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We investigate a class of variable coefficients singular third-order differential equation with superlinearity or sublinearity
assumptions at infinity for an appropriately chosen parameter. By applications of Green's function and the Krasnoselskii fixed
point theorem, sufficient conditions for the existence of positive periodic solutions are established.

1. Introduction

Generally speaking, differential equations with singularities
have been considered from the very beginning of the disci-
pline.Themain reason is that singular forces are ubiquitous in
applications, the most obvious examples being gravitational
and electromagnetic forces. In 1965, Ding [1] discussed the
Brillouin electron beam focusing system:

𝑥

+ 𝑎 (1 + cos 2𝑡) 𝑥 = 1

𝑥

(1)

and obtained the existence of positive periodic solution for
the model if 0 < 𝑎 < 1/4.

Ding’s work has attracted the attention of many special-
ists in differential equations. More recently, the method of
lower and upper solutions, Poincaré-Birkhoff twist theorem,
Mawhin’s topological degree theorem, Schauder’s fixed point
theorem, and Krasnoselskii fixed point theorem in a cone
have been employed to investigate the existence of positive
periodic solutions of singular second order differential equa-
tions (see, e.g., [2–13]). For example, in 2007, Torres [10]
studied singular forced semilinear differential equation:

𝑥

+ 𝑎 (𝑡) 𝑥


= 𝑓 (𝑡, 𝑥) + 𝑒 (𝑡) . (2)

By Schauder’s fixed point theorem, the author has shown
that the additional assumption of a weak singularity enabled

the obtention of new criteria for the existence of periodic
solutions. Afterwards, Wang [13] investigated the existence
and multiplicity of positive periodic solutions of the singular
systems (2) by Krasnoselskii fixed point theorem. The con-
ditions he presented to guarantee the existence of positive
periodic solutions are beautiful.

At the beginning, most of work concentrated on second-
order singular differential equations, as in the references we
mentioned above. Recently, there have been published some
results on third-order singular differential equation (see [14–
19]). For example, in [14], Chu and Zhou considered the
following third-order singular differential equation:

𝑢

+ 𝜅
3
𝑢 = 𝑓 (𝑡, 𝑢) , 0 ≤ 𝑡 ≤ 2𝜋 (3)

with periodic boundary conditions 𝑢(𝑖)(0) = 𝑢
(𝑖)
(2𝜋), 𝑖 =

0, 1, 2. Here, 𝜅 is a positive constant and nonlinearity 𝑓(𝑡, 𝑢)
may be singular at 𝑢 = 0. They discussed (3) by transforming
it into a first-order equation and a second-order equation.
Restricted by Green’s function of the second-order differen-
tial equation, they obtained existence theorem of periodic
solutions for (3) in a small range of 𝜅, and, to be concrete,
𝜅 ∈ (0, 1/√3). Afterward, Li [16] investigated the third-order
ordinary differential equation:

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , 𝑢


(𝑡)) , 𝑡 ∈ R, (4)
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where 𝑓 ∈ 𝐶(R × (0,∞) × R × R) is 𝜔-periodic in 𝑡, and
𝑓(𝑡, 𝑢, V, 𝑤) may be singular at 𝑢 = 0. By applying a fixed
point theorem in cones, the author obtained existence results
of positive 𝜔-periodic solutions for (4). Recently, Ren et al.
[19] studied the third-order singular nonlinear differential
equation:

𝑥


(𝑡) + 𝑎𝑥


(𝑡) + 𝑏𝑥


(𝑡) + 𝑐𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑒 (𝑡) , (5)

where 𝑒(𝑡) takes positive values. Using Green’s function
for third-order differential equation and some fixed-point
theorems, that is, Leray-Schauder alternative principle and
Schauder’s fixed point theorem, they established three new
existence results of positive periodic solutions for (5).

In the above papers, the authors investigated singular
third-order equations with constant coefficients. However,
the study on the singular third-order equation with variable
coefficients is relatively infrequent. Motivated by Torres et al.
[10, 13, 14, 16, 19], in this paper, we consider the singular third-
order differential equation with variable coefficients:

𝑥


(𝑡) + 𝑎 (𝑡) 𝑥


(𝑡) + 𝑏 (𝑡) 𝑥


(𝑡) + 𝑐 (𝑡) 𝑥 (𝑡)

= 𝜇𝑔 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝜇𝑒 (𝑡) ,

(6)

where 𝜇 > 0 is a positive parameter, and 𝑒(𝑡) may take
positive value or negative value. 𝑎, 𝑏, 𝑐 ∈ 𝐶(R,R+) are 𝜔-
periodic functions;𝑔(𝑡), 𝑒(𝑡) are𝜔-periodic continuous scalar
functions in 𝑡 ∈ R. The nonlinear term 𝑓 of (6) can be with a
singularity at origin; that is,

lim
𝑥→0

+

𝑓 (𝑥) = +∞, (or lim
𝑥→0

+

𝑓 (𝑥) = −∞) . (7)

It is said that (6) is of repulsive type (resp., attractive type) if
𝑓(𝑥) → +∞ (resp., 𝑓(𝑥) → −∞) as 𝑥 → 0

+.
As far as we know, studies on third-order differential

equation with variable coefficients are rather infrequent,
especially those focused on the research of singular third-
order differential equations with variable coefficients. The
main difficulty lies in the calculation ofGreen’s function of the
third-order differential equation with variable coefficients,
beingmore complicated than in the constant-coefficient case.
Therefore, in Section 2, we first study Green’s function of
the above mentioned third-order differential equation. In
Section 3, we define a cone and discuss several properties
of the equivalent operator on the cone. In order to simplify
the proof in Section 3, we establish a series of lemmas and
corollaries to estimate the operator. All the corollaries are
the corresponding results for 𝑒(𝑡) taking negative values. In
Section 4, by employing Green’s function and Krasnoselskii
fixed point theorem, we state and prove the existence of pos-
itive periodic solutions for singular third-order differential
equation with superlinearity or sublinearity assumptions at
infinity for an appropriately chosen parameter. The result is
applicable to the case of a strong singularity as well as the
case of a weak singularity. Our results improve and extend
the results in [10, 14, 19].

2. Green’s Function of Third-Order
Differential Equation

Let 𝑋 = {𝜙 ∈ 𝐶(R,R) : 𝜙(𝑡 + 𝜔) = 𝜙(𝑡)} with the maximum
norm ‖𝜙‖ = max

0≤𝑡≤𝜔
|𝜙(𝑡)|. Obviously, 𝑋 is a Banach space.

For a given function 𝑒 ∈ 𝐿
1
[0, 𝜔], we denote the essential

supremum and infimum by 𝑒∗ and 𝑒
∗
, if they exist.

Firstly, we consider

𝑥


(𝑡) + 𝑎 (𝑡) 𝑥


(𝑡) + 𝑏 (𝑡) 𝑥


(𝑡) + 𝑐 (𝑡) 𝑥 (𝑡) = ℎ (𝑡) ,

𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝜔) , 𝑖 = 0, 1, 2,

(8)

where ℎ ∈ 𝐶(R,R+) is an 𝜔-periodic function. Obviously,
the calculation of Green’s function of (8) is very complicated,
so, by analysis of the third-order differential equation (8), we
consider only the following two cases.

Case 1. There exist differentiable 𝜔-periodic functions 𝑝 and
𝑞 and a positive real constant 𝜌 such that 𝑎(𝑡) = 𝜌 + 𝑝(𝑡),
𝑏(𝑡) = 𝜌𝑝(𝑡) + 𝑞(𝑡) + 𝑝


(𝑡), and 𝑐(𝑡) = 𝜌𝑞(𝑡) + 𝑞(𝑡). Then, (8)

is transformed into

𝑦


(𝑡) + 𝜌𝑦 (𝑡) = ℎ (𝑡) ,

𝑦 (0) = 𝑦 (𝜔) ,

(9)

𝑥


(𝑡) + 𝑝 (𝑡) 𝑥


(𝑡) + 𝑞 (𝑡) 𝑥 (𝑡) = 𝑦 (𝑡) ,

𝑥 (0) = 𝑥 (𝜔) , 𝑥


(0) = 𝑥


(𝜔) .

(10)

Then, solution of (9) is written as

𝑦 (𝑡) = ∫

𝜔

0

𝐺
1
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (11)

where

𝐺
1
(𝑡, 𝑠) =

{
{
{

{
{
{

{

𝑒
−𝜌(𝑡−𝑠)

1 − 𝑒
−𝜔𝜌

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝜔,

𝑒
−𝜌(𝜔+𝑡−𝑠)

1 − 𝑒
−𝜔𝜌

, 0 ≤ 𝑡 < 𝑠 ≤ 𝜔.

(12)

Solution of (10) is written as

𝑥 (𝑡) = ∫

𝜔

0

𝐺
2
(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (13)

Next, we will consider 𝐺
2
(𝑡, 𝑠), which can be found in

[20].
Suppose that

1

𝑄𝜔

[exp(∫
𝜔

0

𝑝 (𝑢) 𝑑𝑢) − 1] ≥ 1, (14)

where

𝑅 = max
𝑡∈[0,𝜔]













∫

𝜔

0

exp (∫𝑠
𝑡
𝑝 (𝑢) 𝑑𝑢)

exp (∫𝜔
0
𝑝 (𝑢) 𝑑𝑢) − 1

𝑞 (𝑠) 𝑑𝑠













,

𝑄 = [1 + exp(∫
𝜔

0

𝑝 (𝑢) 𝑑𝑢)]

2

𝑅.

(15)
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Then there are continuous𝜔-periodic functions 𝛼 and 𝛽 such
that 𝛽(𝑡) > 0, ∫𝜔

0
𝛼(𝑢)𝑑𝑢 > 0 and

𝛼 (𝑡) + 𝛽 (𝑡) = 𝑝 (𝑡) , 𝛽


(𝑡) + 𝛼 (𝑡) 𝛽 (𝑡) = 𝑞 (𝑡) , for 𝑡 ∈ R.
(16)

Suppose (14) holds and 𝑦 ∈ 𝑋; then the equation

𝑥

+ 𝑝 (𝑡) 𝑥


+ 𝑞 (𝑡) 𝑥 = 𝑦 (𝑡) (17)

has an 𝜔-periodic solution. Moreover, the periodic solution
can be expressed by

𝑥 (𝑡) = ∫

𝜔

0

𝐺
2
(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (18)

where

𝐺
2
(𝑡, 𝑠) = (∫

𝑠

𝑡

exp [∫
𝑢

𝑡

𝛽 (V) 𝑑V + ∫
𝑠

𝑢

𝛼 (V) 𝑑V] 𝑑𝑢

+∫

𝑡+𝜔

𝑠

exp [∫
𝑢

𝑡

𝛽 (V) 𝑑V + ∫
𝑠+𝜔

𝑢

𝛼 (V) 𝑑V] 𝑑𝑢)

× ([exp(∫
𝜔

0

𝛼 (𝑢) 𝑑𝑢) − 1]

× [exp(∫
𝜔

0

𝛽 (𝑢) 𝑑𝑢) − 1])

−1

,

(19)

with

𝐺
2
(𝑡, 𝑡 + 𝜔) = 𝐺

2
(𝑡, 𝑡) , 𝐺

2
(𝑡 + 𝜔, 𝑠 + 𝜔) = 𝐺

2
(𝑡, 𝑠) ,

𝜕

𝜕𝑠

𝐺
2
(𝑡, 𝑠) = 𝛼 (𝑠) 𝐺

2
(𝑡, 𝑠) −

exp (∫𝑠
𝑡
𝛽 (V) 𝑑V)

exp (∫𝜔
0
𝛽 (V) 𝑑V) − 1

,

𝜕

𝜕𝑡

𝐺
2
(𝑡, 𝑠) = −𝛽 (𝑡) 𝐺

2
(𝑡, 𝑠) +

exp (∫𝑠
𝑡
𝛼 (V) 𝑑V)

exp (∫𝜔
0
𝛼 (V) 𝑑V) − 1

.

(20)

Let 𝐴 = ∫

𝜔

0
𝑝(𝑢)𝑑𝑢 and 𝐵 = 𝜔

2 exp((1/𝜔) ∫𝜔
0
ln 𝑞(𝑢)𝑑𝑢).

If

𝐴
2
≥ 4𝐵, (21)

then we have

min{∫
𝜔

0

𝛼 (𝑢) 𝑑𝑢, ∫

𝜔

0

𝛽 (𝑢) 𝑑𝑢} ≥

1

2

(𝐴 − √𝐴
2
− 4𝐵) := 𝑙,

max{∫
𝜔

0

𝛼 (𝑢) 𝑑𝑢, ∫

𝜔

0

𝛽 (𝑢) 𝑑𝑢} ≤

1

2

(𝐴 + √𝐴
2
− 4𝐵) := 𝑚.

(22)

Moreover,

0 < 𝐶 :=

𝜔

(𝑒
𝑚
− 1)
2
≤ 𝐺
2
(𝑡, 𝑠) ≤

𝜔 exp (∫𝜔
0
𝑝 (𝑢) 𝑑𝑢)

(𝑒
𝑙
− 1)
2

:= 𝐷.

(23)

Therefore, we know that the solution of (8) is written as

𝑥 (𝑡) = ∫

𝜔

0

𝐺
2
(𝑡, 𝜏) ∫

𝜔

0

𝐺
1
(𝜏, 𝑠) ℎ (𝑠) 𝑑𝑠 𝑑𝜏

= ∫

𝜔

0

∫

𝜔

0

𝐺
2
(𝑡, 𝜏) 𝐺

1
(𝜏, 𝑠) ℎ (𝑠) 𝑑𝑠 𝑑𝜏

= ∫

𝜔

0

[∫

𝜔

0

𝐺
2
(𝑡, 𝑠) 𝐺

1
(𝑠, 𝜏) 𝑑𝑠] ℎ (𝜏) 𝑑𝜏

= ∫

𝜔

0

[∫

𝜔

0

𝐺
2
(𝑡, 𝜏) 𝐺

1
(𝜏, 𝑠) 𝑑𝜏] ℎ (𝑠) 𝑑𝑠.

(24)

Therefore, by writing

𝐺
1

(𝑡, 𝑠) = ∫

𝜔

0

𝐺
2
(𝑡, 𝜏) 𝐺

1
(𝜏, 𝑠) 𝑑𝜏, (25)

we can get

𝑥 (𝑡) = ∫

𝜔

0

𝐺
1

(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠. (26)

Lemma 1. Assume that (14) and (21) hold. Then 𝐺1(𝑡, 𝑠) > 0

for all (𝑡, 𝑠) ∈ [0, 𝜔] × [0, 𝜔].

Proof. From (23), we know 𝐺
2
(𝑡, 𝑠) > 0. Since 𝐺

1
(𝑡, 𝑠) > 0,

from (25) we see that𝐺1(𝑡, 𝑠) > 0 for all (𝑡, 𝑠) ∈ [0, 𝜔]× [0, 𝜔].

Case 2. There exist an 𝜔-periodic differentiable function 𝑚
and a positive real constant 𝜌 such that 𝑎(𝑡) = 𝜌, 𝑏(𝑡) = 𝑚(𝑡),
and 𝑐(𝑡) = 𝜌𝑚(𝑡) + 𝑚(𝑡). Then, (8) is transformed into

𝑦


(𝑡) + 𝜌𝑦 (𝑡) = ℎ (𝑡) ,

𝑦 (0) = 𝑦 (𝜔) ,

(27)

𝑥


(𝑡) + 𝑚 (𝑡) 𝑥 (𝑡) = 𝑦 (𝑡) ,

𝑥 (0) = 𝑥 (𝜔) , 𝑥


(0) = 𝑥


(𝜔) .

(28)

Then, solution of (27) is written as

𝑦 (𝑡) = ∫

𝜔

0

𝐺
1
(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠. (29)

Solution of (28) is written as

𝑥 (𝑡) = ∫

𝜔

0

𝐺
3
(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (30)

By the following lemma, which can be found in [21], we will
consider the sign of 𝐺

3
(𝑡, 𝑠).

Lemma 2 (see [21]). Let us define

𝐾(𝑞) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

2𝜋

𝑞𝜔
1+2/𝑞

(

2

2 + 𝑞

)

1−2/𝑞

, if 1 ≤ 𝑞 < ∞,

×(

Γ (1/𝑞)

Γ ((1/2) + (1/𝑞))

)

2

4

𝜔

, if 𝑞 = ∞,

(31)
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where Γ is the Gamma function. Assume that 𝑚(𝑡) ≻ 0 and
𝑚 ∈ 𝐿

𝑝
(0, 𝑇) for some 1 ≤ 𝑝 ≤ ∞. If

‖𝑚‖
𝑝
≤ 𝐾 (2𝑝

∗
) , (32)

where 𝑝∗ = 𝑝/(𝑝 − 1) if 1 ≤ 𝑞 < ∞ and 𝑝∗ = 1 if 𝑝 = +∞,
then 𝐺

3
(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ [0, 𝜔] × [0, 𝜔].

Similarly to (26), we know that the solution of (8) can be
written as

𝑥 (𝑡) = ∫

𝜔

0

𝐺
2

(𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠. (33)

Here, 𝐺2(𝑡, 𝑠) = ∫

𝜔

0
𝐺
3
(𝑡, 𝜏)𝐺

1
(𝜏, 𝑠)𝑑𝜏. And we get the

following Lemma.

Lemma 3. Assume𝑚 ∈ 𝐿
𝑝
(0, 𝑇) for some 1 ≤ 𝑝 ≤ ∞.𝑚(𝑡) >

0 and (32) hold.Then,𝐺2(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ [0, 𝜔]×[0, 𝜔].

Proof. FromLemma 10, we know𝐺
2
(𝑡, 𝑠) > 0. Since𝐺

1
(𝑡, 𝑠) >

0, from (25) we see that 𝐺2(𝑡, 𝑠) > 0 for all (𝑡, 𝑠) ∈ [0, 𝜔] ×

[0, 𝜔].

3. Preliminary Lemmas

Firstly, we establish the existence of positive periodic solu-
tions for third-order differential equation (6) by using fixed
point theorem, which can be found in [22].

Lemma 4 (see [22]). Let 𝑋 be a Banach space and 𝐾 a cone
in𝑋. Assume thatΩ

1
, Ω
2
are bounded open subsets of 𝑋 with

0 ∈ Ω
1
, Ω
1
⊂ Ω
2
, and let

𝑇 : 𝐾 ∩ (Ω
2
\ Ω
1
) → 𝐾 (34)

be a completely continuous operator such that either

(i) ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
and ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩

𝜕Ω
2
; or

(ii) ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
and ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩

𝜕Ω
2
.

Then 𝑇 has a fixed point in 𝐾 ∩ (Ω
2
\ Ω
1
).

For the sake of convenience, we list the following assump-
tions which will be used repeatedly in the sequel:

(H
1
) 𝑓(𝑥) is a scalar continuous function defined for

𝑥 > 0, and 𝑓(𝑥) > 0 for 𝑥 > 0.
(H
2
) 𝑔(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔], ∫𝜔

0
𝑔(𝑡)𝑑𝑡 > 0.

(H
3
) 𝑔(𝑡) > 0 for 𝑡 ∈ [0, 𝜔].

Under Lemmas 1 and 3, we always denote

𝑚
𝑖
= min
0≤𝑠,𝑡≤𝜔

𝐺
𝑖

(𝑡, 𝑠) , 𝑀
𝑖
= max
0≤𝑠,𝑡≤𝜔

𝐺
𝑖

(𝑡, 𝑠) , 𝜎
𝑖
=

𝑚
𝑖

𝑀
𝑖

,

𝑖 = 1, 2.

(35)

Obviously,𝑀
𝑖
> 𝑚
𝑖
> 0 and 0 < 𝜎

𝑖
< 1.

Case 1. Let 𝑎(𝑡) = 𝜌 + 𝑝(𝑡), 𝑏(𝑡) = 𝜌𝑝(𝑡) + 𝑞(𝑡) + 𝑝(𝑡), 𝑐(𝑡) =
𝜌𝑞(𝑡) + 𝑞


(𝑡). The following are the main existence results in

this section.
Define the cone𝐾 in𝑋 by

𝐾 = {𝑥 ∈ 𝑋 : 𝑥 (𝑡) ≥ 0 ∀𝑡 ∈ [0, 𝜔] ,

min
𝑡∈𝑅

𝑥 (𝑡) ≥ 𝜎
1
‖𝑥‖} .

(36)

We take𝑋 = 𝐶
𝜔
with ‖𝑥‖ = max

𝑡
|𝑥(𝑡)|. Also, for 𝑟 > 0, let

Ω
𝑟
= {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑟} . (37)

Define the operator 𝑇 : 𝐾 \ {0} → 𝑋 as follows:

(𝑇
𝜇
𝑥) (𝑡) = 𝜇∫

𝜔

0

𝐺
1

(𝑡, 𝑠) (𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) + 𝑒 (𝑠)) 𝑑𝑠, (38)

where 𝑒 is nonnegative and 𝑔(𝑠)𝑓(𝑥(𝑠)) + 𝑒(𝑠) is nonnegative.
If 𝑒 takes negative values, we will choose 𝑥(𝑠) so that
𝑔(𝑠)𝑓(𝑥(𝑠)) + 𝑒(𝑠) is nonnegative. This is possible because
lim
𝑥→0

𝑓(𝑥) = ∞ or lim
|𝑥|→∞

𝑓(𝑥) = ∞.
Now, if 𝑥 is a fixed point of 𝑇

𝜇
in 𝐾 \ {0}, then 𝑥 is

a positive solution of (6). Also note that each component
𝑥(𝑡) of any nonnegative periodic solution 𝑥 is strictly positive
for all 𝑡 because of the positiveness of the Green functions
and assumptions (𝐻

1
) and (𝐻

2
). We now look at several

properties of the operator.

Lemma 5. Assume that (14), (21), (𝐻
1
), and (𝐻

2
) hold and

𝑒(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔]. Then, 𝑇
𝜇
(𝐾 \ {0}) ⊂ 𝐾 and 𝑇

𝜇
: 𝐾 \ {0} →

𝐾 is completely continuous.

Proof. If 𝑥 ∈ 𝐾 \ {0}, then min
𝑡∈[0,𝜔]

𝑥(𝑡) ≥ 𝜎
1
‖𝑥‖ > 0, and

then 𝑇
𝜇
is defined. Now we have that

min
𝑡∈[0,𝜔]

𝑇
𝜇
𝑥 (𝑡) ≥ 𝑚

1
𝜇∫

𝜔

0

(𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) + 𝑒 (𝑠)) 𝑑𝑠

= 𝜇𝜎
1
𝑀
1
∫

𝜔

0

(𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) + 𝑒 (𝑠)) 𝑑𝑠

≥ 𝜎
1
sup
𝑡∈[0,𝜔]

𝑇
𝜇
𝑥 (𝑡) = 𝜎

1






𝑇
𝜇
𝑥






.

(39)

Thus, 𝑇
𝜇
(𝐾\ {0}) ⊂ 𝐾. It is easy to verify that 𝑇

𝜇
is completely

continuous.

If 𝑒(𝑡) takes negative values, we need to choose appropri-
ate domains so that 𝑔(𝑠)𝑓(𝑥(𝑠)) + 𝑒(𝑠) become nonnegative.
The proof of𝑇

𝜇
(𝐾\{0}) ⊂ 𝐾 and𝑇

𝜇
(𝐾\Ω

𝑅
) ⊂ 𝐾 in Lemma 6

is the same as in Lemma 5.

Lemma 6. Assume that (14), (21), (𝐻
1
), and (𝐻

3
) hold.

(a) If lim
𝑥→0

𝑓(𝑥) = ∞, there is a 𝛿 > 0 such that if 0 <
𝑟 < 𝛿, then 𝑇

𝜇
is defined onΩ

𝑟
\ {0}, 𝑇

𝜇
(Ω
𝑟
\ {0}) ⊂ 𝐾,

and 𝑇
𝜇
: Ω
𝑟
\ {0} → 𝐾 is completely continuous.

(b) If lim
𝑥→∞

𝑓(𝑥) = ∞, there is a Δ > 0 such that if
𝑅 > Δ, then 𝑇

𝜇
is defined on𝐾 \ Ω

𝑅
, 𝑇
𝜇
(𝐾 \ Ω

𝑅
) ⊂ 𝐾,

and 𝑇
𝜇
: 𝐾 \ Ω

𝑅
→ 𝐾 is completely continuous.
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Proof. We split 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) into the two terms
(1/2)𝑔(𝑡)𝑓(𝑥(𝑡) and (1/2)𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡). The first term is
always nonnegative and used to carry out the estimates of the
operator in the lemma and corollaries in this section. We will
make the second term (1/2)𝑔(𝑡)𝑓(𝑥(𝑡))+ 𝑒(𝑡) nonnegative by
choosing appropriate domains of 𝑓. The choice of the even
split of 𝑔(𝑡)𝑓(𝑥(𝑡)) here is not necessarily optimal in terms of
obtaining maximal 𝜇-intervals for the existence of periodic
solutions of the equation.

Noting that 𝑔(𝑡) is positive on [0, 𝜔], lim
𝑥→0

𝑓(𝑥) = ∞,
implies that there exists a constant 𝛿 > 0 such that

𝑓 (𝑥) ≥ 2

max
𝑡∈[0,𝜔]

{𝑒 (𝑡) + 1}

min
𝑡∈[0,𝜔]

𝑔 (𝑡)

, (40)

for 0 < 𝑥 < 𝛿. Now for 𝑥 ∈ Ω
𝑟
\ {0} and 0 < 𝑟 < 𝛿, note that

𝛿 > 𝑟 ≥ 𝑥 (𝑡) ≥ min
𝑡∈[0,𝜔]

𝑥 (𝑡) ≥ 𝜎
1
‖𝑥‖ > 0, 𝑡 ∈ [0, 𝜔] , (41)

and, therefore, we have, for 𝑡 ∈ [0, 𝜔],

𝑔 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝑒 (𝑡) ≥

1

2

𝑔 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝑒 (𝑡)

≥ 𝑔 (𝑡)

max
𝑡∈[0,𝜔]

{𝑒 (𝑡) + 1}

min
𝑡∈[0,𝜔]

𝑔 (𝑡)

+ 𝑒 (𝑡) > 0.

(42)

Thus, it is clear that 𝑇
𝜇
𝑥(𝑡) in (38) is well defined and

positive, and now it is easy to see that 𝑇
𝜇
(Ω
𝑟
\ {0}) ⊂ 𝐾 and

𝑇
𝜇
: Ω
𝑟
\ {0} → 𝐾 is completely continuous.

On the other hand, if lim
𝑥→∞

𝑓(𝑥) = ∞, there is an𝑅 >
0 such that

𝑓 (𝑥) ≥ 2

max
𝑡∈[0,𝜔]

{𝑒 (𝑡) + 1}

min
𝑡∈[0,𝜔]

𝑔 (𝑡)

, (43)

for |𝑥| ≥ 𝑅. Now let Δ = 𝑅

/𝜎
1
. Then for 𝑥 ∈ 𝐾\Ω

𝑅
, 𝑅 > Δ,

we have that min
𝑡∈[0,𝜔]

𝑥(𝑡) ≥ 𝜎
1
‖𝑥‖ > 𝑅

, and, therefore,

𝑔 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝑒 (𝑡) ≥

1

2

𝑔 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝑒 (𝑡) > 0,

𝑡 ∈ [0, 𝜔] .

(44)

Now, 𝑇
𝜇
𝑥(𝑡) in (38) is well defined and positive. It is clear

that 𝑇
𝜇
(𝐾 \ Ω

𝑅
) ⊂ 𝐾 and 𝑇

𝜇
: 𝐾 \ Ω

𝑅
→ 𝐾 is completely

continuous.

Now let

Γ =

1

2

𝑚
1
𝜎
1
∫

𝜔

0

𝑔 (𝑠) 𝑑𝑠. (45)

Lemma 7. Assume that (14), (21), (𝐻
1
), and (𝐻

2
) hold and

𝑒(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔]. Let 𝑟 > 0 and if there exist 𝜂 > 0 such that

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) for 𝑡 ∈ [0, 𝜔] , (46)

for 𝑥(𝑡) ∈ 𝜕Ω
𝑟
, then the following inequality holds:






𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ . (47)

Proof. From the definition of 𝑇
𝜇
𝑥, it follows that






𝑇
𝜇
𝑥






≥ max
𝑡∈[0,𝜔]

𝑇
𝜇
𝑥 (𝑡)

≥

1

2

𝜇𝑚
1
∫

𝜔

0

𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠

≥

1

2

𝜇𝑚
1
∫

𝜔

0

𝑔 (𝑠) 𝜂𝑥 (𝑠) 𝑑𝑠

≥

1

2

𝜇𝑚
1
𝜎
1
∫

𝜔

0

𝑔 (𝑠) 𝑑𝑠𝜂 ‖𝑥‖ = 𝜇Γ𝜂 ‖𝑥‖ .

(48)

If 𝑒(𝑡) takes negative values, we need to adjust 𝛿 and Δ in
Lemma 6 to guarantee that 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative.

Corollary 8. Assume that (14), (21), (𝐻
1
), and (𝐻

3
) hold.

(a) If lim
𝑥→0

𝑓(𝑥) = ∞, then Lemma 7 holds assuming
that 0 < 𝑟 < 𝛿, where 𝛿 is defined by Lemma 6.

(b) If lim
𝑥→∞

𝑓(𝑥) = ∞, then Lemma 7 holds assuming
that Δ > 0, where Δ is defined by Lemma 6.

Proof. We split 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) into the two terms
(1/2)𝑔(𝑡)𝑓(𝑥(𝑡)) and (1/2)𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡). By choosing 𝛿
and Δ in Lemma 6, 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) become nonnegative.
The estimate in Corollary 8 can be carried out by the first
terms as in Lemma 7.

Let ̂𝑓(𝜃) : [1,∞) → R
+
be the function given by

̂
𝑓 (𝜃) = max {𝑓 (𝑢) : 𝑢 ∈ R

+
, 1 ≤ 𝑢 ≤ 𝜃} . (49)

It is easy to see that ̂
𝑓(𝜃) is a nondecreasing function

on [1,∞). The following lemma is essentially the same as
Lemma 2.8 in [23].

Lemma 9 (see [23]). Assume (𝐻
1
) holds.

If lim
|𝑥|→∞

(𝑓(𝑥)/|𝑥|) exists (which can be infinity),
then lim

𝜃→∞
(
̂
𝑓(𝜃)/𝜃) exists and lim

𝜃→∞
(
̂
𝑓(𝜃)/𝜃) =

lim
|𝑥|→∞

(𝑓(𝑥)/|𝑥|).

Lemma 10. Assume that (14), (21), (𝐻
1
), and (𝐻

2
) hold and

𝑒(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔]. Let 𝑟 > max{1/𝜎
1
, 2𝜇𝑀

1
∫

𝜔

0
|𝑒(𝑠)|𝑑𝑠} and

if there exists an 𝜀 > 0 such that

̂
𝑓 (𝑟) ≤ 𝜀𝑟, (50)

then






𝑇
𝜇
𝑥






≤ 𝜇𝐶𝜀 ‖𝑥‖ +

1

2

‖𝑥‖ for 𝑥 ∈ 𝜕Ω
𝑟
, (51)

where the constant 𝐶 = 𝑀
1
∫

𝜔

0
𝑔(𝑠)𝑑𝑠.
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Proof. From the definition of 𝑇
𝜇
, we have, for 𝑥 ∈ 𝜕Ω

𝑟
,






𝑇
𝜇
𝑥






= max
𝑡∈[0,𝜔]

𝑇
𝜇
𝑥 (𝑡)

≤ 𝜇𝑀
1
∫

𝜔

0

𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝜇𝑀
1
∫

𝜔

0

|𝑒 (𝑠)| 𝑑𝑠

≤ 𝜇𝑀
1
∫

𝜔

0

𝑔 (𝑠)
̂
𝑓 (𝑟) 𝑑𝑠 +

𝑟

2

≤ 𝜇𝑀
1
∫

𝜔

0

𝑔 (𝑠) 𝑑𝑠𝑟𝜀 +

𝑟

2

= 𝜇𝐶𝜀 ‖𝑥‖ +

1

2

‖𝑥‖ .

(52)

If 𝑒(𝑡) takes negative values, we need to restrict the
domain of 𝑇

𝜇
to guarantee that 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonneg-

ative.

Corollary 11. Assume that (14), (21), (𝐻
1
), and (𝐻

3
) hold.

If lim
𝑥→∞

𝑓(𝑥) = ∞, Lemma 10 holds assuming that 𝑟 > Δ,
where Δ is defined by Lemma 6.

Proof. If we choose Δ defined in Lemma 6, then 𝑇
𝜇
is well

defined and𝑔(𝑡)𝑓(𝑥(𝑡))+𝑒(𝑡) is nonnegative, andCorollary 11
can be shown in the same way as Lemma 10.

The conclusions of Lemmas 7 and 10 are based on the
inequality assumptions between𝑓(𝑥) and 𝑥. If these assump-
tions are not necessarily true, we will have the following
results.

Lemma 12. Assume that (14), (21), (𝐻
1
), and (𝐻

2
) hold and

𝑒(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔]. Let 𝑟 > 0. Then






𝑇
𝜇
𝑥






≥ 𝜇

𝑚
1
�̂�
𝑟1

2

∫

𝜔

0

𝑔 (𝑠) 𝑑𝑠, (53)

for all 𝑥 ∈ 𝜕Ω
𝑟
, where �̂�

𝑟1
= min{𝑓(𝑥) : 𝑥 ∈ R

+
, 𝜎
1
𝑟 ≤ 𝑥 ≤

𝑟} > 0.

Proof. If 𝑥(𝑡) ∈ 𝜕Ω
𝑟
, then 𝜎

1
𝑟 ≤ 𝑥(𝑡) ≤ 𝑟, for 𝑡 ∈ [0, 𝜔].

Therefore 𝑓(𝑥(𝑡)) ≥ �̂�
𝑟1
for 𝑡 ∈ [0, 𝜔]. By the definition of

𝑇
𝜇
, we have






𝑇
𝜇
𝑥






= max
𝑡∈[0,𝜔]

𝑇
𝜇
𝑥 (𝑡)

≥

1

2

𝜇𝑚
1
∫

𝜔

0

𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠

≥ 𝜇

𝑚
1
�̂�
𝑟1

2

∫

𝜔

0

𝑔 (𝑠) 𝑑𝑠.

(54)

Now we consider the cases that 𝑒(𝑡) may take negative
values.We need to restrict the domain of𝑇

𝜇
to guarantee that

𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative. (1/2)𝑔(𝑡)𝑓(𝑥(𝑡)) is used to
carry out the estimates as Lemma 12.

Corollary 13. Assume that (14), (21), (𝐻
1
), and (𝐻

3
) hold.

(a) If lim
𝑥→0

𝑓(𝑥) = ∞, then Lemma 12 holds assuming
that 0 < 𝑟 < 𝛿, where 𝛿 > 0 is defined by Lemma 6.

(b) If lim
𝑥→∞

𝑓(𝑥) = ∞, then Lemma 12 holds assuming
that 𝑟 > Δ, where Δ is defined by Lemma 6.

Proof. By selecting 𝛿 and Δ defined in Lemma 6, 𝑇
𝜇
is well

defined and 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative, and then
Corollary 13 can be shown as Lemma 12.

Lemma 14. Assume that (14), (21), (𝐻
1
), and (𝐻

2
) hold and

𝑒(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜔]; let 𝑟 > 0. Then






𝑇
𝜇
𝑥






≤ 𝜇(𝑀

1
∫

𝜔

0

𝑔 (𝑠) �̂�
𝑟1
𝑑𝑠 +𝑀

1
∫

𝜔

0

|𝑒 (𝑠)| 𝑑𝑠) , (55)

for all 𝑥 ∈ 𝜕Ω
𝑟
, where �̂�

𝑟1
= max{𝑓(𝑥) : 𝑥 ∈ R

+
, 𝜎
1
𝑟 ≤ 𝑥 ≤

𝑟} > 0.

Proof. If 𝑥 ∈ 𝜕Ω
𝑟
, then 𝜎

1
𝑟 ≤ 𝑥(𝑡) ≤ 𝑟, 𝑡 ∈ [0, 𝜔]. Therefore,

𝑓(𝑥(𝑡)) ≤ �̂�
𝑟1
for 𝑡 ∈ [0, 𝜔]. Thus we have that






𝑇
𝜇
𝑥






= max
𝑡∈[0,𝜔]

𝑇
𝜇
𝑥 (𝑡)

≤ 𝜇𝑀
1
∫

𝜔

0

𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝜇𝑀
1
∫

𝜔

0

𝑒 (𝑠) 𝑑𝑠

≤ 𝜇𝑀
1
∫

𝜔

0

𝑔 (𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝜇𝑀
1
∫

𝜔

0

|𝑒 (𝑠)| 𝑑𝑠

≤ 𝜇𝑀
1
∫

𝜔

0

𝑔 (𝑠) �̂�
𝑟1
𝑑𝑠 + 𝜇𝑀

1
∫

𝜔

0

|𝑒 (𝑠)| 𝑑𝑠

= 𝜇(𝑀
1
∫

𝜔

0

𝑔 (𝑠) �̂�
𝑟1
𝑑𝑠 +𝑀

1
∫

𝜔

0

|𝑒 (𝑠)| 𝑑𝑠) .

(56)

Again, if 𝑒(𝑡) takes negative values, we need to restrict 𝑟
and 𝑅 to guarantee 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative.

Corollary 15. Assume that (14), (21), (𝐻
1
), and (𝐻

3
) hold.

(a) If lim
𝑥→0

𝑓(𝑥) = ∞, then Lemma 14 holds assuming
that 0 < 𝑟 < 𝛿, where 𝛿 > 0 is defined by Lemma 6.

(b) If lim
𝑥→∞

𝑓(𝑥) = ∞, then Lemma 14 holds assuming
that 𝑟 > Δ, where Δ is defined by Lemma 6.

Proof. By selecting 𝛿 and Δ defined in Lemma 6, 𝑇
𝜇
is well

defined and 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative, and then
Corollary 15 can be shown as Lemma 14.

4. Main Results

In this section, we present out main results for the existence
and multiplicity of positive periodic solutions of singular
third-order equation of repulsive type (6). We state our
theorems as follows.

Theorem 16. Let (14), (21), (𝐻
1
), and (𝐻

2
) hold and 𝑒(𝑡) ≥

0, 𝑡 ∈ [0, 𝜔]. Assume that lim
𝑥→0

𝑓(𝑥) = ∞.
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(a) If lim
𝑥→∞

(𝑓(𝑥)/𝑥) = 0, then, for all 𝜇 > 0, (6) has a
positive periodic solution.

(b) If lim
𝑥→∞

(𝑓(𝑥)/𝑥) = ∞, then, for all sufficiently
small 𝜇 > 0, (6) has two positive periodic solutions.

(c) There exists a 𝜇
1
such that (6) has a positive periodic

solution for 0 < 𝜇 < 𝜇
1
.

Proof. (a) Since 𝑒(𝑡) ≥ 0, 𝑇
𝜇
is defined on 𝐾 \ {0} and

𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative. Noting lim
𝑥→∞

(𝑓(𝑥)/𝑥) =

0, it follows from Lemma 9 that lim
𝜃→∞

(
̂
𝑓(𝜃)/𝜃) = 0.

Therefore, we can choose 𝑟
1
> max{1/𝜎

1
, 2𝜇𝑀

1
∫

𝜔

0
|𝑒(𝑠)|𝑑𝑠}

so that ̂𝑓(𝑟
1
) ≤ 𝜀𝑟

1
, where the constant 𝜀 > 0 satisfies

𝜇𝐶𝜀 <

1

2

, (57)

and 𝐶 is the positive constant defined in Lemma 10. We have
by Lemma 10 that






𝑇
𝜇
𝑥






≤ (𝜇𝐶𝜀 +

1

2

) ‖𝑥‖ < ‖𝑥‖ for 𝑥 ∈ 𝜕Ω
𝑟
1

. (58)

On the other hand, by the condition lim
𝑥→0

𝑓(𝑥) = ∞,
there is a positive number 𝑟

2
< 𝑟
1
such that

𝑓 (𝑥) ≥ 𝜂𝑥, (59)

for 𝑥 ∈ R
+
\ {0} and 𝑥 ≤ 𝑟

2
, where 𝜂 > 0 is chosen so that

𝜇Γ𝜂 > 1. (60)

It is easy to see that, for 𝑥 ∈ 𝜕Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔],

𝑓 (𝑥) ≥ 𝜂𝑥 (𝑡) . (61)

Lemma 7 implies that





𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
2

. (62)

By Lemma 4, 𝑇
𝜇
has a fixed point 𝑥 ∈ Ω

𝑟
1

\ Ω
𝑟
2

. The fixed
point 𝑥 ∈ Ω

𝑟
1

\Ω
𝑟
2

is the desired positive periodic solution of
(6).

(b) Again, since 𝑒(𝑡) ≥ 0, 𝑇
𝜇
is defined on 𝐾 \ {0} and

𝑔(𝑡)𝑓(𝑥(𝑡))+𝑒(𝑡) is nonnegative. Fix twonumbers 0 < 𝑟
3
< 𝑟
4
;

there exists a 𝜇
0
> 0 such that

𝜇
0
<

𝑟
3

𝑀
1
∫

𝜔

0
𝑔 (𝑠) �̂�

𝑟
31

𝑑𝑠 +𝑀
1
∫

𝜔

0
|𝑒 (𝑠)| 𝑑𝑠

,

𝜇
0
<

𝑟
4

𝑀
1
∫

𝜔

0
𝑔 (𝑠) �̂�

𝑟
41

𝑑𝑠 +𝑀
1
∫

𝜔

0
|𝑒 (𝑠)| 𝑑𝑠

,

(63)

where �̂�
𝑟
31

and �̂�
𝑟
41

are defined in Lemma 14, which implies
that, for 0 < 𝜇 < 𝜇

0
,






𝑇
𝜇
𝑥






< ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
𝑗

(𝑗 = 3, 4) . (64)

On the other hand, in view of the assumptions
lim
𝑥→∞

(𝑓(𝑥)/𝑥) = ∞ and lim
𝑥→0

𝑓(𝑥) = ∞, there
are positive numbers 0 < 𝑟

2
< 𝑟
3
< 𝑟
4
< 𝑟


1
such that

𝑓 (𝑥) ≥ 𝜂𝑥 (65)

for 𝑥 ∈ R
+
and 0 < 𝑥 ≤ 𝑟

2
or 𝑥 > 𝑟

1
where 𝜂 > 0 is chosen so

that

𝜇Γ𝜂 > 1. (66)

Thus if 𝑥 ∈ 𝜕Ω
𝑟
2

, then

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) , 𝑡 ∈ [0, 𝜔] . (67)

Let 𝑟
1
= 𝑟


1
/𝜎
1
. If 𝑥 ∈ 𝜕Ω

𝑟
1

, then

min
𝑡∈[0,𝜔]

𝑥 (𝑡) ≥ 𝜎
1
‖𝑥‖ = 𝜎

1
𝑟
1
≥ 𝑟


1
, (68)

which implies that

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) for 𝑡 ∈ [0, 𝜔] . (69)

Thus, Lemma 7 implies that





𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
1

,






𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
2

.

(70)

It follows from Lemma 4 that 𝑇
𝜇
has two fixed points 𝑥

1
(𝑡)

and 𝑥
2
(𝑡) such that 𝑥

1
(𝑡) ∈ Ω

𝑟
3

\ Ω
𝑟
2

and 𝑥
2
(𝑡) ∈ Ω

𝑟
1

\ Ω
𝑟
4

,
which are the desired distinct positive periodic solutions of
(6) for 𝜇 < 𝜇

0
satisfying

𝑟
2
<




𝑥
1





< 𝑟
3
< 𝑟
4
<




𝑥
2





< 𝑟
1
. (71)

(c) First we note that 𝑇
𝜇
is defined on 𝐾 \ {0} and

𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative since 𝑒(𝑡) ≥ 0. Fix a number
𝑟
3
> 0. Lemma 14 implies that there exists a 𝜇

1
> 0 such that

we have, for 0 < 𝜇 < 𝜇
1
,






𝑇
𝜇
𝑥






< ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
3

. (72)

On the other hand, in view of the assumption
lim
𝑥→0

𝑓(𝑥) = ∞, there is a positive number 0 < 𝑟
2
< 𝑟
3

such that

𝑓 (𝑥) ≥ 𝜂𝑥, (73)

for 𝑥 ∈ R
+
and 0 < 𝑥 ≤ 𝑟

2
, where 𝜂 > 0 is chosen so that

𝜇Γ𝜂 > 1. (74)

Thus, if 𝑥 ∈ 𝜕Ω
𝑟
2

, then

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) , 𝑡 ∈ [0, 𝜔] . (75)

Thus, Lemma 7 implies that





𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
2

. (76)

Lemma 4 implies that 𝑇
𝜇
has a fixed point 𝑥 ∈ Ω

𝑟
3

\ Ω
𝑟
2

.
The fixed point 𝑥 ∈ Ω

𝑟
3

\ Ω
𝑟
2

is the desired positive periodic
solution of (6).

When 𝑒(𝑡) takes negative values, we give the following
theorem.
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Theorem 17. Let (14), (21), (𝐻
1
), and (𝐻

3
) hold. Assume that

lim
𝑥→0

𝑓(𝑥) = ∞.

(a) If lim
𝑥→∞

𝑓(𝑥) = ∞ and lim
𝑥→∞

(𝑓(𝑥)/𝑥) = 0,
then there exists 𝜇

0
> 0 such that (6) has a positive

periodic solution for 𝜇 > 𝜇
0
.

(b) If lim
𝑥→∞

(𝑓(𝑥)/𝑥) = ∞, then, for all sufficiently
small 𝜇 > 0, (6) has two positive periodic solutions.

(c) There exists a 𝜇
1
> 0 such that (6) has a positive

periodic solution for 0 < 𝜇 < 𝜇
1
.

Proof. (a) Since lim
|𝑥|→∞

𝑓(𝑥) = ∞, by Lemma 6, there is a
Δ > 0 such that if𝑅 > Δ; then𝑔(𝑡)𝑓(𝑥(𝑡))+𝑒(𝑡) is nonnegative
and 𝑇

𝜇
: 𝐾 \ Ω

𝑅
→ 𝐾 is defined. Now, for a fixed number

𝑟
1
> Δ, Corollary 13 implies that there exists a 𝜇

0
> 0 such

that, for 𝜇 > 𝜇
0
,





𝑇
𝜇
𝑥






> ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
1

. (77)

On the other hand, since lim
|𝑥|→∞

(𝑓(𝑥)/𝑥) = 0, it
follows from Lemma 2 that lim

𝜃→∞
(
̂
𝑓(𝜃)/𝜃) = 0. Therefore,

we can choose

𝑟
2
> max{2𝑟

1
,

1

𝜎
1

, 2𝜇𝑀
1
∫

𝜔

0

|𝑒 (𝑠)| 𝑑𝑠} > Δ, (78)

so that ̂𝑓(𝑟
2
) ≤ 𝜀𝑟

2
, where the constant 𝜀 > 0 satisfies

𝜇𝐶𝜀 <

1

2

. (79)

We have, by Corollary 11, that






𝑇
𝜇
𝑥






≤ (𝜇𝐶𝜀 +

1

2

) ‖𝑥‖ < ‖𝑥‖ for 𝑥 ∈ 𝜕Ω
𝑟
2

. (80)

By Lemma 4, 𝑇
𝜇
has a fixed point 𝑥 ∈ Ω

𝑟
2

\ Ω
𝑟
1

. The fixed
point 𝑥 ∈ Ω

𝑟
2

\Ω
𝑟
1

is the desired positive periodic solution of
(6).

(b) First, since lim
𝑥→0

𝑓(𝑥) = ∞, by Lemma 6, there is
𝛿 > 0 such that if 0 < 𝑟 < 𝛿, 𝑇

𝜇
is defined on Ω̂ \ {0} and

𝑔(𝑡)𝑓(𝑥(𝑡))+𝑒(𝑡) is nonnegative. Furthermore,𝑇
𝜇
(Ω̂
𝑟
\{0}) ⊂

𝐾. Now for a fixed number 𝑟
1
< 𝛿, Corollary 15 implies that

there exists a 𝜇
1
> 0 such that we have, for 𝜇 < 𝜇

1
,






𝑇
𝜇
𝑥






< ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
1

. (81)

In view of the assumption lim
𝑥→0

𝑓(𝑥) = ∞, there is a
positive number 0 < 𝑟

3
< 𝑟
1
such that

𝑓 (𝑥) ≥ 𝜂𝑥 (82)

for 𝑥 ∈ R
+
and 0 < 𝑥 ≤ 𝑟

3
, where 𝜂 > 0 is chosen so that

𝜇Γ𝜂 > 1. (83)

Thus, if 𝑥 ∈ 𝜕Ω
𝑟
3

, then

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) , 𝑡 ∈ [0, 𝜔] . (84)

Thus, Corollary 8 implies that






𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
3

. (85)

It follows from Lemma 4 that 𝑇
𝜇
has a fixed point 𝑥

1
(𝑡) ∈

Ω
𝑟
1

\Ω
𝑟
3

which is a positive periodic solution of (6) for 𝜇 < 𝜇
1

satisfying

𝑟
3
<




𝑥
1





< 𝑟
1
. (86)

On the other hand, since lim
𝑥→∞

(𝑓(𝑥)/𝑥) = ∞, by
Lemma 6, there is Δ > 0 such that if 𝑅 > Δ, 𝑇

𝜇
is defined on

𝐾 \ Ω
𝑅
and 𝑔(𝑡)𝑓(𝑥(𝑡)) + 𝑒(𝑡) is nonnegative. Furthermore,

𝑇
𝜇
(𝐾 \ Ω

𝑅
) ⊂ 𝐾. For a fixed number 𝑟

2
> max{Δ, 𝑟

1
}, and

Corollary 15 implies that there exists a 0 < 𝜇
0
< 𝜇
1
such that

we have, for 𝜇 < 𝜇
0
,






𝑇
𝜇
𝑥






< ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
2

. (87)

Since lim
𝑥→∞

(𝑓(𝑥)/𝑥) = ∞, there is a positive number 𝑟
such that

𝑓 (𝑥) ≥ 𝜂𝑥 (88)

for 𝑥 ∈ R
+
and 𝑥 ≥ 𝑟, where 𝜂 > 0 is chosen so that

𝜇Γ𝜂 > 1. (89)

Let 𝑟
4
= max{2𝑟

2
, (1/𝜎
1
)𝑟

} > Δ. If 𝑥 ∈ 𝜕Ω

𝑟
4

, then

min
𝑡∈[0,𝜔]

𝑥 (𝑡) ≥ 𝜎
1
‖𝑥‖ = 𝜎

1
𝑟
4
≥ 𝑟

, (90)

which implies that

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) for 𝑡 ∈ [0, 𝜔] . (91)

Again, Corollary 8 implies that






𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
4

. (92)

It follows from Lemma 4 that 𝑇
𝜇
has a fixed point 𝑥

2
(𝑡) ∈

Ω
𝑟
4

\Ω
𝑟
2

, which is a positive periodic solution of (6) for𝜇 < 𝜇
0

satisfying

𝑟
2
<




𝑥
2





< 𝑟
4
. (93)

Noting that

𝑟
3
<




𝑥
1





< 𝑟
1
< 𝑟
2
<




𝑥
2





< 𝑟
4
, (94)

we can conclude that 𝑥
1
and 𝑥

2
are the desired distinct

positive solutions of (6) for 𝜇 < 𝜇
0
.

(c) Since lim
𝑥→0

𝑓(𝑥) = ∞, by Lemma 6, there is a 𝛿 > 0
such that if 0 < 𝑟 < 𝛿, then𝑇

𝜇
is defined and 𝑔(𝑡)𝑓(𝑥(𝑡))+𝑒(𝑡)

is nonnegative. Now for a fixed number 𝑟
1
< 𝛿, Corollary 15

implies that there exists a 𝜇
1
> 0 such that we have, for𝜇 < 𝜇

1
,






𝑇
𝜇
𝑥






< ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
1

. (95)
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On the other hand, in view of the assumption
lim
𝑥→0

𝑓(𝑥) = ∞, there is a positive number 0 < 𝑟
2
< 𝑟
1
< 𝛿

such that

𝑓 (𝑥) ≥ 𝜂𝑥 (96)

for 𝑥 ∈ R
+
and 0 < 𝑥 ≤ 𝑟

2
, where 𝜂 > 0 is chosen so that

𝜇Γ𝜂 > 1. (97)

Thus, if 𝑥 ∈ 𝜕Ω
𝑟
2

, then

𝑓 (𝑥 (𝑡)) ≥ 𝜂𝑥 (𝑡) , 𝑡 ∈ [0, 𝜔] . (98)

Thus, Corollary 8 implies that





𝑇
𝜇
𝑥






≥ 𝜇Γ𝜂 ‖𝑥‖ > ‖𝑥‖ for 𝑥 ∈ 𝜕Ω

𝑟
2

. (99)

Lemma 4 implies that 𝑇
𝜇
has a fixed point 𝑥

1
∈ Ω
𝑟
1

\ Ω
𝑟
2

.
The fixed point 𝑥

1
∈ Ω
𝑟
1

\ Ω
𝑟
2

is the desired positive periodic
solution of (6).

Case 2. In this case, replacing assumptions (14) and (21) by
assumption (32), we can get similar existence results which
we omit here.

We illustrate our results with some examples.

Example 18. Consider the following singular equation:

𝑥


(𝑡) + 3𝑥


(𝑡) +

41

20

𝑥


(𝑡) +

1

20

𝑥 (𝑡)

= 𝜇 (1 + cos 2𝜋𝑡) ( 1

𝑥 (𝑡)

+ 𝑥(𝑡)
1/2
) + 𝜇𝑒

sin 2𝜋𝑡
,

(100)

where 𝜇 is a constant and 𝜇 > 0.
Comparing (100) to (6), we see that 𝑓(𝑥) = (1/𝑥(𝑡)) +

𝑥(𝑡)
1/2
, 𝑔(𝑡) = 1 + cos 2𝜋𝑡, 𝑒(𝑡) = 𝑒

sin 2𝜋𝑡
, 𝜔 = 1 𝑎(𝑡) =

3, 𝑏(𝑡) = 41/20, 𝑐(𝑡) = 1/20. Take 𝑝(𝑡) = 2, 𝑞(𝑡) = 1/20, 𝜌 = 1;
then Case 1 holds. By calculation, we get 𝑅 = 1/40, 𝑄 =

(1/40)(1 + 𝑒
2
)
2
, 𝐴 = 2, 𝐵 = 1/20, 𝛼 = 1 + √1 − (1/20) ≈

1.975, 𝛽 = 1 − √1 − (1/20) ≈ 0.025, and we have 1/40 <

(𝑒
2
− 1)/(1 + 𝑒

2
)
2
≈ 0.0907, 𝐴

2
= 4 > 4𝐵 = 1/5; then

(14) and (21) hold. Moreover, 𝑔(𝑡) ≥ 0, 𝑓(𝑡, 𝑥) = (1/𝑥(𝑡)) +

𝑥(𝑡)
1/2
, lim
𝑥→0

𝑓(𝑥) = ∞, limx→∞(𝑓(𝑥)/𝑥) = 0; then (𝐻
1
)

and (𝐻
2
) hold. So, byTheorem 16(a), we can get that (100) has

positive periodic solution.

Example 19. Consider the following singular equation:

𝑥


(𝑡) + 2𝑥


(𝑡) + (1 + 𝛼 (𝑡)) 𝑥


(𝑡) + (𝛼 (𝑡) + 𝛼


(𝑡)) 𝑥 (𝑡)

= 𝜇 (1 + sin 2𝜋𝑡) ( 1

𝑥 (𝑡)

+ 𝑥(𝑡)
3
) + 𝜇(𝑒

cos 2𝜋𝑡
−

1

𝑒

) ,

(101)

where 𝜇 is a constant and 𝜇 > 0, 𝛼(𝑡) ∈ 𝐶
1
(R) is 1-periodic

function and ∫1
0
𝛼(𝑡)𝑑𝑡 ̸= 0, 𝛼 : R → R+ is continuous, and

𝛼
∞
≤ (𝑒 − 1)/(𝑒 + 1)

2
≤ 1/4; here, 𝛼

∞
= max

𝑡∈[0,1]
𝛼(𝑡).

Comparing (101) to (6), we see that 𝑓(𝑥) = (1/𝑥(𝑡)) +

𝑥(𝑡)
3, 𝑔(𝑡) = 1 + sin 2𝜋𝑡, 𝑒(𝑡) = 𝑒

cos 2𝜋𝑡
− (1/𝑒), 𝜔 =

1 𝑎(𝑡) = 2, 𝑏(𝑡) = 1 + 𝛼(𝑡), 𝑐(𝑡) = 𝛼(𝑡) + 𝛼

(𝑡). Take 𝑝(𝑡) =

1, 𝑞(𝑡) = 𝛼(𝑡), 𝜌 = 1; then Case 1 holds. By calculation, we
get 𝑅 = ∫

𝑡+1

𝑡
(𝑒
𝑠−𝑡
/(𝑒 − 1))𝛼(𝑠)𝑑𝑠, 𝑄 = (1 + 𝑒)

2
∫

𝑡+1

𝑡
(𝑒
𝑠−𝑡
/(𝑒 −

1))𝛼(𝑠)𝑑𝑠, 𝐴 = 1, 𝐵 = 𝑒
∫
1

0
ln𝛼(𝑡)𝑑𝑡. From 𝛼

∞
≤ (𝑒−1)/(𝑒+1)

2
≤

1/4, we have (1/𝑄𝜔)[exp(∫𝜔
0
𝑝(𝑢)𝑑𝑢) − 1] = (𝑒 − 1)/(1 +

𝑒)
2
∫

𝑡+1

𝑡
(𝑒
𝑠−𝑡
/(𝑒 − 1))𝛼(𝑠)𝑑𝑠 ≥ (𝑒 − 1)/(𝑒 + 1)

2
𝛼
∞

≥ 1, and

4𝐵 = 4𝑒
∫
1

0
ln𝛼(𝑡)𝑑𝑡

≤ 4𝛼
∞

≤ 1 = 𝐴
2; then (14) and (21)

hold. Moreover, 𝑔(𝑡) ≥ 0, 𝑒(𝑡) ≥ 0, 𝑓(𝑡, 𝑥) = (1/𝑥(𝑡)) +

𝑥(𝑡)
3
, lim
𝑥→0

𝑓(𝑥) = ∞, lim
𝑥→∞

(𝑓(𝑥)/𝑥) = ∞; then (𝐻
1
)

and (𝐻
2
) hold. So, byTheorem 16(b), we can get that (100) has

two positive periodic solutions.
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