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A new method, homoclinic breather limit method (HBLM), for seeking rogue wave solution of nonlinear evolution equation is
proposed. A new family of homoclinic breather wave solution, and rational homoclinic solution (homoclinic rogue wave) for DSI
and DSII equations are obtained using the extended homoclinic test method and homoclinic breather limit method (HBLM),
respectively. Moreover, rogue wave solution is exhibited as period of periodic wave in homoclinic breather wave approaches to
infinite.This result shows that roguewave can be generated by extreme behavior of homoclinic breatherwave for higher dimensional
nonlinear wave fields.

1. Introduction

In recent years, rogue waves, as a special type of solitary
waves, has been triggered much interest in various phys-
ical branches, although there is no exact definition up to
now. Rogue waves is a kind of waves that seems abnormal
which is first observed in the deep ocean, it has been
the subject of intensive research in oceanography [1, 2],
optical fibres [3–5], superfluids [6], Bose-Einstein conden-
sates, financial markets, and related fields [7–10]. A possible
mechanism for the formation of rogue waves is associated
with modulation instability [11–14].The mysteriousness of
rogue wave events mainly lies in the phenomenon which
appears out of nowhere and disappears without trace. As is
known, there are some methods to seek rogue wave such
as Darboux dressing technique, Hirota bilinear method.
Based on Hirota bilinear equation of nonlinear evolution
equation, for Schrödinger type complex systems, there are
some effective techniques such as the Peregrine breather
method (PB) [11], whose representation is mathematically
a ratio of two polynomials, Ma solitons [4] (MS) and
Akhmediev breather methods (ABs) [3]. The main differ-
ence between these methods is the test function to Hirota

bilinear equation. The test functions of PB, MS, and ABs are
𝐸
1
(𝑥, 𝑡) = 𝑒

𝑖𝜙(𝑥,𝑡)
(1 − ((𝐺(𝑥, 𝑡) + 𝑖𝐻(𝑥, 𝑡))/𝐷(𝑥, 𝑡))); 𝐸

2
(𝑥, 𝑡) =

𝑒
𝑖𝜙(𝑥,𝑡)

((𝑎
1
cosh(𝑝𝑥) + 𝑎

2
cos(𝑘𝑡) + 𝑖𝑎

3
sin(𝑘𝑡))/(𝑏

1
cosh(𝑝𝑥) +

𝑏
2
cos(𝑘𝑡))); and 𝐸

3
(𝑥, 𝑡) = 𝑒

𝑖𝜙(𝑥,𝑡)
((𝑎
1
cosh(𝛼𝑡) + 𝑎

2
cos(𝑘𝑥)

+ 𝑖𝑎
3
sinh(𝛼𝑡))/(𝑏

1
cosh(𝛼𝑡) + 𝑏

2
cos(𝑘𝑥))), respectively. Here

𝜙(𝑥, 𝑡) is real function and 𝐺(𝑥, 𝑡),𝐻(𝑥, 𝑡), and 𝐷(𝑥, 𝑡) are
polynomials of (𝑥, 𝑡), and 𝐸

𝑖
(𝑥, 𝑡), 𝑖 = 2, 3, may generate

the rogue wave similar to 𝐸
1
as 𝑘 → 0. The above

three methods have been successfully applied to complex
system such as Hirota equation, Sasa-Satsuma equation,
Davey-Stewartson equation, coupled Gross-Pitaevskii equa-
tion, coupled NLS Maxwell-Bloch equation, and coupled
Schrödinger-Boussinesq equation [11–18].

In this work, we propose a homoclinic (heteroclinic)
breather limit method for seeking rogue wave solution. We
take 𝐸(𝑥, 𝑡) = 𝑒

𝑖𝜙(𝑥,𝑡)
((𝑒
−𝑝(𝑥−𝛼𝑡)

+ 𝑎
1
cos(𝑝
1
(𝑥 − 𝛽𝑡)) +

𝑎
2
𝑒
𝑝(𝑥−𝛼𝑡)

)/(𝑒
−𝑝(𝑥−𝛼𝑡)

+ 𝑎
3
cos(𝑝
1
(𝑥 − 𝛽𝑡)) + 𝑎

4
𝑒
𝑝(𝑥−𝛼𝑡)

)) as a
test function to Hirots bilinear equation. 𝐸(𝑥, 𝑡) can generate
one or two rogue waves as 𝑝

1
→ 0. It is obvious that the 𝐸 is

different from 𝐸
2
and 𝐸

3
, comparing with 𝐸

2
, 𝐸
3
, and 𝐸 has

more complicated structure. Nowwe consider the application
of HBLM to Davey-Stewartson equation.
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Davey-Stewartson (DS) equation is written as [19]

𝑖𝑢
𝑡
= −𝑢
𝑥𝑥

−
1

𝛼
2

0

𝑢
𝑦𝑦

−
2𝜖

𝛼
2

0

|𝑢|
2
𝑢 −

2

𝛼
2

0

𝑢V,

V
𝑦𝑦

− 𝛼
2

0
V
𝑥𝑥

− 2𝛼
2

0
𝜖(|𝑢|
2
)
𝑥𝑥

= 0,

(1)

where 𝑢 : 𝑅
𝑥
× 𝑅
𝑦
× 𝑅
+

𝑡
→ 𝐶, V : 𝑅

𝑥
× 𝑅
𝑦
× 𝑅
+

𝑡
→ 𝑅, and 𝜖

and 𝛼
0
are constants. DS equation was introduced in a paper

by Davey and Stewartson (1974) to describe the evolution of
a three-dimensional disturbance in the nonlinear regime of
plane Poiseuille flow. The function 𝑢(𝑥, 𝑦, 𝑡) stands for the
complex amplitude, and V(𝑥, 𝑦, 𝑡) describes the perturbation
of the real velocity. DS equation is called the DSI as 𝜖 = 1,
𝛼
0

= ±1 and DSII as 𝜖 = 1, 𝛼
0

= ±𝑖. There are known
results due to local well-posed, global existence and blow-
up of some solutions, exact periodic soliton solutions, solitoff
and dromion solutions [20–29]. Recently, homoclinic and
heteroclinic tube solutions were obtained [29–33].

We consider DSI equation:

𝑖𝑢
𝑡
+ 𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

= − 2|𝑢|
2
𝑢 − 2𝑢V,

V
𝑥𝑥

− V
𝑦𝑦

= − 2(|𝑢|
2
)
𝑥𝑥

,

(2)

and DSII equation:

𝑖𝑈
𝑡
+ 𝑈
𝑥𝑥

− 𝑈
𝑦𝑦

= 2|𝑈|
2
𝑈 + 2𝑈𝑉,

𝑉
𝑥𝑥

+ 𝑉
𝑦𝑦

= − 2(|𝑈|
2
)
𝑥𝑥

.

(3)

2. Homoclinic Breather and Rogue Wave
Solution of DSI

Making transformation 𝑢 = (𝑎/√2) exp(𝑖𝑎2𝑡)𝑄, V = −𝜑/2

and substituting it into (2), we can get

𝑖𝑄
𝑡
+ 𝑄
𝑥𝑥

+ 𝑄
𝑦𝑦

= − 𝑎
2
(|𝑄|
2
− 1)𝑄 + 𝑄𝜑,

𝜑
𝑥𝑥

− 𝜑
𝑦𝑦

= 2𝑎
2
(|𝑄|
2
)
𝑥𝑥

,

(4)

where𝑄 = 𝑄(𝑥, 𝑦, 𝑡) is a complex function and 𝜑 is a real. By
the dependent variable transformation

𝑄 =
𝐺

𝐹
, 𝜑 = −4(ln𝐹)

𝑥𝑥
, (5)

with 𝐺 being a complex and 𝐹 being a real, then (4) can be
converted into the form

𝑖𝐺
𝑡
𝐹 − 𝑖𝐹

𝑡
𝐺 + 𝐺

𝑥𝑥
𝐹 − 2𝐺

𝑥
𝐹
𝑥
+ 𝐺𝐹
𝑥𝑥

+ 𝐺
𝑦𝑦

𝐹

− 2𝐺
𝑦
𝐹
𝑦
+ 𝐺𝐹
𝑦𝑦

− (𝑎
2
+ 𝐵)𝐺𝐹 = 0,

2 (𝐹
𝑦𝑦

𝐹 − 𝐹
2

𝑦
− 𝐹
𝑥𝑥

𝐹 + 𝐹
2

𝑥
) − 𝐵𝐹

2
− 𝑎
2
𝐺𝐺
∗
= 0,

(6)

where𝐵 is an integration constant and an asterisk denotes the
complex conjugation.

By means of the extended homoclinic test approach [33],
we take the test function as follows:

𝐺 = 𝑒
−𝑝(𝑥+𝑦/2+𝛼𝑡)

+ 𝑎
1
cos (𝑝

1
(𝑥 + 2𝑦 − 𝛼𝑡))

+ 𝑎
2
𝑒
𝑝(𝑥+𝑦/2+𝛼𝑡)

,

𝐹 = 𝑒
−𝑝(𝑥+𝑦/2+𝛼𝑡)

+ 𝑎
3
cos (𝑝

1
(𝑥 + 2𝑦 − 𝛼𝑡))

+ 𝑎
4
𝑒
𝑝(𝑥+𝑦/2+𝛼𝑡)

,

(7)

where all of 𝑎
3
, 𝑎
4
, 𝑝, 𝑝

1
, 𝛽, 𝛽

1
, and 𝛼 are real and 𝑎

1
, 𝑎
2

are complex. Substituting (7) into (6) and equating the
coefficients of all powers of 𝑒

𝑗𝑝(𝑥+𝑦/2+𝛼𝑡) cos(𝑝
1
(𝑥 + 2𝑦 −

𝛼𝑡)), 𝑒
𝑗𝑝(𝑥+𝑦/2+𝛼𝑡) sin(𝑝

1
(𝑥+2𝑦−𝛼𝑡)) and 𝑒

±2(𝑝(𝑥+𝑦/2+𝛼𝑡))
(𝑗 =

0, ±1) to zero, we can obtain a set of algebraic equations for
𝑝, 𝑝
1
, 𝛽, 𝛽
1
, 𝛼, and 𝑎

𝑗
, 𝑗 = 1, 2, 3, 4, with

𝐵 = −𝑎
2
, (4𝑝𝑝

1
− 𝑖𝑝
1
𝛼) 𝑎
1
+ (4𝑝𝑝

1
+ 𝑖𝑝
1
𝛼) 𝑎
3
= 0,

(−𝑖𝑝
1
𝛼 − 4𝑝𝑝

1
) 𝑎
4
𝑎
1
+ (𝑖𝑝
1
𝛼 − 4𝑝𝑝

1
) 𝑎
3
𝑎
2
= 0,

(𝑖𝑝𝛼 +
5𝑝
2

4
− 5𝑝
2

1
)𝑎
1
+ (

5𝑝
2

4
− 5𝑝
2

1
− 𝑖𝑝𝛼) 𝑎

3
= 0,

(
5𝑝
2

4
− 𝑖𝑝𝛼 − 5𝑝

2

1
)𝑎
4
𝑎
1
+ (𝑖𝑝𝛼 +

5𝑝
2

4
− 5𝑝
2

1
)𝑎
3
𝑎
2
= 0,

−10𝑎
1
𝑎
3
𝑝
2

1
+ (5𝑝

2
+ 2𝑖𝑝𝛼) 𝑎

2
+ (5𝑝

2
− 2𝑖𝑝𝛼) 𝑎

4
= 0,

𝑎
2
(𝑎
2

3
− 𝑎
1
𝑎
∗

1
) = 0, 𝑎

2
(𝑎
2

4
− 𝑎
2
𝑎
∗

2
) = 0,

(2𝑎
2
−

3𝑝
2

2
− 6𝑝
2

1
)𝑎
3
− 𝑎
2
(𝑎
1
+ 𝑎
∗

1
) = 0,

(2𝑎
2
−

3𝑝
2

2
− 6𝑝
2

1
)𝑎
3
𝑎
4
− 𝑎
2
(𝑎
1
𝑎
∗

2
+ 𝑎
∗

1
𝑎
2
) = 0,

(2𝑎
2
− 6𝑝
2
) 𝑎
4
− 6𝑎
2

3
𝑝
2

1
− 𝑎
2
(𝑎
2
+ 𝑎
∗

2
) = 0.

(8)

Solving these equations, we obtain the relations between the
parameters as

𝐵 = −𝑎
2
, 𝑝

2

1
=

21𝑝
2

20
,

𝑝
2
=

320𝑎
2
− 39𝛼

2

624
, 𝑎

1
=

(𝑖𝛼 + 4𝑝) 𝑎
3

𝑖𝛼 − 4𝑝
,

𝑎
2
=

(𝑖𝛼 + 4𝑝)
2

𝑎
4

(𝑖𝛼 − 4𝑝)
2

, 𝑎
2

3
=

4 (21𝛼
2
− 80𝑝

2
) 𝑎
4

21 (𝛼2 + 16𝑝2)
.

(9)
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From 𝑝
2

≥ 0 and 𝑎
2

3
≥ 0 in (9), we have (800𝑎

2
/507) ≤

𝛼
2

≤ (320𝑎
2
/39). Substituting (9) into (7) and then (5) and

taking 𝑎
4
> 0, we obtain the solution for DSI equation as

𝑢 =
𝑎

√2

𝑒
𝑖(𝜃+𝑎
2
𝑡)
2 cosh [𝜉 + 𝛾 + 𝑖𝜃] + (𝑎

3
/√𝑎
4
) cos (𝜂)

2 cosh (𝜉 + 𝛾) + (𝑎
3
/√𝑎
4
) cos (𝜂)

,

V = 2 (2𝑎
3√𝑎
4
(𝑝
2
− 𝑝
2

1
) cos (𝜂) cosh (𝜉 + 𝛾)

+ 4𝑎
3
𝑝𝑝
1√𝑎
4
sin (𝜂) sinh (𝜉 + 𝛾)

+4𝑎
4
𝑝
2
− 𝑎
2

3
𝑝
2

1
)

× ([𝑎
3
cos (𝜂) + 2√𝑎

4
cosh (𝜉 + 𝛾)]

2

)
−1

,

(10)

where 𝜉 = 𝑝(𝑥 + 𝑦/2 + 𝛼𝑡), 𝜂 = 𝑝
1
(𝑥 + 2𝑦 − 𝛼𝑡), 𝛾 = ln√𝑎

4
,

𝑒
𝑖𝜃

= (𝑖𝛼 + 4𝑝)/(𝑖𝛼 − 4𝑝), and 𝑝, 𝑝
1
, 𝛼, 𝑎
3
, and 𝑎

4
, are given

by (9). Note that if (𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡)) is the solution of DSI
equation, then (𝑢(𝑥, −𝑦, 𝑡), V(𝑥, −𝑦, 𝑡)) is the solution as well.
So, we also obtain solution of DSI equation:

𝑢
1
=

𝑎

√2

𝑒
𝑖(𝜃+𝑎
2
𝑡)
2 cosh [𝜉

1
+ 𝛾 + 𝑖𝜃] + (𝑎

3
/√𝑎
4
) cos (𝜂

1
)

2 cosh (𝜉
1
+ 𝛾) + (𝑎

3
/√𝑎
4
) cos (𝜂

1
)

,

V
1
= 2 (2𝑎

3√𝑎
4
(𝑝
2
− 𝑝
2

1
) cos (𝜂

1
) cosh (𝜉

1
+ 𝛾)

+ 4𝑎
3
𝑝𝑝
1√𝑎
4
sin (𝜂
1
) sinh (𝜉

1
+ 𝛾)

+4𝑎
4
𝑝
2
− 𝑎
2

3
𝑝
2

1
)

× ([𝑎
3
cos (𝜂

1
) + 2√𝑎

4
cosh (𝜉

1
+ 𝛾)]
2

)
−1

,

(11)

where 𝜉
1

= 𝑝(𝑥 − 𝑦/2 + 𝛼𝑡), 𝜂
1

= 𝑝
1
(𝑥 − 2𝑦 − 𝛼𝑡), and

𝛾 = ln√𝑎
4
. Solution (11) is the homoclinic solution of DSI

equation. Indeed, we have

(𝑢
1
, V
1
) → (

𝑎

√2

exp (𝑖 (𝑎
2
𝑡 + 2𝜃)) , 0) ,

as 𝑡 → +∞;

(𝑢
1
, V
1
) → (

𝑎

√2

exp (𝑖𝑎
2
𝑡) , 0) , as 𝑡 → −∞,

(12)

where 2𝜃 is a phase shift and (𝑎 exp(𝑖𝑎2𝑡), 0) is a fixed circle of
DSI [30]. Note that solution (11) contains not only a periodic
wave cos(𝑝

1
(𝑥 − 2𝑦 − 𝛼𝑡)), so its amplitude periodically

oscillates with the evolution of time (the breather effect), but
also a solitary wave 1/ cosh(𝑝(𝑥−𝑦/2+𝛼𝑡) +𝛾), which shows
that interaction between a solitary wave and a periodic wave
with the same velocity 𝛼 and opposite propagation direction
can form a new family of homoclinic solution. This is a new
phenomenonof evolution of a three-dimensional disturbance
in the nonlinear regime of plane Poiseuille flow (Figure 1).

In the above two cases, set 𝑎
3

= −(2/
21)√(441𝑟2 − 1680𝑝2)/(16𝑝2 + 𝑟2) and 𝑎

4
= 1, when

𝛼 = (8/39)√195𝑎. Let 𝑝 → 0, and we can obtain two rogue
wave solutions for DSI as follows (Figures 2 and 3):

𝑢
1
=

𝑎

√2

exp (𝑖𝑎
2
𝑡)

× ( (861𝛼
4
𝑡
2
+ (−1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

−18560)

× (861𝛼
4
𝑡
2
+ (−1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

+ 8320)
−1

+ 𝑖 (−6720𝛼
2
𝑡 + (−3360𝑦 − 6720𝑥) 𝛼)

× (861𝛼
4
𝑡
2
+ (−1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

+8320)
−1

) ,

V
1
= −84𝛼

2
(−35259𝛼

4
𝑡
2

+ (50736𝑦𝑡 − 1722𝑥𝑡) 𝛼
3

+ (35301𝑥
2
+ 89544𝑥𝑦 + 36939𝑦

2
) 𝛼
2

− 341120)

× ( (861𝛼
4
𝑡
2
+ (−1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

+ 8320)
2

)

−1

,

(13)

𝑢
2
=

𝑎

√2

exp (𝑖𝑎
2
𝑡)

× ( (861𝛼
4
𝑡
2
+ (1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (−2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

−18560)

× (861𝛼
4
𝑡
2
+ (1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (−2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

+ 8320)
−1

+ 𝑖 (−6720𝛼
2
𝑡 + (3360𝑦 − 6720𝑥) 𝛼)



4 Abstract and Applied Analysis

2

1.5

1

0.5

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6

tx

(a)

2

1.5

1

0.5

0

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6

t x

(b)

Figure 1: (a) Homoclinic breather wave of |𝑢
1
| in DSI. (b) Homoclinic breather wave of V

1
in DSI.
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Figure 2: (a) Homoclinic rogue wave |𝑢
1
| in solution (13). (b) Homoclinic rogue wave V

1
in solution (13).

× (861𝛼
4
𝑡
2
+ (1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (−2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

+8320)
−1

) ,

V
2
= −84𝛼

2
(−35259𝛼

4
𝑡
2

+ (−50736𝑦𝑡 − 1722𝑥𝑡) 𝛼
3

+ (35301𝑥
2
− 89544𝑥𝑦 + 36939𝑦

2
) 𝛼
2

− 341120)

× ( (861𝛼
4
𝑡
2
+ (−1344𝑦𝑡 − 42𝑥𝑡) 𝛼

3

+ (−2184𝑥𝑦 + 861𝑥
2
+ 1869𝑦

2
) 𝛼
2

+ 8320)
2

)

−1

,

(14)

where 𝛼 = (8/39)√195𝑎.
Both (𝑢

1
, V
1
) and (𝑢

2
, V
2
) are rational homoclinic (rogue)

wave solutions of DSI equation. In fact, we have (𝑢
𝑗
, V
𝑗
) →

((𝑎/√2) exp(𝑖𝑎2𝑡), 0) as 𝑡 → ∞, 𝑗 = 1, 2.

3. Homoclinic Breather and Rogue Wave
Solution of DSII

As we know, the (𝑎𝑒
−2𝑎
2
𝑖𝑡
, 0) is hyperbolic fixed cycle of DSII

equation when the period of 𝑦 is larger than the period of 𝑥
[30]. Similar to the argument in [30], we can analyze the linear
stability of fixed cycle (𝑎𝑒−2|𝑎|

2
𝑖𝑡
, 0). Similar to the dealingwith

process of (2), by means of transformation of functions

𝑈 =
𝐺

𝐹
, 𝑉 = −2(ln𝐹)

𝑥𝑥
, (15)

Equation (3) can be converted into the bilinear form

(𝑖𝐷
𝑡
+ 𝐷
2

𝑥
− 𝐷
2

𝑦
)𝐺 ⋅ 𝐹 = 𝜆𝐺 ⋅ 𝐹,

(𝐷
2

𝑥
+ 𝐷
2

𝑦
+ 𝜆)𝐹 ⋅ 𝐹 = 2𝐺𝐺

∗
,

(16)

where 𝐺 is a complex function and 𝐹 is a real. Now, we take
the following ansatz:

𝐺 = 𝑎𝑒
−2𝑎
2
𝑖𝑡
[𝑒
−𝑝
2
(𝑚𝑥+𝑛𝑦+𝛼𝑡)

+ 𝑏
1
cos𝑝
1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)

+𝑏
2
𝑒
𝑝
2
(𝑚𝑥+𝑛𝑦+𝛼𝑡)

] ,

𝐹 = 𝑒
−𝑝
2
(𝑚𝑥+𝑛𝑦+𝛼𝑡)

+ 𝑏
3
cos𝑝
1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)

+ 𝑏
4
𝑒
𝑝
2
(𝑚𝑥+𝑛𝑦+𝛼𝑡)

,

(17)
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Figure 3: (a) Behaviour of |𝑢
2
| in solution (14). (b) Behaviour of V

2
in solution (14).

where 𝑝
1
, 𝑝
2
, 𝑚, 𝑛, 𝑘, 𝑙, 𝛼, 𝑏

3
, and 𝑏

4
are real and 𝑏

1
, 𝑏
2
are

complex. Substituting (17) into (16), then we obtain

𝜆 = 2𝑎
2
,

𝑝
2

2
= (8 (𝑘

2
− 𝑙
2
) (𝑘𝑚 − 𝑛𝑙)

2
𝑎
2

+ (𝑙
3
𝑛 − (𝑘𝑚 + 𝑚

2
) 𝑙
2

+𝑘
2
𝑛𝑙 + 𝑛

2
𝑘
2
− 𝑘
3
𝑚)𝛼
2
)

× (4 (𝑘
3
𝑚 − 𝑘

2
𝑛𝑙 − 𝑛

2
𝑘
2

+ 𝑙
2
𝑘𝑚 + 𝑚

2
𝑙
2
− 𝑙
3
𝑛)

×(𝑘𝑚 − 𝑛𝑙)
2
)

−1

,

𝑝
2

1
=

(𝑚
2
− 𝑛
2
− 2𝑛𝑙 + 2𝑘𝑚)𝑝

2

2

𝑘2 − 𝑙2
,

𝑏
1
=

𝑏
3
(𝑖𝛼 + 2𝑝

2
𝑚𝑘 − 2 𝑝

2
𝑛𝑙)

𝑖𝛼 − 2 𝑝
2
𝑚𝑘 + 2 𝑝

2
𝑛𝑙

,

𝑏
2
=

𝑏
4
(𝑖𝛼 + 2𝑝

2
𝑚𝑘 − 2𝑝

2
𝑛𝑙)
2

(𝑖𝛼 − 2𝑝
2
𝑚𝑘 + 2𝑝

2
𝑛𝑙)
2

,

𝑏
2

3
= − 4𝑏

4

× ((𝑚
2
− 𝑛
2
) (𝑚𝑘 − 𝑛𝑙)

2
𝑝
2

2

−𝛼
2
(2𝑚𝑘 − 𝑛

2
− 2𝑛𝑙 + 𝑚

2
) )

× ((2𝑚𝑘 − 𝑛
2
− 2𝑛𝑙 + 𝑚

2
)

× ((4𝑚
2
𝑘
2
− 8𝑛𝑙𝑚𝑘 + 4𝑛

2
𝑙
2
) 𝑝
2

2
+ 𝛼
2
))

−1

,

𝑛𝑙 + 𝑘𝑚 = 0.

(18)

So we can obtain breather solution of DSII equation as
follows:

𝑈 = 𝑎𝑒
−𝑖(2𝑎
2
𝑡−𝜃)

× (2√𝑏
4
cosh (𝑝

2
(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) + 𝑖𝜃 + 𝜙)

+ 𝑏
3
cos (𝑝

1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)) )

× (2√𝑏
4
cosh (𝑝

2
(𝑚𝑥 + 𝑛𝑦 + 𝛼 𝑡) + 𝜙)

+ 𝑏
3
cos (𝑝

1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)) )

−1

,

𝑉 = − 2 (2√𝑏
4

× cosh (𝑝
2
(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) + 𝜙) 𝑝

2

2
𝑚
2

− 𝑏
3
cos (𝑝

1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)) 𝑝

2

1
𝑘
2
)

× (2√𝑏
4
cosh (𝑝

2
(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) + 𝜙)

+ 𝑏
3
cos (𝑝

1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)) )

−1

+ 2 ((2√𝑏
4
sinh (𝑝

2
(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) + 𝜙) 𝑝

2
𝑚

− 𝑏
3
sin (𝑝

1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)) 𝑝

1
𝑘)

2

)

× ((2√𝑏
4
cosh (𝑝

2
(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) + 𝜙)

+𝑏
3
cos (𝑝

1
(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)) )

2

)

−1

,

(19)

where 𝜃 = arctan 𝑏
1
and 𝜙 = ln(√𝑏

4
).
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Figure 4: (a) Bright breather structure |𝑈| in DSII. (b) Bright rogue wave |𝑈| in DSII.
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Figure 5: (a) Dark breather structure 𝑉 in DSII. (b) Dark rogue wave 𝑉 in DSII.

The rogue wave of the DSII system is derived when the
period of periodic wave goes to infinite. Indeed, by letting
𝑝
1

→ 0 in solution (19), solution (19) becomes rogue waves:

𝑈 = 𝑎𝑒
2 𝑖𝑎
2
𝑡

× ( − (𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡)
2

+ 2(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)
2

+16𝑖 (𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) 𝛿
1
𝛿
2
+ 𝛿
4
)

× (2(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡)
2

𝛿
1

+ 2(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)
2

+ 𝛿
3
)

−1

,

𝑉 = − 2 (4𝑚
2
𝛿
1
+ 4𝑘
2
)

× (2(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡)
2

𝛿
1

+ 2 (𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)
2

+ 𝛿
3
)

−1

+ 2 (4 (𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡) 𝛿
1
𝑚

+ 4 (𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡) 𝑘)

2

× ((2(𝑚𝑥 + 𝑛𝑦 + 𝛼𝑡)
2

𝛿
1

+2(𝑘𝑥 + 𝑙𝑦 − 𝛼𝑡)
2

+ 𝛿
3
)

2

)

−1

,

(20)

where

𝛿
1
=

𝑘
2
− 𝑙
2

𝑚2 − 𝑛2 − 2𝑙𝑛 + 2𝑚𝑘
,

𝛿
2
=

𝑚𝑘 − 𝑙𝑛

𝛼
,

𝛿
3
= 16

(𝑘
2
− 𝑙
2
) (𝑚𝑘 + 𝑚

2
− 𝑛
2
− 𝑙𝑛) (𝑚𝑘 − 𝑙𝑛)

2

(𝑚2 − 𝑛2 − 2𝑙𝑛 + 2𝑚𝑘)
2

𝛼2
,



Abstract and Applied Analysis 7

𝛿
4
= 32

(𝑘
2
− 𝑙
2
) (5𝑚𝑘 + 3 𝑚

2
− 5𝑙𝑛 − 3 𝑛

2
) (𝑚𝑘 − 𝑙𝑛)

2

(𝑚2 − 𝑛2 − 2𝑙𝑛 + 2𝑚𝑘)
2

𝛼2
,

𝑚 =
1312𝛼

2

9 (41𝛼2 + 512𝑎2)
,

𝑛 = −
1640𝛼

2

9 (41𝛼2 + 512𝑎2)
.

(21)

Figure 4(a): The dynamical evolution of bright breather
|𝑈(𝑥, 𝑡)| in solution (19) is plotted with parameters 𝑎 = 𝛼 =

𝑘 = 2, 𝑏
4
= 1, and 𝑙 = 1.6.

Figure 4(b): The dynamical evolution of bright rogue
wave |𝑈(𝑥, 𝑡)| in solution (20) is plotted with parameters 𝑎 =

𝛼 = 𝑘 = 2, 𝑏
4
= 1, and 𝑙 = 1.6.

Figure 5(a): The dynamical evolution of dark breather
𝑉(𝑥, 𝑡) in solution (19) is plotted with parameters 𝑎 = 𝛼 =

𝑘 = 2, 𝑏
4
= 1, and 𝑙 = 1.6.

Figure 5(b): The dynamical evolution of dark rogue wave
𝑉(𝑥, 𝑡) in solution (20) is plotted with parameters 𝑎 = 𝛼 =

𝑘 = 2, 𝑏
4
= 1, and 𝑙 = 1.6.

It is easy to verify that both solution (19) and (20) are
solutions of DSII. Similar to DSI, we can show that solution
(20) is a rational homoclinic rogue waves.

4. Conclusion

In summary, based on Hirota bilinear form, applying homo-
clinic breather limit method to DSI and DSII equations,
we obtain a new kind of homoclinic solutions with locally
oscillatory structure and rational homoclinic rogue wave
solutions.We also investigate and exhibit the different homo-
clinic rogue wave structures of solutions. These results show
the complexity and variety of dynamical behavior of the
DS system. Following these ideas in this work, the problem
needed to further study is other types of nonlinear evolution
equations whether have this kind of rational homoclinic
solutions.
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