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In this paper we study the impulsive stabilization of dynamic equations on time scales via the Lyapunov’s direct method. Our results
show that dynamic equations on time scales may be 𝜓-exponentially stabilized by impulses. Furthermore, we give some examples
to illustrate our results.

1. Introduction

Differential equations with impulse effect provide an ade-
quate mathematical description of various real-world phe-
nomena in physics, engineering, biology, economics, neutral
network, social sciences, and so forth. Since the 1960s, the
theory of impulsive differential or difference equations has
been studied by many authors [1–3].

Aulbach and Hilger [4, 5] introduced the theory of
time scales (measure chains) in order to create a theory
that can unify continuous and discrete analysis. The theory
of dynamic systems on time scales has been developed as
a generalization of both continuous and discrete dynamic
systems simultaneously and applied to many different fields
of mathematics [6, 7].

It is widely known that the various types of stability of
nonlinear impulsive differential equations or impulsive dif-
ference equations can be characterized by using Lyapunov’s
second method and inequalities [8–11]. In recent years, some
authors studied the stability of impulsive dynamic systems on
time scales [12–16]. Furthermore, Hatipoğlu et al. [12] studied
the 𝜓-exponential stability of nonlinear impulsive dynamic
equations on time scales. Liu [17] investigated the impulsive
stabilization of nonlinear systems by employing Lyapunov’s
direct method and obtained sufficient conditions for both
stabilization and destabilization.

In this paper we study the impulsive stabilization of
dynamic equations on time scales via the Lyapunov’s direct
method. Our results show that dynamic equations on time

scalesmay be𝜓-exponentially stabilized by impulses.We give
some examples to illustrate our results.

2. Preliminaries

We refer the reader to [6] for all the basic definitions and
results from time scales calculus that we will use in the sequel
(e.g., delta differentiability, rd-continuity, and exponential
function and its properties).

It is assumed throughout that a time scale T will be
unbounded above and 𝜇(𝑡) is bounded. Let R𝑛 be the 𝑛-
dimensional real Euclidean space. 𝐶rd(T × R𝑛,R𝑛) denotes
the set of all rd-continuous functions from T ×R𝑛 toR𝑛 and
R
+

= [0,∞). Also, for any 𝑡
0

∈ T , let T
𝑡0

:= [𝑡
0
,∞) ∩ T .

We denote by R (resp., R+) the set of all regressive (resp.,
positively regressive) functions from T toR. The set of all rd-
continuous and regressive functions from T to R is denoted
by 𝐶rdR(T ,R). Also, let

𝐶rdR
+

(T ,R)

:= {𝑝 ∈ 𝐶rdR (T ,R) : 1 + 𝜇 (𝑡) 𝑝 (𝑡) > 0 ∀𝑡 ∈ T} .
(1)

We consider the impulsive dynamic systemwith impulses
at constant times

𝑥
Δ

(𝑡) = 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 ∈ T

𝑡0
;

Δ𝑥 (𝑡) := 𝑥 (𝑡
+

) − 𝑥 (𝑡) = 𝐼
𝑘
(𝑥 (𝑡)) , 𝑡 = 𝑡

𝑘
;

𝑥 (𝑡
0
) = 𝑥
0
,

(2)
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with the following conditions:

(i) 𝑡
0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , with lim
𝑘→∞

𝑡
𝑘

=

∞, 𝑡
𝑘
∈ T for 𝑘 ∈ N.

(ii) The function 𝑓 : T × R𝑛 → R𝑛 is rd-continuous in
(𝑡
𝑘−1

, 𝑡
𝑘
] ×R𝑛 and 𝑓(𝑡, 0) = 0 for 𝑡 ∈ T .

(iii) The function 𝐼
𝑘
: R𝑛 → R𝑛 is continuous and 𝐼

𝑘
(0) =

0 for 𝑘 ∈ N;
(iv) 𝑥(𝑡

+

𝑘
) represents the right limit of 𝑥(𝑡) at 𝑡 = 𝑡

𝑘
.

The solution of the impulsive dynamic equation with impulse
effect (2) depends not only on the initial condition (𝑡

0
, 𝑥
0
)

but also on the moments of impulses 𝑡
𝑘
for each 𝑘 ∈ N. Let

𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
) be the unique solution of (2) satisfying

the initial condition 𝑥(𝑡
0
, 𝑡
0
, 𝑥
0
) = 𝑥

0
. For the existence and

continuation of solutions of impulsive dynamic equations, see
[3, 18].

We need the following well-known impulsive inequality
of Gronwall’s type to prove our main results.

Lemma 1 (see [14]). Let 𝑡
0

∈ T , let 𝑢 ∈ 𝐶rdR(T
𝑡0
,R
+
), let

𝑝 ∈ 𝐶rdR
+

(T
𝑡0
,R), and let 𝑐, 𝑏

𝑘
∈ R
+
for each 𝑘 ∈ N. Then,

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡0

𝑝 (𝑠) 𝑢 (𝑠) Δ𝑠 + ∑

𝑡0<𝑡𝑘<𝑡

𝑏
𝑘
𝑢 (𝑡
𝑘
) , 𝑡 ∈ T

𝑡0
(3)

implies

𝑢 (𝑡) ≤ 𝑐 ∏

𝑡0<𝑡𝑘<𝑡

(1 + 𝑏
𝑘
) 𝑒
𝑝
(𝑡, 𝑡
0
) , 𝑡 ∈ T

𝑡0
. (4)

Lemma 2 (see [19]). For every positive constant 𝜆 with −𝜆 ∈

R+, the following inequalities hold:

𝑒
−𝜆

(𝑡, 𝑡
0
) ≤ 𝑒
−𝜆(𝑡−𝑡0) ≤ 𝑒

⊖𝜆
(𝑡, 𝑡
0
) , 𝑡 ∈ T

𝑡0
, (5)

where ⊖𝜆 = −𝜆/(1 + 𝜇(𝑡)𝜆).

Lemma3 (see [6]). If𝑝, 𝑞 ∈ R, thenwe have, for all 𝑡, 𝑠, 𝑟 ∈ T ,

(i) 𝑒
0
(𝑡, 𝑠) = 1 and 𝑒

𝑝
(𝑡, 𝑡) = 1;

(ii) 𝑒
𝑝
(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒

𝑝
(𝑡, 𝑠);

(iii) 1/𝑒
𝑝
(𝑡, 𝑠) = 𝑒

⊖𝑝
(𝑡, 𝑠) and 𝑒

𝑝
(𝑡, 𝑠) = 1/𝑒

𝑝
(𝑠, 𝑡) =

𝑒
⊖𝑝

(𝑠, 𝑡);
(iv) 𝑒
𝑝
(𝑡, 𝑠)𝑒
𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(v) 𝑒
𝑝
(𝑡, 𝑠)𝑒
𝑞
(𝑡, 𝑠) = 𝑒

𝑝⊕𝑞
(𝑡, 𝑠) and 𝑒

𝑝
(𝑡, 𝑠)/𝑒

𝑞
(𝑡, 𝑠) =

𝑒
𝑝⊖𝑞

(𝑡, 𝑠).

Akinyele [20] introduced the notion of 𝜓-stability of
degree 𝑘with respect to a function𝜓 ∈ 𝐶(R

+
,R
+
), increasing

and differentiable onR
+
and such that 𝜓(𝑡) ≥ 1 for 𝑡 ≥ 0 and

lim
𝑡→∞

𝜓(𝑡) = 𝑏, 𝑏 ∈ [1,∞).
Now, we give notions of 𝜓-exponential, 𝜓-uniformly

exponential, and 𝜓-globally exponential stability for solu-
tions of nonlinear impulsive dynamic equations on time
scales.

Definition 4 (see [12]). Let 𝜓 ∈ 𝐶rd(T ,R+). System (2) is
called 𝜓-exponentially stable if any solution 𝑥(𝑡, 𝑡

0
, 𝑥
0
) of (2)

satisfies

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡, 𝑡
0
, 𝑥
0
)
󵄩󵄩󵄩󵄩 ≤ 𝛽 (

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 , 𝑡0) [𝑒−𝜆 (𝑡, 𝑡0)]

𝑑

, 𝑡 ∈ T
𝑡0
,

(6)

where the function 𝛽(ℎ, 𝑡) : R
+
× T → R

+
is increasing in

ℎ ∈ R
+
, 𝜆 > 0, −𝜆 ∈ R+, and 𝑑 is a positive constant.

Moreover, system (2) is said to be 𝜓-uniformly exponen-
tially stable if 𝛽 is independent of 𝑡

0
.

System (2) is said to be 𝜓-globally exponentially stable if
system (2) is 𝜓-exponentially stable for each (𝑡

0
, 𝑥
0
) ∈ T
𝑡0

×

R𝑛 and the function 𝛽 is independent on each 𝑡
0
and 𝑥

0
in

the definition of 𝜓-exponential stability; that is, there exist
constants 𝜆 > 0 with −𝜆 ∈ R+ and 𝑀 ≥ 1 such that for any
initial value (𝑡

0
, 𝑥
0
) ∈ T
0
×R𝑛,

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡, 𝑡
0
, 𝑥
0
)
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩𝜓 (𝑡
0
) 𝑥
0

󵄩󵄩󵄩󵄩 [𝑒−𝜆(𝑡, 𝑡0)]
𝑑

, 𝑡 ∈ T
𝑡0
,

(7)

where 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is any solution of system (2).

Remark 5. System (2) is exponentially stable if we set𝜓(𝑡) = 1

in the definition of 𝜓-exponential stability.
Moreover, system (2) is uniformly exponentially stable if

we set 𝜓(𝑡) = 1 in the definition of 𝜓-uniformly exponential
stability.

For the Lyapunov-like function 𝑉 ∈ 𝐶rd(T × R𝑛,R
+
), we

recall the following definition.

Definition 6 (see [7, Definition 3.1.1]). We define the general-
ized derivative 𝐷+𝑉Δ

(2)
(𝑡, 𝑥(𝑡)) of 𝑉(𝑡, 𝑥) relative to system (2)

as follows: given 𝜀 > 0, there exists a neighborhood𝑈 of 𝑡 ∈ T

such that

1

𝜎 (𝑡) − 𝑠
[𝑉 (𝜎 (𝑡) , 𝑥 (𝜎 (𝑡)))

− 𝑉 (𝑠, 𝑥 (𝜎 (𝑡)) − (𝜎 (𝑡) − 𝑠) 𝑓 (𝑡, 𝑥 (𝑡)))]

< 𝐷
+

𝑉
Δ

(2)
(𝑡, 𝑥 (𝑡)) + 𝜀, 𝑠 ∈ 𝑈, 𝑠 > 𝑡,

(8)

where 𝑥(𝑡) is any solution of system (2) and the upper right
Dini derivative 𝑉Δ

∗
(𝑡) of 𝑉

∗
(𝑡) is given by

𝑉
Δ

∗
(𝑡) =

{{{{

{{{{

{

lim
𝜂→0

+
,𝜂+𝑡∈T

𝑉
∗
(𝑡 + 𝜂) − 𝑉

∗
(𝑡)

𝜂
, if 𝑡 = 𝜎 (𝑡) ,

𝑉
∗
(𝜎 (𝑡)) − 𝑉

∗
(𝑡)

𝜇 (𝑡)
, if 𝑡 < 𝜎 (𝑡) ,

(9)

where 𝑉
∗
(𝑡) = 𝑉(𝑡, 𝑥(𝑡)).

Then it is well-known that

𝐷
+

𝑉
Δ

(2)
(𝑡, 𝑥 (𝑡)) = 𝑉

Δ

∗
(𝑡) (10)

if 𝑉(𝑡, 𝑥) is Lipschitzian in 𝑥 for each 𝑡 ∈ T [21].
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In case 𝑡 ∈ T is right-dense, we have

𝐷
+

𝑉
Δ

(2)
(𝑡, 𝑥 (𝑡))

= 𝐷
+

𝑉
(2)

(𝑡, 𝑥 (𝑡))

= lim
𝜂→0+

1

𝜂
[𝑉 (𝑡 + 𝜂, 𝑥 (𝑡) + 𝜂𝑓 (𝑡, 𝑥 (𝑡))) − 𝑉 (𝑡, 𝑥 (𝑡))]

= lim
𝜂→0

+
,𝜂+𝑡∈T

𝑉 (𝑡 + 𝜂, 𝑥 (𝑡 + 𝜂)) − 𝑉 (𝑡, 𝑥 (𝑡))

𝜂

= 𝐷
+

𝑉
∗
(𝑡) .

(11)

In case 𝑡 ∈ T is right-scattered and 𝑉(𝑡, 𝑥(𝑡)) is
continuous at 𝑡, we have

𝐷
+

𝑉
Δ

(2)
(𝑡, 𝑥 (𝑡)) =

1

𝜇 (𝑡)
[𝑉 (𝜎 (𝑡) , 𝑥 (𝜎 (𝑡))) − 𝑉 (𝑡, 𝑥 (𝑡))] .

(12)

In fact, if 𝑥(𝑡) is a solution of system (2), then we have

𝑉
Δ

(𝑡, 𝑥 (𝑡))

= 𝑉
Δ 𝑡 (𝑡, 𝑥 (𝑡))

+ [∫

1

0

𝐷
2
𝑉(𝜎 (𝑡) , 𝑥 (𝑡) + 𝜂𝜇 (𝑡) 𝑥

Δ

(𝑡)) d𝜂] 𝑥
Δ

(𝑡)

= 𝑉
Δ 𝑡 (𝑡, 𝑥 (𝜎 (𝑡)))

+ [∫

1

0

𝐷
2
𝑉(𝑡, 𝑥 (𝑡) + 𝜂𝜇 (𝑡) 𝑥

Δ

(𝑡)) d𝜂] 𝑥
Δ

(𝑡)

(13)

by the chain rule of a differentiable function 𝑉(𝑡, 𝑥(𝑡)) [22,
Theorem 1].

Definition 7 (see [23]). 𝑉 : T ×R𝑛 → R
+
is said to belong to

the class 𝜐
0
if

(i) 𝑉 is rd-continuous in ((𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T) × R𝑛 and

for each 𝑥 ∈ R𝑛, 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T , 𝑘 ∈

N, lim
(𝑡,𝑦)→ (𝑡

+

𝑘
,𝑥)

𝑉(𝑡, 𝑦) = 𝑉(𝑡
+

𝑘
, 𝑥) exists.

(ii) 𝑉(𝑡, 𝑥) is locally Lipschizian in 𝑥 ∈ R𝑛 and𝑉(𝑡, 0) = 0

for 𝑡 ∈ T .

3. Main Results

In this section we investigate 𝜓-exponential stability for
impulsive dynamic equations on time scales via Lyapunov’s
direct method.

The following result shows that dynamic equations on
time scales may be 𝜓-exponentially stabilized by impulses. It
is adapted fromTheorem 3.1 in [11].

Theorem 8. Assume that there exists a function 𝑉 ∈ ]
0
and

constants 𝑝, 𝑞, 𝑐, 𝑐
1
, 𝑐
2
> 0 and 𝛼 > 0, 𝜆 > 𝑐 with −𝜆 ∈ R+

such that the following conditions hold:

(i) 𝑐
1
‖𝜓(𝑡)𝑥‖

𝑝

≤ 𝑉(𝑡, 𝑥) ≤ 𝑐
2
‖𝜓(𝑡)𝑥‖

𝑞 for (𝑡, 𝑥) ∈ T
𝑡0
×R𝑛;

(ii) 𝑉
Δ

(𝑡, 𝑥) ≤ 𝑐𝑉(𝑡, 𝑥) for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T
𝑡0
;

(iii) 𝑉(𝑡
+

𝑘
, 𝑥(𝑡
𝑘
) + 𝐼
𝑘
(𝑥(𝑡
𝑘
))) ≤ 𝑑

𝑘
𝑉(𝑡
𝑘
, 𝑥(𝑡
𝑘
)), where each

𝑑
𝑘
is a positive constant;

(iv) 0 < 𝑡
𝑘
− 𝑡
𝑘−1

< 𝛼 and 𝑑
𝑘
< 𝑒
−𝜆

(𝑡
𝑘+1

, 𝑡
𝑘
)𝑒
−𝛼𝜆 for each

𝑘 ∈ N.

Then the zero solution of system (2) is 𝜓-exponentially stable.

Proof. Let𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
)be any solution of system (2)with

initial value 𝑥(𝑡
0
) = 𝑥
0
, and 𝑉

∗
(𝑡) = 𝑉(𝑡, 𝑥(𝑡)).

We will show that

𝑉
∗
(𝑡)

≤ 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
𝑘
, 𝑡
0
) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ∩ T
𝑡0
, 𝑘 ∈ N.

(14)

We can choose𝑀
1
≥ 1 such that

𝑐
2

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

< 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
1
, 𝑡
0
) 𝑒
−𝛼𝑐

< 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
1
, 𝑡
0
) .

(15)

We first show that

𝑉
∗
(𝑡) ≤ 𝑀

1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
1
, 𝑡
0
) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] ∩ T
𝑡0
. (16)

In view of conditions (i) and (15), we have

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
0
) 𝑒
𝑐
(𝑡, 𝑡
0
)

≤ 𝑐
2

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
𝑐
(𝑡
1
, 𝑡
0
)

≤ 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
1
, 𝑡
0
) 𝑒
−𝛼𝑐

𝑒
𝑐
(𝑡
1
, 𝑡
0
)

< 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
1
, 𝑡
0
) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] ∩ T
𝑡0
.

(17)

Next, we show that

𝑉
∗
(𝑡) < 𝑀

1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
2
, 𝑡
0
) , 𝑡 ∈ (𝑡

1
, 𝑡
2
] ∩ T
𝑡0
. (18)

From conditions (i)–(iv), (17) and Lemma 2, we have

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
+

1
) 𝑒
𝑐
(𝑡, 𝑡
1
)

≤ 𝑑
1
𝑉
∗
(𝑡
1
) 𝑒
𝑐
(𝑡, 𝑡
1
)

≤ 𝑒
−𝜆

(𝑡
2
, 𝑡
1
) 𝑒
−𝜆𝛼

𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
1
, 𝑡
0
) 𝑒
𝑐
(𝑡
2
, 𝑡
1
)

≤ 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
2
, 𝑡
0
) , 𝑡 ∈ (𝑡

1
, 𝑡
2
] ∩ T
𝑡0
.

(19)

Now we assume that (14) holds for 𝑘 = 1, 2, . . . , 𝑚 (𝑚 ∈ N);
that is,

𝑉
∗
(𝑡) < 𝑀

1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
𝑘
, 𝑡
0
) ,

𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T
𝑡0
, 𝑘 = 1, 2, . . . , 𝑚.

(20)
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From conditions (iii) and (20), we have

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
+

𝑚
) 𝑒
𝑐
(𝑡, 𝑡
𝑚
)

≤ 𝑑
𝑚
𝑉
∗
(𝑡
𝑚
) 𝑒
𝑐
(𝑡
𝑚+1

, 𝑡
𝑚
)

≤ 𝑒
−𝜆

(𝑡
𝑚+1

, 𝑡
𝑚
) 𝑒
−𝜆𝛼

𝑀
󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
𝑚
, 𝑡
0
)

× 𝑒
𝑐
(𝑡
𝑚+1

, 𝑡
𝑚
)

≤ 𝑀
1

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝜆

(𝑡
𝑚+1

, 𝑡
0
) , 𝑡 ∈ (𝑡

𝑚
, 𝑡
𝑚+1

] ∩ T
𝑡0
.

(21)

Thus (14) holds for each 𝑘 = 𝑚 + 1. Then it follows from
mathematical induction that (14) holds for each 𝑘 ∈ N.

In view of conditions (i) and (14), we get
󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)

󵄩󵄩󵄩󵄩

≤ 𝑀
󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝛾

[𝑒
−𝜆

(𝑡, 𝑡
0
)]
𝑑

, 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T
𝑡0
,

(22)

where 𝑀 = max{1, (𝑀
1
/𝑐
1
)
𝑑

}, 𝛾 = 𝑞/𝑝, and 𝑑 = 1/𝑝. Hence
the trivial solution of system (2) is 𝜓-exponentially stable.
This completes the proof.

Remark 9. We obtain the following results fromTheorem 8.

(i) If we set 𝜓(𝑡) = 1 for each 𝑡 ∈ T in Theorem 8, then
the zero solution of system (2) is exponentially stable.

(ii) If the conditions of Theorem 8 hold and 𝑝 = 𝑞,
then the zero solution of system (2) is globally 𝜓-
exponentially stable.

Also, we can obtain the following result as a discrete
version of Theorem 8 for T = Z.

Corollary 10. Assume that there exists a function 𝑉 : Z ×

R𝑛 → R+ and constants𝑝, 𝑞, 𝑐, 𝑐
1
, 𝑐
2
> 0 and𝛼 > 1, 𝑐 < 𝜆 < 1

such that the following conditions hold:

(i) 𝑉(𝑖, 𝑥) is locally Lipschizian in the second variable 𝑥 ∈

R𝑛 and 𝑉(𝑖, 0) = 0 for each 𝑖 ∈ Z;
(ii) 𝑐
1
‖𝜓(𝑖)𝑥‖

𝑝

≤ 𝑉(𝑖, 𝑥) ≤ 𝑐
2
‖𝜓(𝑖)𝑥‖

𝑞 for (𝑖, 𝑥) ∈ Z
𝑖0
×R𝑛;

(iii) 𝑉(𝑖 + 1, 𝑥) ≤ (1 + 𝑐)𝑉(𝑖, 𝑥) for all 𝑖 ∈ (𝑖
𝑘−1

, 𝑖
𝑘
] ∩ Z
𝑖0
;

(iv) 𝑉(𝑖
+

𝑘
, 𝑥(𝑖
𝑘
) + 𝐼
𝑘
(𝑥(𝑖
𝑘
))) ≤ 𝑑

𝑘
𝑉(𝑖
𝑘
, 𝑥(𝑖
𝑘
)), where each 𝑑

𝑘

is a positive constant;
(v) 0 < 𝑖

𝑘
− 𝑖
𝑘−1

< 𝛼 and 𝑑
𝑘
< (1 − 𝜆)

(𝑖𝑘+1−𝑖𝑘)𝑒
−𝛼𝜆 for each

𝑘 ∈ N.

Then the zero solution of system (2) is 𝜓-exponentially stable.

We can obtain the following result which can be proved
as in the similar manner of Theorem 8.

Corollary 11. Assume that all conditions of Theorem 8 are
satisfied with the condition (ii) replaced by (ii)󸀠:

(ii)󸀠 𝑉Δ(𝑡, 𝑥) ≤ 0 for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T
𝑡0
, 𝑘 ∈ N.

Then the zero solution of system (2) is also 𝜓-exponentially
stable.

Remark 12. If we set 𝜓(𝑡) = 1 in the condition (i) of
Corollary 11, then the zero solution of system (2) is also
exponentially stable.

Next, we obtain the following result that the stability
properties of dynamic systems can be preserved under certain
impulsive perturbations. It is adapted fromTheorem 1 in [13].

Theorem 13. Assume that there exist a function 𝑉 ∈ ]
0
and

constants 𝑝, 𝑞, 𝑐, 𝑐
1
, 𝑐
2
> 0 and 𝛼 > 0, 𝜆 > 𝑐 with −𝜆 ∈ R+

such that the following conditions hold:

(i) 𝑐
1
‖𝜓(𝑡)𝑥‖

𝑝

≤ 𝑉(𝑡, 𝑥) ≤ 𝑐
2
‖𝜓(𝑡)𝑥‖

𝑞 for (𝑡, 𝑥) ∈ T
𝑡0
×R𝑛;

(ii) 𝑉
Δ

(𝑡, 𝑥) ≤ −𝑐𝑉(𝑡, 𝑥) for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] ∩ T
𝑡0
, 𝑘 ∈ N;

(iii) 𝑉(𝑡
+

𝑘
, 𝑥(𝑡
𝑘
) + 𝐼
𝑘
(𝑥(𝑡
𝑘
))) ≤ (1 + 𝑑

𝑘
)𝑉(𝑡
𝑘
, 𝑥(𝑡
𝑘
)), where

each 𝑑
𝑘
(𝑘 ∈ N) is a positive constant and ∑

∞

𝑘=1
𝑑
𝑘
<

∞.

Then the zero solution of system (2) is 𝜓-exponentially stable.

Proof. Let𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
)be any solution of system (2)with

𝑥(𝑡
0
) = 𝑥
0
, and 𝑉

∗
(𝑡) = 𝑉(𝑡, 𝑥(𝑡)).

It follows from condition (ii) that

[𝑉
∗
(𝑡) 𝑒
𝑐
(𝑡, 𝑡
𝑘
)]
Δ

= 𝑉
Δ

∗
(𝑡) 𝑒
𝑐
(𝜎 (𝑡) , 𝑡

𝑘
) + 𝑉
∗
(𝑡) 𝑒
Δ

𝑐
(𝑡, 𝑡
𝑘
)

≤ 𝑉
Δ

∗
(𝑡) (1 + 𝑐𝜇 (𝑡)) 𝑒

𝑐
(𝑡, 𝑡
𝑘
) + 𝑐𝑉

∗
(𝑡) 𝑒
𝑐
(𝑡, 𝑡
𝑘
)

≤ −𝑐𝜇 (𝑡) 𝑉
∗
(𝑡) 𝑒
𝑐
(𝑡, 𝑡
𝑘
)

≤ 0, 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ∩ T
𝑡0
, 𝑘 ∈ N.

(23)

By integrating both sides of (23) from 𝑡
+

𝑘
to 𝑡 and condition

(iii), we obtain

𝑉
∗
(𝑡) ≤ (1 + 𝑑

𝑘
) 𝑉
∗
(𝑡
𝑘
) 𝑒
−𝑐

(𝑡, 𝑡
𝑘
) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] ∩ T
𝑡0
.

(24)

From condition (ii), we have

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
0
) 𝑒
−𝑐

(𝑡, 𝑡
0
) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] ∩ T
𝑡0
. (25)

In view of conditions (iii) and (25), we have

𝑉
∗
(𝑡) ≤ (1 + 𝑑

1
) 𝑉
∗
(𝑡
1
) 𝑒
−𝑐

(𝑡, 𝑡
1
) ,

≤ (1 + 𝑑
1
) 𝑉
∗
(𝑡
0
) 𝑒
−𝑐

(𝑡
1
, 𝑡
0
) 𝑒
−𝑐

(𝑡, 𝑡
1
)

≤ (1 + 𝑑
1
) 𝑉
∗
(𝑡
0
) 𝑒
−𝑐

(𝑡, 𝑡
0
) , 𝑡 ∈ (𝑡

1
, 𝑡
2
] ∩ T𝑡

0
.

(26)

It follows from mathematical induction that

𝑉
∗
(𝑡)

≤

𝑘

∏

𝑖=1

(1 + 𝑏
𝑖
) 𝑉
∗
(𝑡
0
) 𝑒
−𝑐

(𝑡, 𝑡
0
) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] ∩ T
𝑡0
, 𝑘 ∈ N.

(27)
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Thus we obtain

𝑉
∗
(𝑡) ≤

∞

∏

𝑖=1

(1 + 𝑏
𝑖
) 𝑉
∗
(𝑡
0
) 𝑒
−𝑐

(𝑡, 𝑡
0
)

≤ exp(

∞

∑

𝑖=1

𝑏
𝑖
)𝑐
2

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝑐

(𝑡, 𝑡
0
)

≤ 𝑀
1
𝑐
2

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝑞

𝑒
−𝑐

(𝑡, 𝑡
0
) , 𝑡 ∈ T

𝑡0
,

(28)

where𝑀
1
= exp(∑∞

𝑖=1
𝑏
𝑖
).

In view of conditions (i) and (28), we have

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩𝜓(𝑡
0
)𝑥
0

󵄩󵄩󵄩󵄩
𝛾

𝑒
−𝑐
[(𝑡, 𝑡
0
)]
𝑑

, 𝑡 ∈ T
𝑡0
, (29)

where 𝑀 = (𝑐
2
𝑀
1
/𝑐
1
)
1/𝑝, 𝛾 = 𝑞/𝑝, and 𝑑 = 1/𝑝. The proof is

complete.

Remark 14. We obtain the following results in [13] from
Theorem 13.

(i) If we set 𝜓(𝑡) = 1 for each 𝑡 ∈ T in Theorem 13, then
the zero solution of system (2) is exponentially stable.

(ii) If we set 𝜓(𝑡) = 1 and 𝑝 = 𝑞 in condition (i) of
Theorem 13, then the zero solution of system (2) is
exponentially stable.

4. Examples

In this section we give two examples which illustrate our
results from the previous section. Let Z

+
= {0, 1, 2, . . .}.

Example 15 (see [24, Example 2]). We consider the impulsive
dynamic equation on time scales

𝑥
Δ

(𝑡) = 3𝑥, 𝑡 ̸= 𝑡
𝑘
, 𝑡 ∈ T

𝑡0
;

𝑥 (𝑡
+

𝑘
) = 𝑥 (𝑡

𝑘
) + (𝑒

−8

− 1) 𝑥 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
;

𝑥 (𝑡
0
) = 𝑥
0
,

(30)

where 𝑡
𝑘
= 𝑘 ∈ T for each 𝑘 ∈ N and 𝑥

0
∈ R.

Let 𝜓(𝑡) = 1 and 𝑉(𝑡, 𝑥) = 𝑥
2, then it follows that

𝑉
Δ

(𝑡, 𝑥 (𝑡)) = 𝑥
Δ

(𝑡) 𝑥 (𝜎 (𝑡)) + 𝑥
Δ

(𝑡) 𝑥 (𝑡)

= 𝑥
Δ

(𝑡) (2𝑥 + 𝜇 (𝑡) 𝑥
Δ

(𝑡))

= 𝑥
2

(𝑡) (6 + 9𝜇 (𝑡)) , 𝑡 ∈ T ,

𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
𝑘
) + 𝐼
𝑘
(𝑥 (𝑡
𝑘
))) = [𝑥 (𝑡

𝑘
) + (𝑒

−8

− 1) 𝑥(𝑡
𝑘
)]
2

= 𝑒
−16

𝑥(𝑡
𝑘
)
2

≤ 𝑒
−16

𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) .

(31)

We consider two cases: T = R and T = {𝑡 = 𝑖/10 : 𝑖 ∈ Z
+
}.

Case 1 (T = R). Letting 𝑑
𝑘

= 𝑒
−16, 𝑐 = 6, 𝜆 = 7, 𝛼 = 1.1,

𝑝 = 𝑞 = 1, 𝑐
1

= 1/2, 𝑐
2

= 1, we note that all conditions
of Theorem 8 are satisfied. Hence the zero solution of system
(30) is 𝜓-exponentially stable byTheorem 8.

Case 2 (T = {𝑡 = 𝑖/10 : 𝑖 ∈ Z
+
} with 𝜇(𝑖/10) = 1/10). Then

system (30) rewrites

𝑥
Δ

(
𝑖

10
) = 3𝑥 (

𝑖

10
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 =

𝑖

10
∈ T ;

𝑥 (𝑘
+

) = 𝑥 (𝑘) + (𝑒
−8

− 1) 𝑥 (𝑘) , 𝑡 = 𝑡
𝑘
;

𝑥 (0) = 𝑥
0
,

(32)

where 𝑡
𝑘
= 𝑘 ∈ N. Then we have

𝑉
Δ

(𝑡, 𝑥) = 𝑉
Δ

(
𝑖

10
, 𝑥)

= 𝑥
2

(6 + 9𝜇 (
𝑖

10
))

≤ 7𝑉 (𝑡, 𝑥) , 𝑡 =
𝑖

10
∈ T .

(33)

Letting 𝑑
𝑘

= 𝑒
−16, 𝑐 = 7, 𝜆 = 7.1, 𝛼 = 1.1, 𝑝 = 𝑞 = 1,

𝑐
1
= 1/2, 𝑐

2
= 1, it follows that all conditions of Theorem 8

are satisfied. Hence the zero solution of system (32) is also
𝜓-exponentially stable byTheorem 8.

Remark 16. It follows from Example 15 that the zero solution
of system (30) without impulses is unstable; however, after
impulsive effect, the zero solution becomes 𝜓-exponentially
stable. This implies that impulses may be used to exponen-
tially stabilize dynamic equations on time scales.

We give the following example to illustrate Theorem 13.

Example 17 (see [13, Example]). Let 𝑡
0

∈ T and 𝑥(𝑡
0
) =

(𝑐, 𝑑) ∈ R2. We consider the impulsive dynamic system on
time scales

𝑥
Δ

1
(𝑡) =

𝑥
2
(𝑡)

1 + 𝑥2
1
(𝑡)

− 2𝑥
1
(𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ∈ T

𝑡0
;

𝑥
Δ

2
(𝑡) =

𝑥
1
(𝑡)

1 + 𝑥2
2
(𝑡)

− 2𝑥
2
(𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ∈ T

𝑡0
;

𝑥
1
(𝑡
+

𝑘
) = √1 +

1

𝑘2
𝑥
1
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
;

𝑥
2
(𝑡
+

𝑘
) = √1 +

1

𝑘2
𝑥
2
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
;

𝑥 (𝑡
0
) = (𝑥

1
(𝑡
0
) , 𝑥
2
(𝑡
0
)) = (𝑐, 𝑑) ,

(34)
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where 𝑡
𝑘
= 𝑘 ∈ T for each 𝑘 ∈ N. In caseT = {𝑡 = 𝑖/2 : 𝑖 ∈ Z

+
}

with 𝜇(𝑖/2) = 𝑖/2, then the system (34) rewrites

𝑥
Δ

1
(
𝑖

2
) =

𝑥
2
(𝑖/2)

1 + 𝑥2
1
(𝑖/2)

− 2𝑥
1
(
𝑖

2
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 =

𝑖

2
∈ T ;

𝑥
Δ

2
(
𝑖

2
) =

𝑥
1
(𝑖/2)

1 + 𝑥2
2
(𝑖/2)

− 2𝑥
2
(
𝑖

2
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 =

𝑖

2
∈ T ;

𝑥
1
(𝑘
+

) = √1 +
1

𝑘2
𝑥
1
(𝑘) , 𝑡 = 𝑡

𝑘
;

𝑥
2
(𝑘
+

) = √1 +
1

𝑘2
𝑥
2
(𝑘) , 𝑡 = 𝑡

𝑘
;

𝑥 (0) = (𝑥
1
(0) , 𝑥

2
(0)) = (𝑐, 𝑑) ,

(35)

where 𝑡
𝑘

= 𝑘 ∈ N. Letting 𝑉(𝑡, 𝑥(𝑡)) = 𝑥
2

1
(𝑡) + 𝑥

2

2
(𝑡)

and ‖𝑥(𝑡)‖ = 𝑥
2

1
(𝑡) + 𝑥

2

2
(𝑡) and employing similar manner

in [13, Example], it follows that the zero solution of (34) is
exponentially stable.
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USA, 2001.

[7] V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan,
Dynamic Systems on Measure Chains, Kluwer Academic Pub-
lishers, Boston, Mass, USA, 1996.

[8] S. K. Choi, Y. Cui, and N. Koo, “Variationally stable dynamic
systems on time scales,” Advances in Difference Equations, vol.
2012, article 129, 2012.

[9] Y. Chen andR. Tian, “Exponential stability of impulsive discrete
systems with multiple delays,” Journal of Networks, vol. 8, no. 11,
pp. 2564–2571, 2013.

[10] B. Gupta and S. K. Srivastava, “𝜓-exponential stability of
non-linear impulsive differential equaions,” World Academy of
Science—Engineering andTechnology, vol. 44, pp. 347–350, 2010.

[11] Q.Wang andX. Liu, “Impulsive stabilization of delay differential
systems via the Lyapunov-Razumikhin method,”AppliedMath-
ematics Letters, vol. 20, no. 8, pp. 839–845, 2007.
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