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An analytical strong method, the homotopy analysis method (HAM), is employed to study the mixed convective heat transfer
in an incompressible steady two-dimensional viscoelastic fluid flow over a wedge in the presence of buoyancy effects. The two-
dimensional boundary-layer governing partial differential equations (PDEs) are derived by the consideration of Boussinesq
approximation. By the use of similarity transformation, we have obtained the ordinary differential nonlinear (ODE) forms of
momentum and energy equations. The highly nonlinear forms of momentum and energy equations are solved analytically. The
effects of different involved parameters such as viscoelastic parameter, Prandtl number, buoyancy parameter, and the wedge angle
parameter, which is related to the exponent 𝑚 of the external velocity, on velocity and temperature distributions are plotted and
discussed. An excellent agreement can be seen between the results and the previously published papers for 𝑓(0) and 𝜃(0) in some
of the tables and figures of the paper for velocity and temperature profiles for various values of viscoelastic parameter and Prandtl
number. The effects of buoyancy parameter on the velocity and temperature distributions are completely illustrated in detail.

1. Introduction

Since the non-Newtonian fluid flow and heat transfer repre-
sents many important applications such as plastic films and
artificial fibers, it is one of the most attractive fields in dif-
ferent aspects of engineering for the last few decades. One of
the important studies is related to the convective heat transfer
over a surface which can be observed vastly in engineering,
agriculture, and petroleum industries [1, 2]. Hiemenz [3] was
the first one who started the study of stagnation flow problem
and obtained the ODE form of equations for the forced con-
vective problem by introducing a similarity transformation.
Dash and Behera [4] investigated laminar free convective
viscoelastic fluid flow and heat transfer over an isothermal
cylinder. Nazar et al. [5] studied the micropolar fluid flow
over a stretching sheet in stagnation flow. Viscoelastic MHD
flow and heat transfer over a stretching sheet was investigated

by Abel et al. [6] considering viscous and ohmic dissipations.
Nadeem andAkbar [7–10] solved different types of fluid flows
such as non-Newtonian, Williamson, and tangent hyper-
bolic fluids in an endoscope analytically, numerically, and
exactly. Presenting a numerical algorithm, Ariel [11] studied
viscoelastic (second grade) fluid flow near a stagnation
point. Finite difference method usingThomas algorithm was
employed byMahapatra andGupta [12] to survey viscoelastic
(Walters’ B liquid) fluid flow. An off-centered stagnation flow
over a rotating disc was solved by Erfani et al. [13] by the
modified differential transform method (MDTM). Vogel’s
model of viscosity on the peristaltic flow of Jeffrey fluid was
considered by Akbar et al. [14] in analytical and numerical
forms. Ishak et al. [15] presented the results of stagnation-
point flow in a permeable sheet numerically via an implicit
finite difference scheme known as the Keller-Box method.
Rashidi et al. [16] also analyzed the stagnation-point flow in
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a porous medium by DTM. Kasim et al. [17] considered heat
generation in a free convective viscoelastic fluid flow over a
horizontal circular cylinder at the lower stagnation point of
the cylinder. Aman et al. [18] considered the slip condition
in mixed convective boundary-layer flow numerically. The
unsteady three-dimensional stagnation-point flow of a vis-
coelastic fluid was studied by Seshadri [19]. Turkyilmazoglu
[20] presented exact solution for mixed convection over a
stretching surface. Bhattacharyya and Layek [21] presented
numerically the results of suction/blowing and thermal radi-
ation effects over a porous shrinking sheet. Bachok et al.
[22] and Layek et al. [23] employed Runge-Kutta-Fehlberg
and fourth order classical Runge-Kutta methods in the study
of stretching/shrinking sheets, respectively. Turkyilmazoglu
[24–26] presented multiple solutions in viscoelastic MHD
fluid flow and heat and mass transfer over stretching surfaces
in slip condition.

Unlike the number of studies related to stretching sheets,
the articles on the convective flow over a wedge are very
limited. A nonisothermal wedge in the presence of a heat
source/sink was the base of investigation solved by Chamkha
et al. [27] in the presence of thermal radiation effects by the
finite-difference method. Kandasamy et al. [28] considered
the effects of chemical reaction, variable viscosity, and ther-
mophoresis over a porous wedge. Hossain et al. [29] pre-
sented the numerical results for unsteady flow over a sym-
metric wedge with variable surface temperature.

Homotopy analysis method (HAM) is one of the most
well-knownmethods to solve highly nonlinear problems.The
first one who employed HAM, Liao, offered a general analyti-
cal method for nonlinear problems [30, 31]. Rashidi et al. [32]
used this method for mixed convective boundary-layer flow
of a micropolar fluid towards a heated shrinking sheet. The
stagnation-point flow of a nanofluid over a stretching sheet
was investigated by Mustafa et al. [33] via HAM. Dinarvand
et al. [34] used HAM to solve the unsteady laminar flow near
stagnation point of a rotating and translating sphere. Hayat et
al. [35] considered MHD flow of an upper-convected (UCM)
fluid over a stretching surface by means of HAM. Currently,
HAM has been used vastly by many researchers in different
practical aspects of engineering and nonlinear problems [36–
42].

In the present paper, we try to find the analytical solution
for two-dimensional incompressible viscoelastic fluid flow
over a wedge. Analytical solutions for the velocity and the
temperature distributions are obtained using a powerful
technique, namely, the HAM. The graphs are plotted and
discussed for the variations of different involved parameters.

2. Flow Analysis

Consider a steady and laminar incompressible two-dimen-
sional mixed convective heat transfer of a viscoelastic fluid
flow over a wedge in the presence of buoyancy force effects. It
is assumed that the external velocity is in the form of 𝑢

𝑒
(𝑥) =

𝑎𝑥
𝑚 where 𝑎 and 𝑚 are constants. The Cartesian coordinate

system is supposed to help the solution in which the 𝑥-axis
and the 𝑦-axis are along with and perpendicular to the wedge
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Figure 1: The schematic diagram of the wedge.

surface, respectively. The schematic diagram of the problem
is plotted in Figure 1 in order to simplify the problem’s
realization. Considering the Boussinesq, the boundary-layer
approximations, and the above assumptions, we can derive
the boundary-layer equations in the following format:

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0, (1)

𝑢

𝜕𝑢
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2
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𝑇
(𝑇 − 𝑇

∞
) Sin Ω
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,

(2)

𝑢

𝜕𝑇

𝜕𝑥

+ V
𝜕𝑇

𝜕𝑦

=

𝑘

𝜌𝑐
𝑃

𝜕
2
𝑇

𝜕𝑦
2
, (3)

where 𝑢 and V are velocity components in the directions of
𝑥 and 𝑦 (as shown in Figure 1). 𝜐 is the kinematic viscosity,
𝑘
0
is the viscoelasticity parameter, 𝑔 is the acceleration due to

the gravity, 𝛽
𝑇
is the coefficient of thermal expansion, 𝑘 is the

thermal conductivity, 𝜌 is the fluid density, 𝑐
𝑃
is the specific

heat at constant pressure, and 𝑇 is the fluid temperature.Ω =

𝜋 𝛽 is the total angle of the wedge (for 𝛽 = 0 and 𝛽 = 1, the
wedge takes the form of horizontal and vertical plate, resp.)
and 𝛽 is the wedge angle parameter which is defined in the
form of 𝛽 = 2𝑚/(𝑚 + 1).

The corresponding boundary conditions are as follows:

𝑢 = 0, V = 0, 𝑇 = 𝑇
𝑤
(𝑥) , at 𝑦 = 0,

𝑢 → 𝑢
𝑒
(𝑥) ,

𝜕𝑢

𝜕𝑦

→ 0, 𝑇 → 𝑇
∞

as 𝑦 → ∞.

(4)

It is assumed that 𝑇
𝑤
(𝑥) = 𝑇

∞
+ 𝑏𝑥
𝑚 where 𝑏 is

constant value. After introducing the stream function 𝜓 and
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similarity variable 𝜂 and satisfying the continuity equation,
we can derive the momentum and energy equations into the
ordinary differential equations (ODEs) format as one can see
in the following equations:

𝜂 = √
𝑢
𝑒
(𝑥)

𝜐𝑥

𝑦, 𝜓 = √𝜐𝑥𝑢
𝑒
(𝑥)𝑓 (𝜂) , 𝜃 (𝜂) =

𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

,

(5)

𝑚(𝑓
2

− 1) −

𝑚 + 1

2

𝑓𝑓

− 𝑓


− 𝑘
1
{(3𝑚 − 1) 𝑓


𝑓

−

(3𝑚 − 1)

2

𝑓
2

−

(𝑚 + 1)

2

𝑓𝑓
(4)
}

− 𝜆
𝑇
Sin( 𝑚

𝑚 + 1

𝜋) 𝜃 = 0,

(6)

𝜃

+ Pr(𝑚 + 1

2

𝑓𝜃

− 𝑚 𝑓


𝜃) = 0, (7)

where superscript  denotes the derivative with respect to 𝜂,
𝑘
1
= 𝑘
0
𝑎𝑥
𝑚−1

/𝜐 is the viscoelastic parameter (when 𝑚 = 1,
the viscoelastic parameter takes the form of 𝑘

1
= 𝑘
0
𝑎/𝜐

similar to the viscoelastic parameter obtained by Hayat et al.
[44]), and 𝜆
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𝑇
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the buoyancy parameter, where Gr
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∞
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3
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2

is the Grashof number, Re
𝑥

= 𝑢
𝑒
𝑥/𝜐 = 𝑎𝑥

𝑚+1
/𝜐 is the

Reynolds number, and Pr = 𝜇𝑐
𝑃
/𝑘 is the Prandtl number.The

corresponding boundary conditions are as follows:

𝑓 (𝜂) = 0, 𝑓

(𝜂) = 0, 𝜃 (𝜂) = 1, at 𝜂 = 0,

𝑓

(𝜂) = 1, 𝑓


(𝜂) = 0, 𝜃 (𝜂) = 0, as 𝜂 → ∞.

(8)

3. HAM Solution

In order to satisfy the boundary conditions, the initial
approximations must be chosen in the appropriate form as
follows:

𝑓
0
(𝜂) = 𝜂 + (𝑒

−𝜂
− 1) ,

𝜃
0
(𝜂) = 𝑒
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.

(9)
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with the following properties:
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where 𝑐
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6
are arbitrary constants.The nonlinear operators
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The auxiliary functions are introduced as

H
𝑓
(𝜂) = H

𝜃
(𝜂) = 𝑒

−𝜂
. (13)

Now, the 𝑖th order deformation equations (14) are solved by
the symbolic software MATHEMATICA:
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where ℎ is the auxiliary nonzero parameter:
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) ,
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(15)

For more information about the HAM solution, please see
[30, 31].

In Figure 2 ℎ-curves are plotted for an especial case,
obtained via 20th order of HAM solution. Choosing a proper
value of auxiliary parameter from the valid region in straight
line is very important to control the convergence of the
approximation series in the so-called ℎ-curve. To check
the accuracy of the method, we have presented Tables 1–4
and Figures 3 and 4. An excellent agreement can be found
between our results and the published papers.

In order to choose the optimal value of auxiliary param-
eter ℎ, we have presented the average residual error as (see
[40, 45–47], for more details)

Δ
𝑓,𝑚

=

1

𝐾

𝐾

∑

𝑖=0

[

[
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𝑓
(

𝑚

∑
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𝑓
𝑗
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]
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2

,

Δ
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=
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∑

𝑖=0
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𝜃
(

𝑚

∑

𝑗=0

𝜃
𝑗
(𝑖Δ𝑥))

]

]

2

,

(16)

whereΔ𝑥 = 10/𝐾 and𝐾 = 20. For the given order of approx-
imation 𝑚, the optimal value of ℎ is given by the minimum

0

0
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ℏ
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Figure 2: The ℎ-curves of 𝑓(0) and 𝜃

(0) obtained by the 20th

order approximation of the HAM solution when 𝑘
1
= 1.0, 𝜆

𝑇
= 0.2,

Pr = 1.0, and𝑚 = 0.5.
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Figure 3: Verification of the results 𝑓

(𝜂) with the previously

published paper by Li et al. when 𝑘
1
= 0.3,𝑚 = 1.0, and Pr = 1.0.

values ofΔ
𝑓,𝑚

andΔ
𝜃,𝑚

corresponding to nonlinear algebraic
equations:

𝑑Δ
𝑓,𝑚

𝑑ℎ

= 0,

𝑑Δ
𝜃,𝑚

𝑑ℎ

= 0. (17)
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Table 1: Comparison of 𝑓(0) for various values of 𝑘
1
and Pr when𝑚 = 1.0 and 𝜆

𝑇
= 0.2.

𝑘
1

Pr
𝑓

(0)

Present results Li et al. [2] Hayat et al. [43]
Assisting flow Opposing flow Assisting flow Opposing flow Assisting flow Opposing flow

0.0 0.2 1.35428 1.10711 1.35426 1.10711 1.3543 1.1072
0.2 1.15589 0.956065 1.15591 0.95607 1.1559 0.9558
0.5 0.982302 0.818537 0.98230 0.81854 0.9821 0.8184
0.7 0.904415 0.755544 0.90441 0.75554 0.9044 0.7555
1.0 0.817365 0.684338 0.81738 0.68434 0.8174 0.6844
1.5 0.716959 0.601289 0.71694 0.60129 0.7171 0.6015
2.0 0.647145 0.543133 0.64713 0.54310 0.6474 0.5435
0.2 0.2 1.15589 0.956065 1.15591 0.95607 1.1559 0.9558

0.5 1.1441 0.96893 1.14411 0.96893 1.1439 0.9689
0.7 1.13961 0.973789 1.13961 0.97378 1.1394 0.9734
1.0 1.13481 0.978926 1.13482 0.97892 1.1353 0.9783

Table 2: Comparison of −𝜃(0) for various values of 𝑘
1
and Pr when𝑚 = 1.0 and 𝜆

𝑇
= 0.2.

𝑘
1

Pr
−𝜃


(0)

Present results Li et al. [2] Hayat et al. [43]
Assisting flow Opposing flow Assisting flow Opposing flow Assisting flow Opposing flow

0.0 0.2 0.441936 0.423511 0.44198 0.42351 0.4420 0.4235
0.2 0.427847 0.409582 0.42606 0.40958 0.4261 0.4094
0.5 0.409971 0.394995 0.40990 0.39499 0.4097 0.3939
0.7 0.401769 0.387536 0.40177 0.38753 0.4018 0.3875
1.0 0.391855 0.378372 0.39189 0.37837 0.3920 0.3785
1.5 0.37922 0.366516 0.37922 0.36652 0.3793 0.3667
2.0 0.372174 0.35721 0.36944 0.35729 0.3698 0.3578
0.2 0.2 0.427847 0.409582 0.42606 0.40958 0.4261 0.4094

0.5 0.60841 0.587526 0.60841 0.58753 0.6082 0.5874
0.7 0.69073 0.668207 0.69073 0.66820 0.6903 0.6678
1.0 0.788621 0.764356 0.78862 0.76435 0.7876 0.7669

Table 3: Comparison of 𝑓(0) for various values of 𝑘
1
and Pr when𝑚 = 1.0 and 𝜆

𝑇
= 1.0.

𝑘
1

Pr
𝑓

(0)

Present results Li et al. [2]
Assisting flow Opposing flow Assisting flow Opposing flow

0.0 1.0 1.67542 0.731431 1.67544 0.73141
1.5 1.64064 0.775354 1.64060 0.77535
5.0 1.54289 0.894131 1.54287 0.89413

0.5 1.0 1.20508 0.531869 1.20508 0.53186
1.5 1.18764 0.559115 1.18764 0.55911
5.0 1.13575 0.634145 1.13575 0.63414

1.0 1.0 1.00314 0.435724 1.00314 0.43579
1.5 0.990924 0.456753 0.99092 0.45675
5.0 0.95362 0.511872 0.95362 0.51532

For example, in order to find the optimal values of ℎ, the
residual error for theHAM20th order of solution is presented
in Figure 5.

4. Results and Discussion

In this paper the mixed convection of a steady and incom-
pressible two-dimensional viscoelastic fluid flow over a

wedge surface is studied. To the best of authors’ knowl-
edge, the current paper is the first paper which presents
a similarity solution and includes the effects of buoyancy
parameter in mixed convective flow over a horizontal wedge
surrounded by the viscoelastic fluid. In this paper, the effects
of involved parameters are taken into account and the velocity
and temperature distributions are discussed and plotted
analytically. To gain a vast understanding of the results,
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Figure 4: Verification of the results 𝜃(𝜂) with the previously pub-
lished paper by Li et al. when 𝑘
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= 0.3,𝑚 = 1.0, and Pr = 1.0.
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Figure 5:The residual errors for temperature profile when 𝑘
1
= 0.8,

𝜆
𝑇
= 0.5,𝑚 = 0.5, and Pr = 5.0.

graphical representation is considered for different involved
parameters. In Figures 6–13 the effects of different parameters
such as viscoelastic parameter, Prandtl number, buoyancy
parameter, and the wedge angle parameter are illustrated in
detail. Figure 6 denotes the influence of 𝑘

1
on the velocity dis-

tribution clearly. Viscoelasticity parameter produces tensile
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Figure 6:The effect of 𝑘
1
on velocity profilewhen𝜆

𝑇
= 0.4, Pr = 1.0,

and𝑚 = 0.5.
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Figure 7: The effect of 𝑘
1
on temperature profile when 𝜆

𝑇
= 0.4,

Pr = 1.0, and𝑚 = 0.5.

stress, so the boundary-layer thickness decreases and makes
it contract, transversely, and hence velocity decreases. As we
anticipate and see in Figure 7, the increase in viscoelastic
parameter causes the temperature to increase. The increase
in 𝑘
1
leads to increase in wall temperature gradient and the

nondimensional temperature distribution is enhanced.
The influence of 𝜆

𝑇
on the velocity and temperature

profiles is plotted in Figures 8 and 9. The only term in
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Table 4: Comparison of −𝜃(0) for various values of 𝑘
1
and Pr when𝑚 = 1.0 and 𝜆

𝑇
= 1.0.

𝑘
1

Pr
−𝜃


(0)

Present results Li et al. [2]
Assisting flow Opposing flow Assisting flow Opposing flow

0.0 1.0 0.870746 0.731412 0.87078 0.73141
1.5 1.00763 0.859144 1.00763 0.85914
5.0 1.53493 1.36374 1.53493 1.36373

0.5 1.0 0.790331 0.673927 0.79033 0.67393
1.5 0.913581 0.787728 0.91358 0.78773
5.0 1.39082 1.23669 1.39082 1.23669

1.0 1.0 0.748488 0.640544 0.74848 0.64054
1.5 0.864532 0.746967 0.86453 0.74697
5.0 1.31464 1.16674 1.31464 1.16674
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Figure 8:The effect of𝜆
𝑇
on velocity profilewhen 𝑘

1
= 0.6, Pr = 1.0,

and𝑚 = 0.5.

momentum equation which causes the energy and momen-
tum equations to be coupled is the buoyancy parameter.
When 𝜆

𝑇
increases, the effect of the temperature field on

the velocity field will be invigorated and consequently both
the velocity and the boundary-layer thickness augment, as
shown in Figure 8. This parameter indicates the effect of
free convection and buoyancy parameter in equation systems
and so reinforces the influence of thermal variations on
the velocity component. The buoyancy parameter increases
the effect of convection on velocity control. It is worth
mentioning that the buoyancy force and favorable pressure
gradient have the same impact on velocity in the boundary-
layer region and accelerate the fluid. Figure 9 illustrates the
effect of 𝜆

𝑇
on temperature distribution. It is clearly depicted

that the thermal boundary-layer thickness decreases with the
increase in buoyancy parameter because of increase in heat
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Figure 9: The effect of 𝜆
𝑇
on temperature profile when 𝑘

1
= 0.6,

Pr = 1.0, and𝑚 = 0.5.

transfer rate. If we want to illustrate the effect of buoyancy
parameter in detail, we should go through this parameter.
Based on its definition, the thermal buoyancy parameter is
the ratio of buoyancy force to viscous force, so the increase
in its value suggests a notable increase in the flow velocity.
The Grashof number accelerates the fluid, so the velocity and
the boundary-layer thickness increase with the increase in
𝜆
𝑇
, as shown in Figure 8 due to this fact that the equations

are coupled together only by the buoyancy parameter. In fact
the buoyancy force acts like a favorable pressure gradient and
accelerates the fluid, so the velocity and the boundary-layer
thickness increase with the increase in Grashof number and
more production occurs. The buoyancy force leads to the
increase in temperature gradient and heat transfer rate and
the temperature decreases (Figure 9). When Pr increases, the
fluid heat capacity is enhanced and the impact of the thermal
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expansion decreases, so the boundary-layer thickness and
velocity distribution decrease (Figure 10). In Figure 11, the
effect of Prandtl number on temperature distribution is
plotted. Due to the definition of Prandtl number, the ratio
of momentum diffusion to thermal diffusion, the thermal
diffusion decreases and the fluid thermal capacity increases
with the increase in Pr, so the thermal boundary layer
becomes thinner and temperature decreases. In Figure 10, the
decreasing behavior of velocity component with Pr is not
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Figure 12: The effect of 𝑚 on velocity profile when 𝑘
1
= 1.0, 𝜆

𝑇
=

0.2, and Pr = 1.0.
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Figure 13: The effect of 𝑚 on temperature profile when 𝑘
1
= 1.0,

𝜆
𝑇
= 0.2, and Pr = 1.0.

very vivid when Prandtl number varies between 3 and 7 and
can be neglected, but the variation in temperature profiles
is very distinct and can be easily understood (Figure 11).
The effect of parameter 𝑚 is depicted in Figures 12 and 13.
Since the increase in 𝑚 causes 𝛽 to increase, this parameter
represents the influence of wedge angle parameter. As 𝑚

increases, boundary-layer thicknesses, velocity, and tem-
perature distributions decrease. The variation of velocity
distribution with the wedge angle parameter is the same as
its behavior with Pr and is not vivid, either.
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In Tables 1–4 the values of 𝑓(0) and −𝜃

(0) obtained

by the 20th order of HAM solution are compared to other
different authors’ published results. Through these tables, an
excellent agreement can be seen between the present results
and the previously published papers’ results. In Tables 1 and 3
the values of 𝑓(0) decrease with the increase in Prandtl
number (assisting flow) and the viscoelastic parameter (both
assisting and opposing flow regions). Analytical values of wall
temperature gradient −𝜃(0) for different values of Pr and 𝑘

1

are computed and presented in Tables 2 and 4. Analysis of the
tabular data shows that the values of viscoelastic parameter
reduce the local heat transfer, while the Prandtl number has
the reverse effect. The last term of (2) refers to the buoyancy
force. The positive case represents buoyancy assisting and
negative case is for the buoyancy opposing flow regions.
Buoyancy force assists the upper half of the flow field and
opposes the lower half of the flow field. Practically in “+” case
the external velocity is opposite to the gravity acceleration
and in “−” case the external velocity and the acceleration due
to gravity have the same direction (formore details, please see
[48]).

In this paper, only assisting flow region, the upper half of
the flow field, has been taken into account, but in tables, the
results of the both cases have been presented for verification
purpose.

5. Conclusion

In the present paper, a steady incompressible viscoelastic
fluid flow over a wedge in the presence of buoyancy force
effects has been studied analytically by HAM.This analytical
solution shows excellent agreement with the data available
in the literature (Tables 1–4 and Figures 3 and 4). As one
can easily understand, the values of 𝑓(0) decrease with
the increase in Prandtl number in assisting flow and vice
versa for opposing flow region (Tables 1 and 3). These tables
clearly show that the skin friction coefficient decreases with
the increase in the value of the viscoelastic parameter for
both assisting and opposing flows. Analytical values of wall
temperature gradient −𝜃(0) for different values of Prandtl
number Pr and viscoelastic parameter 𝑘

1
are compared and

presented in Tables 2 and 4. Analysis of the tabular data shows
that the viscoelastic parameter reduces the Nusselt number.
On the contrary, the effect of Prandtl number is to augment
the rate of heat transfer. The dimensionless velocity profiles
decrease with the increase in 𝑘

1
and the temperature distri-

bution shows increasing behavior.The effect of increasing the
buoyancy parameter is to reduce the thermal boundary-layer
thicknesses, but the opposite behavior can be seen for velocity
component. The impact of Prandtl number and wedge angle
parameter on velocity and temperature profiles is the same. In
both cases the decreasing behavior of thermal boundary layer
is notable, but the effects of Pr and𝑚 on velocity distribution
cannot be distinguished distinctly.

Nomenclature

𝑎, 𝑏: Constant values
𝑐
𝑖
: Arbitrary constant

𝑐
𝑃
: Specific heat at constant pressure

𝑔: Acceleration due to gravity
Gr
𝑥
: Grashof number

𝑘: Thermal conductivity
𝑘
1
: Viscoelastic parameter

𝑚: Constant value
Pr: Prandtl number
Re
𝑥
: Reynolds number

𝑇: Temperature
𝑢, V: Velocity components along and perpendic-

ular to the wedge
𝑥, 𝑦: Distance along and perpendicular to the

wedge, respectively.

Greek Letters

𝛽: Wedge angle parameter
𝛽
𝑇
: Coefficient of thermal expansion

Ω: Total angle of the wedge
ℎ: Auxiliary nonzero parameter
H: Auxiliary function
L: Auxiliary linear operator
N: Nonlinear operator
𝜂: Similarity variable
𝜃: Dimensionless fluid temperature
𝜌: Density
𝜆
𝑇
: Buoyancy parameter

𝜐: Fluid kinematic viscosity
𝜓: Stream function.

Subscripts

𝑒: External condition
𝑚: Mean condition
𝑤: Wall condition
∞: Infinity condition.

Superscript
: Differentiation with respect to 𝜂.
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