
Research Article
Bell Polynomials Approach
Applied to (2 + 1)-Dimensional Variable-Coefficient
Caudrey-Dodd-Gibbon-Kotera-Sawada Equation

Wen-guang Cheng,1 Biao Li,1 and Yong Chen1,2

1 Nonlinear Science Center, Ningbo University, Ningbo 315211, China
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

Correspondence should be addressed to Biao Li; libiao@nbu.edu.cn

Received 28 May 2014; Revised 12 August 2014; Accepted 18 August 2014; Published 14 October 2014

Academic Editor: Changbum Chun

Copyright © 2014 Wen-guang Cheng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The bilinear form, bilinear Bäcklund transformation, and Lax pair of a (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-
Gibbon-Kotera-Sawada equation are derived throughBell polynomials.The integrable constraint conditions on variable coefficients
can be naturally obtained in the procedure of applying the Bell polynomials approach. Moreover, the N-soliton solutions of the
equation are constructed with the help of the Hirota bilinear method. Finally, the infinite conservation laws of this equation are
obtained by decoupling binary Bell polynomials. All conserved densities and fluxes are illustrated with explicit recursion formulae.

1. Introduction

It is well known that investigation of integrable properties of
nonlinear evolution equations (NEEs) can be considered as
a pretest and the first step of its exact solvability. The inte-
grability features of soliton equations can be characterized
by Hirota bilinear form, Lax pair, infinite symmetries, infi-
nite conservation laws, Painlevé test, Hamiltonian structure,
Bäcklund transformation (BT), and so on. The bilinear form
of a soliton equation can not only be used to produce many
of the known families of multisoliton solutions, but also be
employed to derive the bilinear BT, Lax pair, and infinite
sets of conserved quantities [1–6]. However, it relies on a
particular skill and tedious calculation. In the early 1930s,
the classical Bell polynomials were introduced by Bell which
are specified by a generating function and exhibiting some
important properties [7]. Recently, Lambert and coworkers
have proposed a relatively convenient procedure based on
Bell polynomials which enables us to obtain bilinear forms,
bilinear BTs, Lax pairs, and Darboux covariant Lax pairs
for NEEs [8–11]. It is shown that Bell polynomials play
an important role in the characterization of bilinearizable
equations and a deep relation between the integrability of

an NEE and the Bell polynomials. Furthermore, Fan [12],
Fan and Chow [13], and Wang and Chen [14, 15] developed
the approach to construct infinite conservation laws by
decoupling binary-Bell-polynomial-type BT into a Riccati
type equation and a divergence type equation. Afterwards,
Fan [16] and Fan and Hon [17] extended this method to
supersymmetric equations. On the basis of their work, we
apply the bell polynomials approach to the high-dimensional
variable-coefficient NEEs.

Many physical andmechanical situations are governed by
variable-coefficient NEEs, whichmight bemore realistic than
the constant coefficient ones inmodeling a variety of complex
nonlinear phenomena in physical and engineering fields [18–
20].

The (2 + 1)-dimensional analogue of the Caudrey-Dodd-
Gibbon-Kotera-Sawada (CDGKS) equation is in the form of
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with 𝜕−1
𝑥
= ∫ ⋅𝑑𝑥. Equation (1) is first proposed byKonopelch-

enko and Dubrovsky [21] and then considered by many
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authors in various aspects such as its quasiperiodic solutions
[22], algebraic-geometric solution [23], 𝑁-soliton solutions
[24], nonlocal symmetry [25], and symmetry reductions [26].
Based on (1), we will consider a (2 + 1)-dimensional variable-
coefficient CDGKS equation as
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(2)

where 𝑎
𝑖
= 𝑎
𝑖
(𝑡), 𝑖 = 1, . . . , 9, are analytic functions

with respect to 𝑡. The aim of this paper is applying the
Bell polynomials approach to systematically investigate the
integrability of (2), which includes bilinear form, bilinear BT,
Lax pair, and infinite conservation laws.

The layout of this paper is as follows. Basic concepts and
identities about Bell polynomials will be briefly introduced
in Section 2. In Section 3, by virtue of Bell polynomials and
the Hirota bilinear method, the bilinear form and 𝑁-soliton
solutions of (2) are obtained. In Sections 4 and 5, with
the aid of Bell polynomials, the bilinear BT, Lax pair, and
infinite conservation laws of (2) are systematically presented,
respectively. Section 6 will be our conclusions.

2. Bell Polynomials

The Bell polynomials [7, 9, 10] used here are defined as
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(3)

where 𝑓(𝑥) is a 𝐶∞ function and 𝑓
𝑟𝑥
= 𝜕
𝑟

𝑥
𝑓; according to

formula (3), the first three are
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(4)

Based on one-dimensional Bell polynomials, the multidi-
mensional Bell polynomials are expressed as
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with 𝑓 = 𝑓(𝑥
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The most important multidimensional binary Bell poly-
nomials, namely,Y-polynomials, can be defined as
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with the first few lowest order binary Bell polynomials being
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TheY-polynomials can be linked to the standard Hirota
expressions through the identity [10]
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Introducing a new field 𝑞 = 𝑤−V, in the particular case𝐹 = 𝐺
one has
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in which the even-order Y-polynomials is called P-
polynomials; that is,
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Moreover, the binary Bell polynomials Y
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Under the Hopf-Cole transformation V = ln𝜓, the 𝑌-
polynomials can be linearized into the form
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which provides a straightforward way for the related Lax
systems of NEEs.

3. Bilinear Form and𝑁-Soliton
Solutions for (2)

Firstly, introduce a dimensionless potential field 𝑞 by setting

𝑢 = 𝑐𝑞
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, (17)

with 𝑐 = 𝑐(𝑡) to be determined. Substituting (17) into (2),
integration with respect to 𝑥 yields the following potential
version of (2):
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Based on the bilinear equation (28), the 𝑁-soliton solutions
for (2) can be constructed as
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𝑗
,

𝜔
𝑗
(𝑡) = −

𝑘
6

𝑗
+ 5𝑐
1
𝑘
3

𝑗
𝑙
𝑗
− 5𝑐
2

1
𝑙
2

𝑗

𝑘
𝑗

∫𝑎
1
𝑑𝑡,

𝑒
𝐴
𝑖𝑗 = { (𝑘

𝑖
− 𝑘
𝑗
) [𝑐
1
𝑘
𝑖
𝑘
2

𝑗
𝑙
𝑖
(2𝑘
𝑖
− 𝑘
𝑗
) + 𝑐
1
𝑘
2

𝑖
𝑘
𝑗
𝑙
𝑗
(𝑘
𝑖
− 2𝑘
𝑗
)

+ 𝑘
2

𝑖
𝑘
2

𝑗
(𝑘
2

𝑖
− 𝑘
𝑖
𝑘
𝑗
+ 𝑘
2

𝑗
) (𝑘
𝑖
− 𝑘
𝑗
)]

+𝑐
2

1
(𝑘
𝑖
𝑙
𝑗
− 𝑘
𝑗
𝑙
𝑖
)
2

}

× { (𝑘
𝑖
+ 𝑘
𝑗
) [𝑐
1
𝑘
𝑖
𝑘
2

𝑗
𝑙
𝑖
(2𝑘
𝑖
+ 𝑘
𝑗
)

+ 𝑐
1
𝑘
2

𝑖
𝑘
𝑗
𝑙
𝑗
(𝑘
𝑖
+ 2𝑘
𝑗
)

+ 𝑘
2

𝑖
𝑘
2

𝑗
(𝑘
2

𝑖
+ 𝑘
𝑖
𝑘
𝑗
+ 𝑘
2

𝑗
)

× (𝑘
𝑖
+ 𝑘
𝑗
)] + 𝑐

2

1
(𝑘
𝑖
𝑙
𝑗
− 𝑘
𝑗
𝑙
𝑖
)
2

}

−1

,

(31)

with 𝑘
𝑗
, 𝑙
𝑗
, and 𝜉

𝑗
(𝑗 = 1, 2, . . . , 𝑁) being arbitrary constants;

∑
𝜇=0,1

indicates a summation over all possible combinations
of 𝜇
𝑗
= 0, 1 (𝑗 = 1, 2, . . . , 𝑁). For 𝑁 = 1, the one-soliton

solution for (2) can be written as follows:

𝑢 =
1

2
𝑐
0
𝑘
2

1
𝑒
−∫ 𝑎
9
𝑑𝑡

× sech2 [1
2
(𝑘
1
𝑥 + 𝑙
1
𝑦 −

𝑘
6

1
+ 5𝑐
1
𝑘
3

1
𝑙
1
− 5𝑐
2

1
𝑙
2

1

𝑘
1

× ∫ 𝑎
1
𝑑𝑡 + 𝜉

1
)] .

(32)

For𝑁 = 2, we can obtain the two-soliton solution for (2) as

𝑢 = 2𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
[ln (1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝑒𝜂1+𝜂2+𝐴12)]

2𝑥
. (33)

Based on solutions (32) and (33), we present some figures
to describe the propagations and collisions of the solitary
waves. Figure 1 shows the propagation of one-soliton solution
via solution (32) when 𝑡 = −2, 𝑡 = −1, and 𝑡 = 2,
which maintains its shape except for the phase shift, and
the propagation direction can be changed. Figures 2 and
3 illustrate the oblique collision between the two solitons,
which keep their original shapes invariant except for phase
shifts as mentioned above. It is obvious that the large-
amplitude soliton moves faster than the small one. Different
from Figure 2, Figure 3 displays that both solitons change
their directions during the collision.

3.2. Case 2. As another case, we introduce an auxiliary
variable 𝑠 and a subsidiary condition

𝑞
4𝑥
+ 3𝑞
2

2𝑥
+ 𝑞
𝑥,𝑠
= 0, (34)

in virtue of which, similarly, (18) can be written as a linear
combination ofP-polynomials of weight 6 (a weight 3 to 𝑠):

P
𝑥,𝑡
(𝑞) + 𝛽P

6𝑥
(𝑞) + 𝛾P

3𝑥,𝑦
(𝑞)

+ 𝑎
6
P
2𝑦
(𝑞) +

1

6
𝑐 (𝑎
7
− 𝑎
8
)P
𝑦,𝑠
(𝑞)

+ 𝛿P
3𝑥,𝑠
(𝑞) + 𝛼P

𝑠,𝑠
(𝑞) = 0,

(35)

with the following constraint condition:

𝑐𝑎
7
− 3𝛾 = 0, 𝑎

5
− 𝛾 +

1

6
𝑐 (𝑎
7
− 𝑎
8
) = 0,

𝑐𝑎
3
− 15𝛽 + 9𝛿 − 12𝛼 = 0, 𝑎

1
− 𝛽 + 𝛿 − 𝛼 = 0,

1

3
𝑐
2
𝑎
4
− 15𝛽 + 9𝛿 − 12𝛼 = 0,

1

2
𝑐 (𝑎
2
− 𝑎
3
) + 6𝛿 − 3𝛼 = 0.

(36)

Solving for (36) yields

𝛾 =
1

3
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
7
,

𝛽 = −
3

2
𝑎
1
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
3
−
1

2
𝛼,

𝛿 = −
5

2
𝑎
1
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
3
+
1

2
𝛼,

𝑎
2
= −𝑎
3
+
30𝑎
1

𝑐
0

𝑒
∫ 𝑎
9
𝑑𝑡
,

𝑎
4
=
3𝑎
3

𝑐
0

𝑒
∫ 𝑎
9
𝑑𝑡
,

𝑎
5
=
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
(𝑎
7
+ 𝑎
8
) .

(37)

Thus, theP-polynomials expression of (2) and (34) reads

P
4𝑥
(𝑞) +P

𝑥,𝑠
(𝑞) = 0,

P
𝑥,𝑡
(𝑞) + (−

3

2
𝑎
1
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
3
−
1

2
𝛼)P
6𝑥
(𝑞)

+
1

3
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
7
P
3𝑥,𝑦
(𝑞)

+ 𝑎
6
P
2𝑦
(𝑞) +

1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
(𝑎
7
− 𝑎
8
)P
𝑦,𝑠
(𝑞)

+ (−
5

2
𝑎
1
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
3
+
1

2
𝛼)P
3𝑥,𝑠
(𝑞)

+ 𝛼P
𝑠,𝑠
(𝑞) = 0,

(38)

in which 𝛼 = 𝛼(𝑡) is an arbitrary function.
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Figure 1: One-soliton solution via solution (32) with 𝑎
9
= 0.01, 𝑘

1
= 1, 𝑙
1
= 2, 𝑐
0
= 1, 𝑐
1
= 1, 𝑎

1
= sin(𝑡), and 𝜉

1
= 0. (a) 𝑡 = −2; (b) 𝑡 = −1; (c)

𝑡 = 2.

System (38) produces the bilinear form of (2) as follows:

(𝐷
4

𝑥
+ 𝐷
𝑥
𝐷
𝑠
)𝐺 ⋅ 𝐺 = 0,

[𝐷
𝑥
𝐷
𝑡
+ (−

3

2
𝑎
1
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
3
−
1

2
𝛼)𝐷
6

𝑥

+
1

3
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
7
𝐷
3

𝑥
𝐷
𝑦

+ 𝑎
6
𝐷
2

𝑦
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
(𝑎
7
− 𝑎
8
)𝐷
𝑦
𝐷
𝑠

+ (−
5

2
𝑎
1
+
1

6
𝑐
0
𝑒
−∫ 𝑎
9
𝑑𝑡
𝑎
3
+
1

2
𝛼)

× 𝐷
3

𝑥
𝐷
𝑠
+ 𝛼𝐷
2

𝑠
]𝐺 ⋅ 𝐺 = 0,

(39)

by property (12) and transformation (23). From the bilinear
equation (39), we can only get the one-soliton solution which
is the same as the above formulae (25) and (26).Therefore, (2)
under the constraint conditions (37) is not integrable since its
multisoliton solutions cannot be obtained.

4. Bilinear BT and Lax Pair for (2)
In order to search for the bilinear BT and Lax pair of (2),
under the integrable constraint condition (29) in case 1, we
have

𝐸 (𝑞) = 𝑞
𝑥,𝑡
+ 𝑎
1
(𝑞
6𝑥
+ 15𝑞

2𝑥
𝑞
4𝑥
+ 15𝑞

3

2𝑥
)

+ 5𝑐
1
𝑎
1
(𝑞
3𝑥,𝑦
+ 3𝑞
2𝑥
𝑞
𝑥,𝑦
) − 5𝑐

2

1
𝑎
1
𝑞
2𝑦
= 0.

(40)

Let

𝑞 = 2 ln𝐺, 𝑞

= 2 ln𝐹 (41)

be two solutions of (40), respectively. On introducing two
new variables

V =
𝑞

− 𝑞

2
= ln(𝐹

𝐺
) ,

𝑤 =
𝑞

+ 𝑞

2
= ln (𝐹𝐺) ,

(42)
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Figure 2: Two-soliton solution via solution (33) with 𝑎
9
= 0.01, 𝑘

1
= 1, 𝑘
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1
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2
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0
= 1, 𝑐
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𝑡 = −2; (b) 𝑡 = 0; (c) 𝑡 = 2.
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Figure 3: Two-soliton solution via solution (33) with 𝑎
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= 0. (a)

𝑡 = −0.8; (b) 𝑡 = 0; (c) 𝑡 = 0.8.
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one has the corresponding two-field condition

𝐸 (𝑞

) − 𝐸 (𝑞)

= 𝐸 (𝑤 + V) − 𝐸 (𝑤 − V)

= 2 [V
𝑥,𝑡
+ 15𝑎
1
V3
2𝑥

+ (15𝑎
1
𝑤
4𝑥
+ 45𝑎
1
𝑤
2

2𝑥
+ 15𝑐
1
𝑎
1
𝑤
𝑥𝑦
) V
2𝑥

− 5𝑐
2

1
𝑎
1
V
2𝑦
+ 𝑎
1
V
6𝑥
+ 15𝑎
1
𝑤
2𝑥
V
4𝑥

+ 5𝑐
1
𝑎
1
V
3𝑥,𝑦
+ 15𝑐
1
𝑎
1
𝑤
2𝑥
V
𝑥,𝑦
]

= 2𝜕
𝑥
[Y
𝑡
(V) + 𝑎

1
Y
5𝑥
(V, 𝑤) + 5𝑐

1
𝑎
1
Y
2𝑥,𝑦
(V, 𝑤)]

+ 2𝑅 (V, 𝑤) = 0,

(43)

with

𝑅 (V, 𝑤) = −5𝑎
1
(V4
𝑥
V
2𝑥
+ 2𝑤
3𝑥
V3
𝑥
+ 6𝑤
2𝑥
V2
𝑥
V
2𝑥

+ 𝑐
1
V
𝑥,𝑦

V2
𝑥
+ 2V
4𝑥
V2
𝑥
+ 2𝑐
1
V
2𝑥
V
𝑥
V
𝑦

+ 2𝑐
1
𝑤
2𝑥𝑦

V
𝑥
+ 4V
3𝑥
V
𝑥
V
2𝑥
+ 6𝑤
2𝑥
V
𝑥
𝑤
3𝑥

+ 𝑤
5𝑥
V
𝑥
+ 𝑐
1
𝑤
3𝑥
V
𝑦
− 3V3
2𝑥
− 6𝑤
2

2𝑥
V
2𝑥

− 𝑐
1
V
2𝑥
𝑤
𝑥𝑦
− 2𝑤
4𝑥
V
2𝑥
− 2𝑐
1
𝑤
2𝑥
V
𝑥𝑦

+ 𝑐
2

1
V
2𝑦
− V
4𝑥
𝑤
2𝑥
+ 2V
3𝑥
𝑤
3𝑥
) .

(44)

The simplest possible choice is a homogeneous Y-
constraint[8] of weight 2; it can only be of form

Y
2𝑥
(V, 𝑤) + 𝑎Y

𝑦
(V) = 𝜆. (45)

It is easy to find that eliminating 𝑤
2𝑥

(and its derivatives)
by means of form (45) does not enable one to express the
remainder 𝑅(V, 𝑤) as the 𝑥-derivative of a linear combination
ofY-polynomials.However, a homogeneousY-constraint of
weight 3

Y
3𝑥
(V, 𝑤) + 𝑐

1
Y
𝑦
(V) = 𝜆,

𝜆 = arbitrary parameter of weight 3,
(46)

can be used to express 𝑅(V, 𝑤) as follows:

𝑅 (V, 𝑤) = −
5

2
𝑎
1
𝜕
𝑥
[Y
5𝑥
(V, 𝑤) − 𝑐

1
Y
2𝑥,𝑦
(V, 𝑤)

+ 3𝜆Y
2𝑥
(V, 𝑤) ] .

(47)

Thus, the two-field condition (43) becomes

𝜕
𝑥
[Y
𝑡
(V) −

3

2
𝑎
1
Y
5𝑥
(V, 𝑤) +

15

2
𝑐
1
𝑎
1
Y
2𝑥,𝑦
(V, 𝑤)

−
15

2
𝑎
1
𝜆Y
2𝑥
(V, 𝑤)] = 0 (weight 6) ,

(48)

where we prefer the equation in the conserved form, which
is useful to construct conservation laws later. It is seen that
the two-field condition (43) can be decoupled into a pair of
parameter-dependentY-constraints (of weight 3 and weight
5):

Y
3𝑥
(V, 𝑤) + 𝑐

1
Y
𝑦
(V) − 𝜆 = 0,

Y
𝑡
(V) −

3

2
𝑎
1
Y
5𝑥
(V, 𝑤) +

15

2
𝑐
1
𝑎
1
Y
2𝑥,𝑦
(V, 𝑤)

−
15

2
𝑎
1
𝜆Y
2𝑥
(V, 𝑤) = 0.

(49)

In view of (10), the bilinear BT for (2) is obtained:

(𝐷
3

𝑥
+ 𝑐
1
𝐷
𝑦
− 𝜆)𝐹 ⋅ 𝐺 = 0,

(𝐷
𝑡
−
3

2
𝑎
1
𝐷
5

𝑥
+
15

2
𝑐
1
𝑎
1
𝐷
2

𝑥
𝐷
𝑦
−
15

2
𝑎
1
𝜆𝐷
2

𝑥
)𝐹 ⋅ 𝐺 = 0.

(50)

By application of formulae (15) and (16), the system (50)
is linearized to be the Lax pair of (2) as

𝜓
3𝑥
+ 3𝑞
2𝑥
𝜓
𝑥
+ 𝑐
1
𝜓
𝑦
= 𝜆𝜓,

𝜓
𝑡
− 9𝑎
1
𝜓
5𝑥
− 45𝑎
1
𝑞
2𝑥
𝜓
3𝑥
− 45𝑞

3𝑥
𝜓
2𝑥

− (30𝑎
1
𝑞
4𝑥
+ 45𝑎
1
𝑞
2

2𝑥
− 15𝑐
1
𝑎
1
𝑞
𝑥,𝑦
) 𝜓
𝑥
= 0.

(51)

Starting from this Lax pair with 𝑎
1
= −1, 𝑎

9
= 0, 𝑐
0
= 3, and

𝑐
1
= 1, the Darboux transformation and nonlocal symmetry

of the equation can be established [25]. Checking that the
compatibility condition of system (51) is just the potential of
(40).

5. Infinite Conservation Laws for (2)
In what follows, we present the infinite conservation laws by
recursion formulae for (2). The conservation laws actually
have been hinted in the binary-Bell-polynomial-type BT (46)
and (48), which can be rewritten in the conserved form

V
3𝑥
+ 3V
𝑥
𝑤
2𝑥
+ V3
𝑥
+ 𝑐
1
V
𝑦
= 𝜆,

𝜕
𝑡
(V
𝑥
) + 𝜕
𝑥
[−
3

2
𝑎
1
(V
5𝑥
+ 5𝑤
4𝑥
V
𝑥
+ 10V
3𝑥
𝑤
2𝑥

+ 10V
3𝑥
V2
𝑥
+ 15𝑤

2

2𝑥
V
𝑥

+ 10𝑤
2𝑥
V3
𝑥
+ V5
𝑥
)

−
15

2
𝑎
1
𝜆 (𝑤
2𝑥
+ V2
𝑥
)

+
15

2
𝑐
1
𝑎
1
(𝑤
2𝑥
V
𝑦
+ 2𝑤
𝑥,𝑦

V
𝑥
+ V2
𝑥
V
𝑦
) ]

+ 𝜕
𝑦
(
15

2
𝑐
1
𝑎
1
V
3𝑥
) = 0,

(52)

by using the relation

𝜕
𝑡
(V
𝑥
) = 𝜕
𝑥
(V
𝑡
) = V
𝑥,𝑡
,

𝜕
𝑦
(V
𝑥
) = 𝜕
𝑥
(V
𝑦
) = V
𝑥,𝑦
.

(53)
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By introducing a new potential function

𝜂 =
𝑞


𝑥
− 𝑞
𝑥

2
, (54)

in this way, there are

V
𝑥
= 𝜂, 𝑤

𝑥
= 𝑞
𝑥
+ 𝜂. (55)

Substituting (55) into system (52), we obtain

𝜂
2𝑥
+ 3𝜂 (𝑞

2𝑥
+ 𝜂
𝑥
) + 𝜂
3
+ 𝑐
1
𝜕
−1

𝑥
𝜂
𝑦
= 𝜆 = 𝜀

3
, (56)

𝜂
𝑡
+ 𝜕
𝑥
[−
3

2
𝑎
1
(𝜂
4𝑥
+ 5𝑞
4𝑥
𝜂 + 5𝜂

3𝑥
𝜂 + 10𝑞

2𝑥
𝜂
2𝑥

+ 10𝜂
𝑥
𝜂
2𝑥
+ 10𝜂

2
𝜂
2𝑥
+ 15𝑞

2

2𝑥
𝜂

+ 30𝑞
2𝑥
𝜂
𝑥
𝜂 + 15𝜂

2

𝑥
𝜂 + 10𝑞

2𝑥
𝜂
3

+ 10𝜂
𝑥
𝜂
3
+ 𝜂
5
)

−
15

2
𝑎
1
𝜀
3
(𝑞
2𝑥
+ 𝜂
𝑥
+ 𝜂
2
)

+
15

2
𝑐
1
𝑎
1
(𝑞
2𝑥
𝜕
−1

𝑥
𝜂
𝑦
+ 𝜂
𝑥
𝜕
−1

𝑥
𝜂
𝑦
+ 2𝑞
𝑥,𝑦
𝜂

+ 2𝜂
𝑦
𝜂 + 𝜂
2
𝜕
−1

𝑥
𝜂
𝑦
)
3

2
]

+ 𝜕
𝑦
(
15

2
𝑐
1
𝑎
1
𝜂
2𝑥
) = 0.

(57)

It may be noticed that (56) is not a Riccati-type equation.
Similar to [27], inserting expansion

𝜂 = 𝜀 +

∞

∑

𝑛=1

𝐼
𝑛
(𝑞, 𝑞
𝑥
, 𝑞
𝑦
, . . .) 𝜀

−𝑛 (58)

into (56) would lead to
∞

∑

𝑛=1

𝐼
𝑛,2𝑥
𝜀
−𝑛
+ 3(𝜀 +

∞

∑

𝑛=1

𝐼
𝑛
𝜀
−𝑛
)(𝑞
2𝑥
+

∞

∑

𝑛=1

𝐼
𝑛,𝑥
𝜀
−𝑛
)

+ 3𝜀
2

∞

∑

𝑛=1

𝐼
𝑛
𝜀
−𝑛
+ 3𝜀(

∞

∑

𝑛=1

𝐼
𝑛
𝜀
−𝑛
)

2

+ (

∞

∑

𝑛=1

𝐼
𝑛
𝜀
−𝑛
)

3

+ 𝑐
1

∞

∑

𝑛=1

𝜕
−1

𝑥
𝐼
𝑛,𝑦
𝜀
−𝑛
= 0;

(59)

collecting the coefficients for the power of 𝜀, we explicity
obtain the recursion relations for the conserved densities 𝐼

𝑛
s:

𝐼
1
= −𝑞
2𝑥
,

𝐼
2
= 𝑞
3𝑥
,

𝐼
3
= −
1

3
(2𝑞
4𝑥
− 𝑐
1
𝑞
𝑥,𝑦
) ,

𝐼
4
=
1

3
(𝑞
5𝑥
− 2𝑐
1
𝑞
2𝑥,𝑦
) ,

...,

𝐼
𝑛+1
= −
1

3
(𝐼
𝑛−1,2𝑥

+ 3𝐼
𝑛,𝑥
+ 3𝑞
2𝑥
𝐼
𝑛−1

+ 3

𝑛−2

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛−1−𝑘,𝑥

+ 3

𝑛−1

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛−𝑘

+ ∑

𝑖+𝑗+𝑘=𝑛−1

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
+ 𝑐
1
𝜕
−1

𝑥
𝐼
𝑛−1,𝑦

) ,

(𝑛 ≥ 4) .

(60)

Applying (58) to divergence-type equation (57) and compar-
ing the power of 𝜀 provide us with an infinite sequence of
conservation laws:

𝐼
𝑛,𝑡
+ 𝐹
𝑛,𝑥
+ 𝐺
𝑛,𝑦
= 0, (𝑛 = 1, 2, . . .) , (61)

where the first fluxes 𝐹
𝑛
s are given explicitly by

𝐹
1
= −𝑞
6𝑥
𝑎
1
+
5

2
𝑐
1
𝑎
1
𝑞
3𝑥,𝑦
− 15𝑎
1
𝑞
3

2𝑥

− 15𝑐
1
𝑎
1
𝑞
2𝑥
𝑞
𝑥,𝑦
+ 5𝑐
2

1
𝑎
1
𝑞
2𝑦
− 15𝑎
1
𝑞
2𝑥
𝑞
4𝑥
,

...,

𝐹
𝑛
= −
3

2
𝑎
1
[𝐼
𝑛,4𝑥
+ 5𝑞
4𝑥
𝐼
𝑛
+ 5

𝑛−1

∑

𝑘=1

𝐼
𝑘,3𝑥
𝐼
𝑛−𝑘

+ 5𝐼
𝑛+1,3𝑥

+ 10𝑞
2𝑥
𝐼
𝑛,2𝑥

+ 10

𝑛−1

∑

𝑘=1

𝐼
𝑘,𝑥
𝐼
𝑛−𝑘,2𝑥

+ 10𝐼
𝑛+2,2𝑥

+ 20

𝑛

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛+1−𝑘,2𝑥

+ 10 ∑

𝑖+𝑗+𝑘=𝑛

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘,2𝑥

+ 15𝑞
2

2𝑥
𝐼
𝑛
+ 30𝑞

2𝑥
(

𝑛−1

∑

𝑘=1

𝐼
𝑘,𝑥
𝐼
𝑛−𝑘
+ 𝐼
𝑛+1,𝑥

)

+ 15 ∑

𝑖+𝑗+𝑘=𝑛

𝐼
𝑖,𝑥
𝐼
𝑗,𝑥
𝐼
𝑘
+ 15

𝑛

∑

𝑘=1

𝐼
𝑘,𝑥
𝐼
𝑛+1−𝑘,𝑥

+ 10𝑞
2𝑥
( ∑

𝑖+𝑗+𝑘=𝑛

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
+ 3

𝑛

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛+1−𝑘

+ 3𝐼
𝑛+2
)

+ 10 ∑

𝑖+𝑗+𝑘+𝑙=𝑛

𝐼
𝑖,𝑥
𝐼
𝑗
𝐼
𝑘
𝐼
𝑙
+ 30 ∑

𝑖+𝑗+𝑘=𝑛+1

𝐼
𝑖,𝑥
𝐼
𝑗
𝐼
𝑘

+ 30

𝑛+1

∑

𝑘=1

𝐼
𝑘,𝑥
𝐼
𝑛+2−𝑘

+ 10𝐼
𝑛+3,𝑥



Abstract and Applied Analysis 9

+ ∑

𝑖+𝑗+𝑘+𝑙+𝑚=𝑛

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
𝐼
𝑙
𝐼
𝑚
+ 5 ∑

𝑖+𝑗+𝑘+𝑙=𝑛+1

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
𝐼
𝑙

+ 10 ∑

𝑖+𝑗+𝑘=𝑛+2

𝐼
𝑖
𝐼
𝑗
𝐼
𝑘
+ 10

𝑛+2

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛+3−𝑘

+ 5𝐼
𝑛+4
]

]

−
15

2
𝑎
1
(𝐼
𝑛+3,𝑥

+

𝑛+2

∑

𝑘=1

𝐼
𝑘
𝐼
𝑛+3−𝑘

+ 2𝐼
𝑛+4
)

+
15

2
𝑐
1
𝑎
1
(𝑞
2𝑥
𝜕
−1

𝑥
𝐼
𝑛,𝑦
+

𝑛−1

∑

𝑘=1

𝜕
−1

𝑥
𝐼
𝑘,𝑦
𝐼
𝑛−𝑘,𝑥

+ 2𝑞
𝑥,𝑦
𝐼
𝑛
+ 2𝐼
𝑛+1,𝑦

+ 2

𝑛−1

∑

𝑘=1

𝐼
𝑛−𝑘,𝑦

𝐼
𝑘

+ ∑

𝑖+𝑗+𝑘=𝑛

𝐼
𝑖
𝐼
𝑗
𝜕
−1

𝑥
𝐼
𝑘,𝑦

+ 2

𝑛

∑

𝑘=1

𝜕
−1

𝑥
𝐼
𝑘,𝑦
𝐼
𝑛+1−𝑘

+ 𝜕
−1

𝑥
𝐼
𝑛+2,𝑦

) ,

(62)

and the second flues 𝐺
𝑛
s are

𝐺
1
= −
15

2
𝑐
1
𝑎
1
𝑞
4𝑥
,

...,

𝐺
𝑛
=
15

2
𝑐
1
𝑎
1
𝐼
𝑛,2𝑥
, 𝑛 = 2, 3, . . . .

(63)

With the recursion formulae (60), (62), and (63) presented
above, the infinite conservation laws for (2) can be con-
structed. In particular, the first conservation law is

𝑞
2𝑥,𝑡
+ 𝑎
1
𝑞
7𝑥
+ 15𝑎
1
𝑞
3𝑥
𝑞
4𝑥
+ 15𝑎
1
𝑞
2𝑥
𝑞
5𝑥

+ 45𝑎
1
𝑞
2

2𝑥
𝑞
3𝑥
− 5𝑐
2

1
𝑎
1
𝑞
𝑥,2𝑦

+ 15𝑐
1
𝑎
1
𝑞
3𝑥
𝑞
𝑥,𝑦
+ 15𝑐
1
𝑎
1
𝑞
2𝑥
𝑞
2𝑥
𝑞
2𝑥,𝑦

= 0,

(64)

or equivalently

𝑢
𝑡
+ 𝑎
1
𝑢
5𝑥
+
15𝑎
1

𝑐
0

𝑒
∫ 𝑎
9
𝑑𝑡
𝑢
𝑥
𝑢
2𝑥

+
15𝑎
1

𝑐
0

𝑒
∫ 𝑎
9
𝑑𝑡
𝑢𝑢
3𝑥
+
45𝑎
1

𝑐
2

0

𝑒
2 ∫ 𝑎
9
𝑑𝑡
𝑢
2
𝑢
𝑥

+ 5𝑐
1
𝑎
1
𝑢
2𝑥,𝑦
− 5𝑐
2

1
𝑎
1
𝜕
−1

𝑥
𝑢
2𝑦

+
15𝑐
1
𝑎
1

𝑐
0

𝑒
∫ 𝑎
9
𝑑𝑡
𝑢
𝑥
𝜕
−1

𝑥
𝑢
𝑦
+
15𝑐
1
𝑎
1

𝑐
0

𝑒
∫ 𝑎
9
𝑑𝑡
𝑢𝑢
𝑦

+ 𝑎
9
𝑢 = 0,

(65)

which is exactly (2) under the constraint conditions (29).

6. Conclusion

In this paper, a (2 + 1)-dimensional variable-coefficient
CDGKS equation has been investigated by the Bell polynomi-
als approach. For case 1, the CDGKS equation is completely
integrable in the sense that it admits bilinear BT, Lax pair,
and infinite conservation laws which are derived in a direct
and systematic way. Bymeans of the bilinear equation, the𝑁-
soliton solutions for the variable-coefficientCDGKS equation
are presented.Different parameters and functions are selected
to obtain some soliton solutions and also analyze their
graphics in Figures 1–3. However, for case 2, the variable-
coefficient CDGKS equation under the constraint conditions
(37) is not integrable since its multisoliton solutions cannot
be obtained. In addition, the integrable constraint conditions
on variable coefficients of the equation can be naturally found
in the procedure of applying the Bell polynomials approach.
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