and Johann Bernoulli (1667–
1748) did their utmost to sum the series in (3). The former of

these Bernoulli brothers did not live to see the solution of the
problem, and the solution became known to the latter soon
after Euler found it (see, for details, Knopp [8, p.238]). Five
years later in 1740, Euler (see [9]; see also [10, pp. 137–153])
succeeded in evaluating all of 𝜁(2𝑛) (𝑛 ∈ N := {1, 2, 3, . . .}):

𝜁 (2𝑛) = (−1)
𝑛+1 (2𝜋)2𝑛

2 (2𝑛)!
𝐵
2𝑛

for 𝑛 ∈ N
0
:= N ∪ {0} , (4)

where 𝐵
𝑛
(𝑛 ∈ N

0
) are the 𝑛th Bernoulli numbers defined by

the following generating function (see, e.g., [1, p. 81]):

𝑧

𝑒𝑧 − 1
=
∞

∑
𝑛=0

𝐵
𝑛

𝑧𝑛

𝑛!
for |𝑧| < 2𝜋. (5)

The following recursion formula

𝐵
𝑛
=
𝑛

∑
𝑘=0

(
𝑛
𝑘
)𝐵
𝑘

(𝑛 ∈ N \ {1}) , 𝐵
0
= 1, (6)

can be used for computing Bernoulli numbers. Ever since
Euler first evaluated 𝜁(2) and 𝜁(2𝑛), numerous interesting
solutions of the problem of evaluating the 𝜁(2𝑛) (𝑛 ∈ N) have
appeared in the mathematical literature. Even though there
were certain earlier works which gave a rather long list of
papers and books togetherwith someuseful comments on the
methods of evaluation of 𝜁(2) and 𝜁(2𝑛) (see, e.g., [5, 11, 12]),
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the reader may be referred to the very recent work [13] which
contains an extensive literature of as many as more than 70
papers.

We may recall here a known recursion formula for 𝜁(2𝑛)
(see, e.g., [1, p. 167], [1, Section 4.1], and [14, Theorem I]):

𝜁 (2𝑛) =
2

2𝑛 + 1

𝑛−1

∑
𝑘=1

𝜁 (2𝑘) 𝜁 (2𝑛 − 2𝑘) for 𝑛 ∈ N \ {1} , (7)

which can also be used to evaluate 𝜁(2𝑛) (𝑛 ∈ N \ {1}).
The eta function or the alternating zeta function 𝜂(𝑠) is

defined by

𝜂 (𝑠) :=
∞

∑
𝑛=1

(−1)𝑛−1

𝑛𝑠
for R (𝑠) > 0. (8)

Then it is easy to have the following relation between 𝜁(𝑠) and
𝜂(𝑠):

𝜂 (𝑠) = (1 − 2
1−𝑠

) 𝜁 (𝑠) for R (𝑠) > 1. (9)

The 𝛽-function is defined by

𝛽 (𝑠) :=
∞

∑
𝑗=0

(−1)𝑗

(2𝑗 + 1)
𝑠

for R (𝑠) > 0. (10)

Remark 1. The 𝛽-function (see [15, p. 329]) has been denoted
in several ways, such as 𝜉(𝑠) (see [14]),L(𝑠) (see [15, p. 329];
see also [1, p. 404]), 𝐿(𝑠) (see [16, p. 125] and [17]), 𝜓(𝑠) (see
[18]), Ti

𝑛
(1) (see [19, p. 190]; see also [15, p. 332]), and 𝑆(𝑠, 1/4)

(see [20, p. 375]). Williams [14, p. 22, Theorem II] gave an
interesting companion of the result (7) in the following form:

𝑛

∑
𝑘=1

𝛽 (2𝑘 − 1) 𝛽 (2𝑛 − 2𝑘 + 1)

= (𝑛 −
1

2
) (1 − 2

−2𝑛

) 𝜁 (2𝑛) ,

(11)

which appears erroneously in Hansen [21, p. 357, Entry
(54.7.1)]. Since 𝛽(1) is the well-known Gregory series for 𝜋/4
(with 𝛽(2) being the familiar Catalan constant 𝐺), by setting
𝑛 = 1 in (11), we immediately obtain

𝜁 (2) =
8

3
{𝛽 (1)}

2

=
𝜋2

6
. (12)

Until now no simple formula analogous to (4) is known
for 𝜁(2𝑚+1) or even for any special case such as 𝜁(3). It is not
even knownwhether 𝜁(2𝑚+1) is rational or irrational, except
that the irrationality of 𝜁(3) was proved by Apéry [22]. But it
is known that there are infinitely many 𝜁(2𝑛 + 1) which are
irrational (see [23, 24]). On the other hand, various rapidly
converging series for 𝜁(2𝑚+1) (𝑚 ∈ N) have been developed
by many authors (see, e.g., [25, 26]; see also [1, Chapter
4] and the references cited in the chapter). Very recently,
Choi and Chen [27] gave a double inequality approximating
𝜁(2𝑚+1) (𝑚 ∈ N) by a more rapidly convergent series. Here,
using Fourier series, we aimmainly at presenting a recurrence
formula for rapidly converging series for 𝜁(2𝑚 + 1) (𝑚 ∈
N). In addition, using Fourier series, we also give recurrence
formulas for evaluations of 𝛽(2𝑚 + 1) and 𝜁(2𝑚) (𝑚 ∈ N).

2. Evaluation of 𝛽(2𝑚 + 1) from Fourier Series

Euler proved (see, e.g., [18, p. 1071], [16, p. 125], [15, p. 330],
[17, p. 372], and [19, p. 196]) that

𝛽 (2𝑚 + 1) = (−1)
𝑚

𝐸
2𝑚

22𝑚+2 (2𝑚)!
𝜋
2𝑚+1 for 𝑚 ∈ N

0
, (13)

where 𝐸
2𝑚

are called Euler numbers (see, e.g., [1, pp. 86–89])
defined by

2𝑒𝑧

𝑒2𝑧 + 1
= sech 𝑧 =

∞

∑
𝑚=0

𝐸
𝑚

𝑧𝑚

𝑚!
for |𝑧| <

𝜋

2
. (14)

Here we present a recurrence formula for evaluation of
the 𝛽(2𝑚 + 1) (𝑚 ∈ N) given in (10) by using Fourier series.
To do this, we choose the odd 2𝜋-periodic function 𝑔

𝑚
given

by

𝑔
𝑚

(𝑥) := 𝜋
2

𝑥
2𝑚−1

− 𝑥
2𝑚+1 for − 𝜋 ≤ 𝑥 ≤ 𝜋, 𝑚 ∈ N,

(15)

which is seen to be continuous and piecewise differentiable
on the set of real numbers R. Now we can get the following
Fourier series expansion of 𝑔

𝑚
(𝑥):

𝑥
2𝑚−1

(𝜋
2

− 𝑥
2

) =
∞

∑
𝑛=1

𝑏
𝑛
sin (𝑛𝑥) for 𝑥 ∈ R, (16)

where

𝑏
𝑛
=

2

𝜋
∫
𝜋

0

(𝜋
2

𝑥
2𝑚−1

− 𝑥
2𝑚+1

) sin (𝑛𝑥) 𝑑𝑥 for 𝑛 ∈ N. (17)

Evaluation of 𝑏
𝑛
in (17). We use a known indefinite integral

formula (see, e.g., [28, p. 211, Entry 2.633(1)]) for 𝑚 ∈ N
0

∫𝑥
𝑚 sin (𝑎𝑥) 𝑑𝑥 = −

𝑚

∑
𝑘=0

𝑘! (
𝑚
𝑘
)

𝑥𝑚−𝑘

𝑎𝑘+1
cos(𝑎𝑥 +

1

2
𝑘𝜋) (18)

to get the following two involved integral formulas:

𝜋
2

∫
𝜋

0

𝑥
2𝑚−1 sin (𝑛𝑥) 𝑑𝑥

= −
𝑚−1

∑
𝑘=0

(−1)
𝑛+𝑘

(2𝑘)! (
2𝑚 − 1

2𝑘
)

𝜋2𝑚+1−2𝑘

𝑛2𝑘+1
(𝑚 ∈ N) ,

∫
𝜋

0

𝑥
2𝑚+1 sin (𝑛𝑥) 𝑑𝑥

= −
𝑚

∑
𝑘=0

(−1)
𝑛+𝑘

(2𝑘)! (
2𝑚 + 1

2𝑘
)

𝜋2𝑚+1−2𝑘

𝑛2𝑘+1
(𝑚 ∈ N

0
) .

(19)
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Now setting 𝑥 = 𝜋/2 in (16) and using the evaluation of
𝑏
𝑛
with (19) we get

𝑏
𝑛
= 2(−1)

𝑛+𝑚 (2𝑚 + 1)!

𝑛2𝑚+1

+ 2
𝑚−1

∑
𝑘=0

(−1)
𝑛+𝑘

(2𝑘)! ⋅ {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)}

×
𝜋2(𝑚−𝑘)

𝑛2𝑘+1

= 2
𝑚

∑
𝑘=1

(−1)
𝑛+𝑘

(2𝑘)! {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)}

×
𝜋2(𝑚−𝑘)

𝑛2𝑘+1
(𝑛,𝑚 ∈ N) ,

(20)

and after some simplifications we finally obtain the result
stated inTheorem 2.

Theorem 2. The following recurrence formula for evaluation
of 𝛽(2𝑚 + 1) (𝑚 ∈ N) holds. For 𝑚 ∈ N,

(−1)
𝑚

(2𝑚 + 1)!𝛽 (2𝑚 + 1)

= −
3

22𝑚+2
𝜋
2𝑚+1

+
𝑚−1

∑
𝑘=1

(−1)
𝑘+1

(2𝑘)! {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)}

× 𝜋
2𝑚−2𝑘

𝛽 (2𝑘 + 1) ,

(21)

where the empty sum is (as usual) understood to be nil
throughout this paper.

For small values of 𝑚, we have

𝛽 (3) =
𝜋3

32
, 𝛽 (5) =

5

1536
𝜋
5

,

𝛽 (7) =
61

184320
𝜋
7

, 𝛽 (9) =
277

8257536
𝜋
9

, . . . .
(22)

Remark 3. In order to get the evaluation of 𝛽(3) and a rapidly
converging series representation of 𝜁(3) from Fourier series,
instead of using the periodic version of 𝑥3 which is not
continuous, Scheufens [29] made a good choice of the odd
2𝜋-periodic function 𝑓 given by

𝑓 (𝑥) = 𝜋
2

𝑥 − 𝑥
3 for − 𝜋 ≤ 𝑥 ≤ 𝜋, (23)

which is now continuous and piecewise differentiable. Here
we use the function 𝑔

𝑚
(𝑥) in (15) which is a natural modifica-

tion of the Scheufens chosen function (23) to give the results
in this and the next sections.

Chen [17] used the even 2𝜋-periodic function 𝑓(𝑥) = 𝑥2𝑘

on [−𝜋, 𝜋] to get a recurrence formula for 𝛽(2𝑚+1). Yue and
Williams [20] used residue calculus to derive a recurrence
formula for 𝛽(2𝑚 + 1). Butzer and Hauss [15] presented
diverse single and multiple integral representations of 𝛽(𝑚).

3. A Recurrence Formula for a Rapidly
Converging Series for 𝜁(2𝑚 + 1)

We begin by recalling some elementary known or easily
derivable formulas for the binomial coefficients as in the
lemma given below.

Lemma 4. Each of the following formulas holds:

(1 − 𝑥)
𝑛

=
𝑛

∑
𝑗=0

(−1)
𝑗

(
𝑛
𝑗
)𝑥
𝑗

(𝑛 ∈ N
0
; 𝑥 ∈ C) , (24)

where C denotes the set of complex numbers,

𝑛𝑥(1 − 𝑥)
𝑛−1

=
𝑛

∑
𝑗=1

(−1)
𝑗+1

𝑗 (
𝑛
𝑗
) 𝑥
𝑗

(𝑛 ∈ N; 𝑥 ∈ C) , (25)

𝑛𝑥(1 − 𝑥)
𝑛−1

− 𝑛 (𝑛 − 1) 𝑥
2

(1 − 𝑥)
𝑛−2

=
𝑛

∑
𝑗=1

(−1)
𝑗+1

𝑗
2

(
𝑛
𝑗
)𝑥
𝑗

(𝑛 ∈ N; 𝑥 ∈ C) ,
(26)

(
𝑥
𝑛
) =

𝑥

𝑛
(
𝑥 − 1
𝑛 − 1

) ⇐⇒
1

𝑥
(
𝑥
𝑛
) =

1

𝑛
(
𝑥 − 1
𝑛 − 1

) , (27)

where ( 𝑥
𝑛
) is defined, for 𝑥 ∈ C, by

(
𝑥
𝑛
) =

{
{
{

𝑥 (𝑥 − 1) ⋅ ⋅ ⋅ (𝑥 − 𝑛 + 1)

𝑛!
(𝑛 ∈ N) ,

1 (𝑛 = 0) .
(28)

Lemma 5. For each 𝑚 ∈ N and 𝑥 ∈ C, one has L
𝑚
(𝑥) =

R
𝑚
(𝑥), where, for convenience,

L
𝑚

(𝑥) := 𝑥
2𝑚+1

𝑚

∑
𝑛=0

2

2𝑛 + 1
(
1

𝑥
)
2𝑛+1

− 𝑥
2𝑚−1

𝑚−1

∑
𝑛=0

2

2𝑛 + 1
(
1

𝑥
)
2𝑛+1

,

R
𝑚

(𝑥) := 𝑥
2𝑚−1

×
2𝑚−1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 − 1

𝑗
) {(𝑥 + 1)

𝑗

− (𝑥 − 1)
𝑗

}

× (
1

𝑥
)
𝑗

− 𝑥
2𝑚+1

×
2𝑚+1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 + 1

𝑗
) {(𝑥 + 1)

𝑗

− (𝑥 − 1)
𝑗

}

× (
1

𝑥
)
𝑗

.

(29)
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Proof. We proceed to prove by induction on 𝑚 ∈ N. We can
give a direct evaluation to check the first three ones:

L
1
(𝑥) = −

4

3
+ 2𝑥
2

= R
1
(𝑥) ,

L
2
(𝑥) = −

4

15
−

4

3
𝑥
2

+ 2𝑥
4

= R
2
(𝑥) ,

L
3
(𝑥) = −

4

35
−

4

15
𝑥
2

−
4

3
𝑥
4

+ 2𝑥
6

= R
3
(𝑥) .

(30)

Now assume thatL
𝑚
(𝑥) = R

𝑚
(𝑥) for some𝑚 ∈ N.Then

we have to show that

L
𝑚+1

(𝑥) = R
𝑚+1

(𝑥) . (31)

By using the induction hypothesis, we find

L
𝑚+1

(𝑥) = −
4

(2𝑚 + 1) (2𝑚 + 3)
+ 𝑥
2

R
𝑚

(𝑥) . (32)

In view of (31) and (32), it is enough to show that

P
𝑚

(𝑥) := 𝑥
2

R
𝑚

(𝑥) − R
𝑚+1

(𝑥) =
4

(2𝑚 + 1) (2𝑚 + 3)

(𝑚 ∈ N) ,

(33)

where, for convenience,P
𝑚
(𝑥) = P

𝑚,1
(𝑥) + P

𝑚,2
(𝑥) with

P
𝑚,1

(𝑥) :=
2𝑚+3

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 + 3

𝑗
) {(𝑥 + 1)

𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+3−𝑗

−
2𝑚+1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 + 1

𝑗
) {(𝑥 + 1)

𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+3−𝑗

,

P
𝑚,2

(𝑥) :=
2𝑚−1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 − 1

𝑗
) {(𝑥 + 1)

𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+1−𝑗

−
2𝑚+1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 + 1

𝑗
) {(𝑥 + 1)

𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+1−𝑗

.

(34)

We first try to evaluateP
𝑚,1

(𝑥). We find

P
𝑚,1

(𝑥)

=
2𝑚+3

∑
𝑗=1

(−1)𝑗

𝑗
{(

2𝑚 + 3
𝑗

) − (
2𝑚 + 1

𝑗
)}

⋅ {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+3−𝑗

=
2𝑚+3

∑
𝑗=1

(−1)
𝑗

(4𝑚 + 5) − 𝑗

(2𝑚 + 3 − 𝑗) (2𝑚 + 2 − 𝑗)
(
2𝑚 + 1

𝑗
)

⋅ {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+3−𝑗

.

(35)

Let us consider the following partial fraction:

(4𝑚 + 5) − 𝑗

(2𝑚 + 3 − 𝑗) (2𝑚 + 2 − 𝑗)
=

4𝑚 + 5

2𝑚 + 2 − 𝑗
−

4𝑚 + 5

2𝑚 + 3 − 𝑗

−
𝑗

2𝑚 + 2 − 𝑗
+

𝑗

2𝑚 + 3 − 𝑗
.

(36)

Using (27), we have

1

2𝑚 + 2 − 𝑗
(
2𝑚 + 1

𝑗
) =

1

2𝑚 + 2
(

2𝑚 + 2
2𝑚 + 2 − 𝑗

)

=
1

2𝑚 + 2
(
2𝑚 + 2

𝑗
) ,

1

2𝑚 + 3 − 𝑗
(
2𝑚 + 1

𝑗
) =

2𝑚 + 2 − 𝑗

(2𝑚 + 2) (2𝑚 + 3)
(
2𝑚 + 3

𝑗
) .

(37)

Applying the last two identities to the last expression of
P
𝑚,1

(𝑥), we can separate P
𝑚,1

(𝑥) into six polynomials as
follows:

P
𝑚,1

(𝑥) =
6

∑
𝑘=1

𝛼
𝑚,𝑘

(𝑥) , (38)

where

𝛼
𝑚,1

(𝑥) :=
4𝑚 + 5

2𝑚 + 2

2𝑚+2

∑
𝑗=1

(−1)
𝑗

(
2𝑚 + 2

𝑗
)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+3−𝑗

,

𝛼
𝑚,2

(𝑥) :=
4𝑚 + 5

2𝑚 + 3

2𝑚+3

∑
𝑗=1

(−1)
𝑗+1

(
2𝑚 + 3

𝑗
)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+3−𝑗

,
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𝛼
𝑚,3

(𝑥)

:= −
4𝑚 + 5

(2𝑚 + 2) (2𝑚 + 3)

2𝑚+3

∑
𝑗=1

(−1)
𝑗+1

𝑗 (
2𝑚 + 3

𝑗
)

⋅ {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+3−𝑗

,

𝛼
𝑚,4

(𝑥)

:=
1

2𝑚 + 2

2𝑚+2

∑
𝑗=1

(−1)
𝑗

𝑗 (
2𝑚 + 2

𝑗
)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+3−𝑗

,

𝛼
𝑚,5

(𝑥)

:=
1

2𝑚 + 3

2𝑚+3

∑
𝑗=1

(−1)
𝑗

𝑗 (
2𝑚 + 3

𝑗
)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+3−𝑗

,

𝛼
𝑚,6

(𝑥)

:=
1

(2𝑚 + 2) (2𝑚 + 3)

2𝑚+3

∑
𝑗=1

(−1)
𝑗+1

𝑗
2

(
2𝑚 + 3

𝑗
)

⋅ {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+3−𝑗

.

(39)

Choosing to use some identities in Lemma 4, we can evaluate
𝛼
𝑚,𝑘

(𝑥) as follows:

𝛼
𝑚,1

(𝑥) = 0, 𝛼
𝑚,2

(𝑥) = 4 −
2

2𝑚 + 3
,

𝛼
𝑚,3

(𝑥) = −4 −
1

𝑚 + 1
, 𝛼

𝑚,4
(𝑥) = −2𝑥

2

,

𝛼
𝑚,5

(𝑥) = −2, 𝛼
𝑚,6

(𝑥) = 2 +
1

𝑚 + 1
+ 2𝑥
2

.

(40)

We thus have

P
𝑚,1

(𝑥) =
6

∑
𝑘=1

𝛼
𝑚,𝑘

(𝑥) = −
2

2𝑚 + 3
. (41)

Similarly we find

P
𝑚,2

(𝑥) =
6

∑
𝑘=1

𝛽
𝑚,𝑘

(𝑥) , (42)

where

𝛽
𝑚,1

(𝑥)

=
1

2𝑚

2𝑚

∑
𝑗=1

(−1)
𝑗

𝑗 (
2𝑚
𝑗

) {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

}

× 𝑥
2𝑚+1−𝑗

,

𝛽
𝑚,2

(𝑥)

=
1

2𝑚 + 1

2𝑚+1

∑
𝑗=1

(−1)
𝑗+1

𝑗 (
2𝑚 + 1

𝑗
)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+1−𝑗

,

𝛽
𝑚,3

(𝑥)

=
1

2𝑚 (2𝑚 + 1)

2𝑚+1

∑
𝑗=1

(−1)
𝑗

𝑗
2

(
2𝑚 + 1

𝑗
)

⋅ {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+1−𝑗

,

𝛽
𝑚,4

(𝑥)

= −
4𝑚 + 1

2𝑚

2𝑚

∑
𝑗=1

(−1)
𝑗

(
2𝑚
𝑗

)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+1−𝑗

,

𝛽
𝑚,5

(𝑥)

=
4𝑚 + 1

2𝑚 + 1

2𝑚+1

∑
𝑗=1

(−1)
𝑗

(
2𝑚 + 1

𝑗
)

× {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+1−𝑗

,

𝛽
𝑚,6

(𝑥)

=
4𝑚 + 1

2𝑚 (2𝑚 + 1)

2𝑚+1

∑
𝑗=1

(−1)
𝑗+1

𝑗 (
2𝑚 + 1

𝑗
)

⋅ {(𝑥 + 1)
𝑗

− (𝑥 − 1)
𝑗

} 𝑥
2𝑚+1−𝑗

.

(43)

Similarly as in evaluating 𝛼
𝑚,𝑘

(𝑥), we have

𝛽
𝑚,1

(𝑥) = 2𝑥
2

, 𝛽
𝑚,2

(𝑥) = 2,

𝛽
𝑚,3

(𝑥) = −2 −
1

𝑚
− 2𝑥
2

, 𝛽
𝑚,4

(𝑥) = 0,

𝛼
𝑚,5

(𝑥) = −4 +
2

2𝑚 + 1
, 𝛽

𝑚,6
(𝑥) = 4 +

1

𝑚
.

(44)

We thus obtain

P
𝑚,2

(𝑥) =
6

∑
𝑘=1

𝛽
𝑚,𝑘

(𝑥) =
2

2𝑚 + 1
. (45)
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Now it is easy to see that

P
𝑚

(𝑥) = P
𝑚,1

(𝑥) + P
𝑚,2

(𝑥) =
4

(2𝑚 + 1) (2𝑚 + 3)
. (46)

This completes the proof of (33) and so does Lemma 5.

Theorem 6. One has a recurrence formula for a rapidly
converging series for 𝜁(2𝑚 + 1). For 𝑚 ∈ N,

𝑚

∑
𝑘=1

(−1)
𝑘+1

𝜋
2(𝑚−𝑘)

(2𝑘)! ⋅ {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)}

× (1 − 2
−2𝑘

) 𝜁 (2𝑘 + 1)

=
2𝜋2𝑚

4𝑚2 − 1
− 4𝜋
2𝑚

×
∞

∑
𝑛=1

𝜁 (2𝑛)

(2𝑛 + 2𝑚 + 1) (2𝑛 + 2𝑚 − 1) 4𝑛
.

(47)

Proof. We find from (15), (16), and (20) that, for 𝑥 ∈ R and
𝑚 ∈ N,

𝑔
𝑚

(𝑥)

= 2
∞

∑
𝑛=1

[
𝑚

∑
𝑘=1

(−1)
𝑘

𝜋
2(𝑚−𝑘)

(2𝑘)!

⋅ {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)}
(−1)𝑛

𝑛2𝑘+1
] sin (𝑛𝑥) .

(48)

Here we choose a method where the sine function disappears
by using the following well-known result:

∫
∞

0

sin (𝑛𝑥)

𝑥
𝑑𝑥 =

𝜋

2
(𝑛 ∈ N) . (49)

The series for 𝑔
𝑚
(𝑥)/𝑥 obtained by dividing (48) by 𝑥

converges uniformly on R. Indeed, the value of 𝑔
𝑚
(𝑥)/𝑥

at 𝑥 = 0 can be considered as lim
𝑥→0

sin(𝑛𝑥)/𝑥 = 𝑛 ⋅
lim
𝑥→0

sin(𝑛𝑥)/(𝑛𝑥) = 𝑛 and then one may use the
Weierstrass 𝑀-test. We therefore apply termwise integration
to the resulting series and use (49) to get

∫
∞

0

𝑔
𝑚

(𝑥)

𝑥
𝑑𝑥

= 2
∞

∑
𝑛=1

[
𝑚

∑
𝑘=1

(−1)
𝑘

𝜋
2(𝑚−𝑘)

(2𝑘)!

⋅ {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)}
(−1)𝑛

𝑛2𝑘+1
]

× ∫
∞

0

sin (𝑛𝑥)

𝑥

= 𝜋
𝑚

∑
𝑘=1

(−1)
𝑘+1

𝜋
2(𝑚−𝑘)

(2𝑘)!

× {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)} 𝜂 (2𝑘 + 1) ,

(50)

where 𝜂 is the eta function given in (8). Now using the
relationship (9) with 𝑠 = 2𝑘 + 1 gives

𝑚

∑
𝑘=1

(−1)
𝑘+1

𝜋
2(𝑚−𝑘)

(2𝑘)!

× {(
2𝑚 + 1

2𝑘
) − (

2𝑚 − 1
2𝑘

)} ⋅ (1 − 2
−2𝑘

) 𝜁 (2𝑘 + 1)

=
1

𝜋
∫
∞

0

𝑔
𝑚

(𝑥)

𝑥
𝑑𝑥.

(51)

Since 𝑔
𝑚
is 2𝜋-periodic, we have

∫
∞

0

𝑔
𝑚

(𝑥)

𝑥
𝑑𝑥 = ∫

𝜋

0

(𝜋
2

𝑥
2𝑚−2

− 𝑥
2𝑚

) +
∞

∑
𝑘=1

I
𝑘
(𝑚)

=
2𝜋2𝑚+1

4𝑚2 − 1
+
∞

∑
𝑘=1

I
𝑘
(𝑚) ,

(52)

where, for convenience,

I
𝑘
(𝑚)

:= ∫
(2𝑘+1)𝜋

(2𝑘−1)𝜋

𝜋2(𝑥 − 2𝑘𝜋)
2𝑚−1 − (𝑥 − 2𝑘𝜋)

2𝑚+1

𝑥
𝑑𝑥.

(53)

By using the binomial formula and integrating the result-
ing identity, we get

I
𝑘
(𝑚) = 𝜋

2𝑚+1

{(2𝑘)
2𝑚+1

− (2𝑘)
2𝑚−1

} ln 1 + 1/2𝑘

1 − 1/2𝑘

+ 𝜋
2𝑚+1

C
𝑘
(𝑚) ,

(54)

where

C
𝑘
(𝑚)

:= (2𝑘)
2𝑚+1

2𝑚+1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 + 1

𝑗
)

× {(2𝑘 + 1)
𝑗

− (2𝑘 − 1)
𝑗

} (
1

2𝑘
)
𝑗

− (2𝑘)
2𝑚−1

2𝑚−1

∑
𝑗=1

(−1)𝑗

𝑗
(
2𝑚 − 1

𝑗
)

× {(2𝑘 + 1)
𝑗

− (2𝑘 − 1)
𝑗

} (
1

2𝑘
)
𝑗

.

(55)
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Applying the following Maclaurin series

ln 1 + 𝑥

1 − 𝑥
=
∞

∑
𝑛=0

2

2𝑛 + 1
𝑥
2𝑛+1

(−1 < 𝑥 < 1) (56)

to ln(1 + 1/2𝑘)/(1 − 1/2𝑘), in view of Lemma 5, we can show
that

C
𝑘
(𝑚) = (2𝑘)

2𝑚−1

𝑚−1

∑
𝑛=0

2

2𝑛 + 1
(

1

2𝑘
)
2𝑛+1

− (2𝑘)
2𝑚+1

𝑚

∑
𝑛=0

2

2𝑛 + 1
(

1

2𝑘
)
2𝑛+1

.

(57)

We therefore have

I
𝑘
(𝑚)

= 2𝜋
2𝑚+1

[(2𝑘)
2𝑚+1

∞

∑
𝑛=𝑚+1

1

2𝑛 + 1
(

1

2𝑘
)
2𝑛+1

−(2𝑘)
2𝑚−1

∞

∑
𝑛=𝑚

1

2𝑛 + 1
(

1

2𝑘
)
2𝑛+1

]

= 2𝜋
2𝑚+1

[
∞

∑
𝑛=1

1

2𝑛 + 2𝑚 + 1
(

1

2𝑘
)
2𝑛

−
∞

∑
𝑛=1

1

2𝑛 + 2𝑚 − 1
(

1

2𝑘
)
2𝑛

]

= −4𝜋
2𝑚+1

∞

∑
𝑛=1

1

(2𝑛 + 2𝑚 + 1) (2𝑛 + 2𝑚 − 1) 4𝑛
1

𝑘2𝑛
.

(58)

Finally, setting the last expression of I
𝑘
(𝑚) in (52)

and considering (51) yield our desired identity (47). This
completes the proof of Theorem 6.

The special case of (47) when 𝑚 = 1 yields

𝜁 (3) =
4𝜋2

27
−

8𝜋2

9

∞

∑
𝑛=1

𝜁 (2𝑛)

(2𝑛 + 1) (2𝑛 + 3) 4𝑛
, (59)

which, upon using 𝜁(0) = −1/2 (see, e.g., [1, p. 165, (10)]), can
be expressed in a more compact form:

𝜁 (3) = −
8𝜋2

9

∞

∑
𝑛=0

𝜁 (2𝑛)

(2𝑛 + 1) (2𝑛 + 3) 4𝑛
. (60)

The formula (59) or (60) has already been presented (cf., e.g.,
[29, p. 31] and [30, p. 837]).

Remark 7. Since 1 < 𝜁(2𝑛) ≤ 𝜁(2) = 𝜋2/6 < 2 (𝑛 ∈ N), using
the 𝑁th partial sum of the infinite series in (59) or (60), we
can compute 𝜁(3) with an error 𝑅

𝑁
satisfying

󵄨󵄨󵄨󵄨𝑅𝑁
󵄨󵄨󵄨󵄨 <

8𝜋2

9

𝜁 (2𝑁 + 2)

(2𝑁 + 3) (2𝑁 + 5)

∞

∑
𝑛=𝑁+1

1

4𝑛

<
16𝜋2

27

1

(2𝑁 + 3) (2𝑁 + 5) 4𝑁
.

(61)

Using the 45th partial sum in (60) we have an error bound
|𝑅
45
| < 6 ⋅ 10−31, and approximately the value 𝜁(3) =

1.20205690315959428539973816151. For comparison, using
the𝑁th partial sum of 𝜁(3) = ∑

∞

𝑛=1
1/𝑛3, we can compute 𝜁(3)

with an error 𝑅𝑜
𝑁
satisfying

𝑅
𝑜

𝑁
:=
∞

∑
𝑛=𝑁+1

1

𝑛3
< ∫
∞

𝑁

1

𝑥3
𝑑𝑥 =

1

2𝑁2
, (62)

from which we get the error bound 𝑅𝑜
45

< 3 ⋅ 10−4. Scheufens
[29, p. 31] estimated the error bounds |𝑅

25
| < 9 ⋅ 10−19 and

𝑅𝑜
25

< 8⋅10−4. So it is easy to see that the original series of 𝜁(3)
converges very slowly while the series representation (59) or
(60) of 𝜁(3) converges very rapidly.

Srivastava and Choi [1, Chapter 3] presented a rather
extensive collection of closed-form sums of series involving
the zeta functions such as (59) or (60), together with an
interesting historical introduction. In fact, the formula (47)
may be obtained in a totally different way (see, e.g., [1, p. 259,
(71)]).

4. Evaluation of 𝜁(2𝑚) from Fourier Series

There have been earlier works (see, e.g., [17, 29, 31–34]) in
which the authors evaluated 𝜁(2𝑚) by using Fourier series.
Here, for completeness, we also do the same thing. Yet wemay
very carefully emphasize that, when the involved coefficient
in Fourier series is computed, its computation becomes a little
easier by using a known indefinite integral formula.

For 𝑚 ∈ N, let 𝑓 be the even 2𝜋-periodic function given
by 𝑓(𝑥) = 𝑥2𝑚, 𝑥 ∈ [−𝜋, 𝜋]. Since 𝑓 is continuous and
piecewise differentiable, we have

𝑓 (𝑥) =
1

2
𝑎
0
+
∞

∑
𝑛=1

𝑎
𝑛
cos (𝑛𝑥) (𝑥 ∈ R) , (63)

where

𝑎
0
=

2

𝜋
∫
𝜋

0

𝑥
2𝑚

𝑑𝑥 =
2𝜋2𝑚

2𝑚 + 1
, (64)

𝑎
𝑛
=

2

𝜋
∫
𝜋

0

𝑥
2𝑚 cos (𝑛𝑥) 𝑑𝑥 (𝑛 ∈ N) . (65)

Evaluation of 𝑎
𝑛
in (65). Use a known indefinite integral

formula (see, e.g., [28, p. 211, Entry 2.633(2)]) to get the
following equation:

∫
𝜋

0

𝑥
2𝑚 cos (𝑛𝑥) 𝑑𝑥

=
2𝑚

∑
𝑘=0

𝑘! (
2𝑚
𝑘

)
𝑥2𝑚−𝑘

𝑛𝑘+1
sin(𝑛𝑥 +

1

2
𝑘𝜋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜋

0

.

(66)

For convenience, let the right-hand side of (66) be denoted
byI. Then we have

I =
2𝑚

∑
𝑘=0

𝑘! (
2𝑚
𝑘

)
𝜋2𝑚−𝑘

𝑛𝑘+1
sin(𝑛𝜋 +

1

2
𝑘𝜋) . (67)
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By considering the following relation
2𝑚

∑
𝑘=0

𝛼 (𝑘) =
𝑚

∑
𝑘=0

𝛼 (2𝑘) +
𝑚−1

∑
𝑘=0

𝛼 (2𝑘 + 1)

(𝑚 ∈ N) ,

(68)

we have

I =
𝑚

∑
𝑘=0

(2𝑘)! (
2𝑚
2𝑘

)
𝜋2𝑚−2𝑘

𝑛2𝑘+1
sin (𝑛𝜋 + 𝑘𝜋)

+
𝑚−1

∑
𝑘=0

(2𝑘 + 1)! (
2𝑚

2𝑘 + 1
)

𝜋2𝑚−2𝑘−1

𝑛2𝑘+2

× sin(𝑛𝜋 + 𝑘𝜋 +
𝜋

2
)

=
𝑚−1

∑
𝑘=0

(−1)
𝑛+𝑘

(2𝑘 + 1)! (
2𝑚

2𝑘 + 1
)

𝜋2𝑚−2𝑘−1

𝑛2𝑘+2
.

(69)

We finally get

𝑎
𝑛
=

2(−1)𝑛

𝜋2

𝑚−1

∑
𝑘=0

(−1)
𝑘

(2𝑘 + 1)! (
2𝑚

2𝑘 + 1
)

×
𝜋2(𝑚−𝑘)

𝑛2𝑘+2
(𝑛,𝑚 ∈ N) .

(70)

Setting 𝑓(𝑥) = 𝑥2𝑚 in (63) and setting 𝑥 = 𝜋 and
applying (64) and (70) to the resulting identity, we finally get
the following recurrence formula for evaluation of 𝜁(2𝑚):

𝜁 (2𝑚) = (−1)
𝑚−1

𝑚

(2𝑚 + 1)!
𝜋
2𝑚

+ (−1)
𝑚

×
𝑚−1

∑
𝑘=1

(−1)
𝑘+1

𝜋2(𝑚−𝑘)

(2𝑚 − 2𝑘 + 1)!
𝜁 (2𝑘) (𝑚 ∈ N) .

(71)
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