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Almost sure exponential stability of the split-step backward Euler (SSBE) method applied to an Itô-type stochastic differential
equation with time-varying delay is discussed by the techniques based on Doob-Mayer decomposition and semimartingale
convergence theorem. Numerical experiments confirm the theoretical analysis.

1. Introduction

In this paper we study the following nonlinear SDDE:

d𝑋 (𝑡) = 𝑓 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏 (𝑡))) d𝑡

+ 𝑔 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏 (𝑡))) d𝑊(𝑡) ,

(1)

for every 𝑡 ≥ 0. Here 𝜏(𝑡) is a time-varying delay satisfying
𝜏 > 0 and −𝜏 := inf{𝑡 − 𝜏(𝑡) : 𝑡 ≥ 0}. The initial function
𝑋(𝑡) = 𝜓(𝑡) when 𝑡 ∈ [−𝜏, 0]. We further assume that
the initial data is independent of Wiener measure driving
the equation and 𝑊(𝑡) is a scalar Brownian motion on the
complete probability space (Ω,F,F

𝑡≥0
,P) with a filtration

satisfying the usual conditions. Moreover, 𝑓, 𝑔 : R𝑑 × R𝑑 →

R𝑑 are Borel-measurable functions.
Stability theory for numerical methods applied to

stochastic differential equation (SDE) typically deals with
mean-square behavior [1].Themean-square stability analysis
of numerical methods for SDDE has received a great deal
of attention (see, e.g., [2, 3] and the references therein).
Recently, the almost sure (a.s.) stability (or the trajectory
stability) is becoming prevalent in the science literature [4–
11]. However, the prior works concerned with SDDE are [7, 8,
10]. Rodkina et al. [7] studied almost sure stability of a drift-
implicit 𝜃-method applied to an SDE with memory. Using
the martingale techniques, Wu and his coauthors [8, 10]

discussed almost sure exponential stability of the Euler-
Maruyama (EM) method for the SDE with a constant delay
and stochastic functional differential equation. We note that
the two above schemes are all single-stage method; this paper
studies the almost sure stability of a two-stage scheme named
split-step backward Euler (SSBE) method [12, 13] applied to
the nonlinear SDDE (1) with time-varying delay.

Applying the SSBE method (see [12, 13]) to (1) yields

𝑥
∗

𝑛
= 𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , (2a)

𝑥
𝑛+1

= 𝑥
∗

𝑛
+ 𝑔 (𝑥

∗

𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
, (2b)

where Δ𝑤
𝑛
:= 𝑊(𝑡

𝑛+1
) − 𝑊(𝑡

𝑛
) and for 0 ≤ 𝜇 ≤ 1, 𝑞

𝑛
∈ Z+,

𝑥
𝑛

=

{{

{{

{

𝜓(𝑡
𝑛
− 𝜏 (𝑡
𝑛
)) , 𝑡

𝑛
− 𝜏 (𝑡
𝑛
) < 0;

𝜇𝑥
𝑛−𝑞
𝑛
+1
+ (1 − 𝜇) 𝑥

𝑛−𝑞
𝑛

, 0 ≤ 𝑡
𝑛
− 𝜏 (𝑡
𝑛
)

∈ [𝑡
𝑛−𝑞
𝑛

, 𝑡
𝑛−𝑞
𝑛
+1
) .

(3)

Here ℎ is the step size and 𝑥
𝑛
denotes the approximation of

𝑋(𝑡) at time 𝑡
𝑛
= 𝑛ℎ (𝑛 = 0, 1, . . .). We remark that 𝜇 in

(3) depends on how memory values are handled on nongrid
points. The almost sure convergence of SSBE method has
been investigated by Guo and Tao [14]; the main aim of this
paper is to study the almost sure stability of the SSBEmethod
applied to (1).
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2. Preliminary Results

Before stating the main results, we present the essential
notation and definitions which are necessary for further
consideration. Let | ⋅ | be the Euclidean norm in R𝑑 and
𝐶([−𝜏, 0];R𝑑) the family of continuous functions 𝜑 from
[−𝜏, 0] to R𝑑, equipped with the supremum norm ‖𝜑‖ =

sup
−𝜏≤𝜃≤0

|𝜑(𝜃)|. Also, denote by 𝐶𝑏F
0

([−𝜏, 0];R𝑑) the family
of bounded, F

0
-measurable, 𝐶([−𝜏, 0];R𝑑)-valued random

variables. If 𝐴 is a vector or matrix, its transpose is denoted
by 𝐴𝑇. The inner product of 𝑋,𝑌 ∈ R𝑑 is denoted by ⟨𝑋, 𝑌⟩
or𝑋𝑇𝑌.

Now we give some definitions on the almost sure expo-
nential stability of SDDEs and its numerical approximation.

Definition 1. The solution 𝑋(𝑡, 𝜓) to (1) is said to be almost
surely exponentially stable if there exists a constant 𝜂 > 0

such that

lim sup
𝑡→∞

1

𝑡
log 𝑋 (𝑡, 𝜓)

 ≤ −𝜂 a.s (4)

for any initial data 𝜓 ∈ 𝐶𝑏F
0

([−𝜏, 0];R𝑑).

Definition 2. The solution 𝑥
𝑛
to (2a) and (2b) is said to be

almost surely exponentially stable if there exists a constant
𝛾 > 0 such that

lim sup
𝑛→∞

1

𝑛ℎ
log 𝑥𝑛

 ≤ −𝛾 a.s (5)

for any bounded variables 𝜓(𝑘ℎ) when 𝑘ℎ ∈ [−𝜏, 0].

For the purpose of stability, we assume that 𝑓(0, 0, 𝑡) =
𝑔(0, 0, 𝑡) = 0, which implies that (1) admits the equilibrium
solution 𝑋(𝑡) = 0 corresponding to the initial condition
𝜓(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. As a standing hypothesis, we will
impose the following local Lipschitz condition (cf. [11, 12, 14])
on the coefficients 𝑓 and 𝑔.

(A1) For each integer𝐷, there exists a positive constant𝐾
𝐷

such that, for all 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ 𝑅
𝑑 with |𝑥

1
| ∨ |𝑥
2
| ∨

|𝑦
1
| ∨ |𝑦
2
| ≤ 𝐷, and all 𝑡 ≥ 0, |𝑓(𝑥

1
, 𝑦
1
) −𝑓(𝑥

2
, 𝑦
2
)|
2
∨

|𝑔(𝑥
1
, 𝑦
1
) − 𝑔(𝑥

2
, 𝑦
2
)|
2
≤ 𝐾
𝐷
(|𝑥
1
− 𝑥
2
|
2
+ |𝑦
1
− 𝑦
2
|
2
),

where ∨ is the maximal operator.

To guarantee the almost sure stability of the unique
solution to (1), we need the following assumption for
the time-varying delay 𝜏(𝑡).

(A2) Let the delay function 𝜏(𝑡) : [0, +∞) → [0, 𝜏] be
Borel measurable and bounded.

In what follows we introduce the result of almost
sure stability of SDDEs (1). The proof of the following
lemma can be found in [15].

Lemma 3. Let Assumptions (A1) and (A2) hold. Assume that
there are four nonnegative constants 𝜆

1
–𝜆
4
such that

2𝑥
𝑇
𝑓 (𝑥, 0) ≤ −𝜆

1
|𝑥|
2
, (6)

𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 0)
 ≤ 𝜆2

𝑦
 , (7)

𝑔 (𝑥, 𝑦)


2

≤ 𝜆
3
|𝑥|
2
+ 𝜆
4

𝑦


2 (8)

for all 𝑡 ≥ 𝑡
0
and 𝑥, 𝑦 ∈ R𝑑. If

𝜆
1
> 2𝜆
2
+ 𝜆
3
+ 𝜆
4
, (9)

then the trivial solution of (1) is almost surely exponentially
stable.

To explain our idea, we cite the discrete semimartingale
convergence theorem as follows.

Theorem 4 (see [8, 9]). Let 𝑍 = (𝑍
𝑛
)
𝑛∈𝑁

be an almost
sure nonnegative stochastic sequence of (F

𝑛
,B)-measurable

random variables 𝑍
𝑛
on probability space (Ω,F, (F

𝑛
)
𝑛∈𝑁

,P).
Assume that 𝑍 permits the decomposition

𝑍
𝑛
≤ 𝑍
0
+ 𝐴
1

𝑛
− 𝐴
2

𝑛
+M
𝑛
, 𝑛 ∈ 𝑁, (10)

where 𝐴1 = (𝐴
1

𝑛
)
𝑛∈𝑁

and 𝐴2 = (𝐴
2

𝑛
)
𝑛∈𝑁

are two non-
decreasing, predictable processes with 𝐴𝑖

0
= 0 (𝑖 = 1, 2);

M = (M
𝑛
)
𝑛∈𝑁

is local (F
𝑛
)
𝑛∈𝑁

-martingale with M
0
= 0 on

(Ω,F, (F
𝑛
)
𝑛∈𝑁

,P). Then, the requirement of lim
𝑛→+∞

𝐴
1

𝑛
<

+∞ (a.s.) implies that

lim
𝑛→+∞

sup𝑍
𝑛
< +∞, lim

𝑛→+∞

𝐴
2

𝑛
< +∞ (11)

for almost all 𝜔 ∈ Ω.

3. Almost Sure Asymptotic Exponential
Stability of Numerical Solution

In this section, our aim is to examine if the SSBE method can
reproduce the almost sure exponential stability of the exact
solution of (1). Comparing to the existing results of single-
stage methods [8, 10], we need to appropriately estimate the
intermediate solution 𝑥∗

𝑛
, which also leads to more complex

structure of the inner product of 𝑥
𝑛+1

, so that the discrete
semimartingale convergence theorem is still valid for this
case.

Nowwe give themain result of almost sure stability of the
SSBE approximate solution 𝑥

𝑛
.

Theorem 5. Suppose that conditions of Lemma 3 are satisfied
and the drift coefficient 𝑓 satisfies the linear growth condition;
namely, there exists a constant 𝐾 > 0 such that

𝑓 (𝑥, 𝑦)


2

≤ 𝐾(|𝑥|
2
+
𝑦


2

) (12)

for all 𝑥, 𝑦 ∈ R𝑛 and 𝑡 ≥ 0. Then there exists an ℎ
0
such that

if ℎ < ℎ
0
, the SSBE approximate solution 𝑥

𝑛
is almost surely

exponentially stable.
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Proof. Note that

𝑥𝑛+1


2

=
𝑥𝑛


2

+ 2ℎ𝑥
𝑇

𝑛
𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
) +

ℎ𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
)


2

+
𝑔 (𝑥
∗

𝑛
, 𝑥
𝑛
)
 (Δ𝑤𝑛)

2

+ 2 ⟨𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , 𝑔 (𝑥

∗

𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
⟩

(13)

from the SSBE method (2a) and (2b).
By using (6) and (7), we have

𝑥
𝑇

𝑛
𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
) = (𝑥

𝑇

𝑛
− 𝑥
∗𝑇

𝑛
) 𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) + 𝑥
∗𝑇

𝑛
𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
)

≤ ℎ
𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
)


2

+ 𝑥
∗𝑇

𝑛
𝑓 (𝑥
∗

𝑛
, 0)

+ 𝑥
∗𝑇

𝑛
(𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
) − 𝑓 (𝑥

∗

𝑛
, 0))

≤ ℎ
𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
)


2

−
𝜆
1

2

𝑥
∗

𝑛



2

+
𝑥
∗

𝑛



𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
) − 𝑓 (𝑥

∗

𝑛
, 0)
 .

(14)

Equation (13), together with (14), shows that

𝑥𝑛+1


2

≤
𝑥𝑛


2

+ 3ℎ
2𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
)


2

− 𝜆
1
ℎ
𝑥
∗

𝑛



2

+ 2𝜆
2
ℎ
𝑥
∗

𝑛



𝑥𝑛
 +
𝑔 (𝑥
∗

𝑛
, 𝑥
𝑛
)
 (Δ𝑤𝑛)

2

+ 2 ⟨𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , 𝑔 (𝑥

∗

𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
⟩ .

(15)

Therefore, by conditions (8) and (12), we have

𝑥𝑛+1


2

≤
𝑥𝑛


2

+ 3ℎ
2
(𝐾
𝑥
∗

𝑛



2

+ 𝐾
𝑥𝑛


2

)

− 𝜆
1
ℎ
𝑥
∗

𝑛



2

+ 2𝜆
2
ℎ
𝑥
∗

𝑛



𝑥𝑛


+ 𝜆
3
(Δ𝑤
𝑛
)
2𝑥
∗

𝑛



2

+ 𝜆
4
(Δ𝑤
𝑛
)
2𝑥𝑛



2

+ 2 ⟨𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , 𝑔 (𝑥

∗

𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
⟩

≤
𝑥𝑛


2

+ (3𝐾ℎ
2
− 𝜆
1
ℎ + 𝜆
2
ℎ + 𝜆
3
(Δ𝑤
𝑛
)
2

)
𝑥
∗

𝑛



2

+ (3𝐾ℎ
2
+ 𝜆
2
ℎ + 𝜆
4
(Δ𝑤
𝑛
)
2

)
𝑥𝑛


2

+ 2 ⟨𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , 𝑔 (𝑥

∗

𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
⟩ .

(16)

Similarly, under conditions (6), (7), and (12),

𝑥
∗

𝑛



2

= ⟨𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , 𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
)⟩

=
𝑥𝑛


2

+ 2ℎ𝑥
𝑇

𝑛
𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
) +

ℎ𝑓 (𝑥
∗

𝑛
, 𝑥
𝑛
)


2

≤
𝑥𝑛


2

+ 3ℎ
2𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
)


2

− 𝜆
1
ℎ
𝑥
∗

𝑛



2

+ 2𝜆
2
ℎ
𝑥
∗

𝑛



𝑥𝑛


≤
𝑥𝑛


2

+ 3𝐾ℎ
2
(
𝑥
∗

𝑛



2

+
𝑥𝑛


2

)

− 𝜆
1
ℎ
𝑥
∗

𝑛



2

+ 𝜆
2
ℎ (
𝑥
∗

𝑛



2

+
𝑥𝑛


2

) ,

(17)

which implies that

(1 − 3𝐾ℎ
2
+ 𝜆
1
ℎ − 𝜆
2
ℎ)
𝑥
∗

𝑛



2

≤
𝑥𝑛


2

+ (3𝐾ℎ
2
+ 𝜆
2
ℎ)
𝑥𝑛


2

.

(18)

By Vieta theorem, because the discriminant of the quadratic
equation 1 − 3𝐾ℎ2 + 𝜆

1
ℎ − 𝜆
2
ℎ = 0 is positive and −3𝐾 < 0,

there must exist an ℎ
1
> 0 such that 1−3𝐾ℎ2 +𝜆

1
ℎ−𝜆
2
ℎ > 0

for any 0 < ℎ < ℎ
1
; then

𝑥
∗

𝑛



2

≤
1

1 − 3𝐾ℎ2 + 𝜆
1
ℎ − 𝜆
2
ℎ

𝑥𝑛


2

+
3𝐾ℎ
2
+ 𝜆
2
ℎ

1 − 3𝐾ℎ2 + 𝜆
1
ℎ − 𝜆
2
ℎ

𝑥𝑛


2

.

(19)

For simplicity, in what follows, the formula 1 − 3𝐾ℎ2 + 𝜆
1
ℎ −

𝜆
2
ℎ is denoted by 𝐺. Combining (16) and (19) leads us to

𝑥𝑛+1


2

≤
𝑥𝑛


2

+
1 − 𝐺 + 𝜆

3
(Δ𝑤
𝑛
)
2

𝐺

𝑥𝑛


2

+

(1 − 𝐺 + 𝜆
3
(Δ𝑤
𝑛
)
2

) (3𝐾ℎ
2
+ 𝜆
2
ℎ)

𝐺

𝑥𝑛


2

+ (3𝐾ℎ
2
+ 𝜆
2
ℎ + 𝜆
4
(Δ𝑤
𝑛
)
2

)
𝑥𝑛


2

+ 2 ⟨𝑥
𝑛
+ ℎ𝑓 (𝑥

∗

𝑛
, 𝑥
𝑛
) , 𝑔 (𝑥

∗

𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
⟩ .

(20)

For any positive constant 𝐶 > 1, we have

𝐶
(𝑖+1)ℎ𝑥𝑖+1



2

− 𝐶
𝑖ℎ𝑥𝑖



2

= 𝐶
(𝑖+1)ℎ

(
𝑥𝑖+1



2

−
𝑥𝑖


2

) + (𝐶
(𝑖+1)ℎ

− 𝐶
𝑖ℎ
)
𝑥𝑖


2

,

(21)

which yields

𝐶
(𝑖+1)ℎ𝑥𝑖+1



2

− 𝐶
𝑖ℎ𝑥𝑖



2

≤ 𝐶
(𝑖+1)ℎ

[1 − 𝐶
−ℎ
+
1 − 𝐺 + 𝜆

3
(Δ𝑤
𝑖
)
2

𝐺
]
𝑥𝑖


2

+ 𝐶
(𝑖+1)ℎ [

[

(1 − 𝐺 + 𝜆
3
(Δ𝑤
𝑖
)
2

) (3𝐾ℎ
2
+ 𝜆
2
ℎ)

𝐺

+ 3𝐾ℎ
2
+ 𝜆
2
ℎ + 𝜆
4
(Δ𝑤
𝑖
)
2
]

]

𝑥𝑖


2

+ 2𝐶
(𝑖+1)ℎ

⟨𝑥
𝑖
+ ℎ𝑓 (𝑥

∗

𝑖
, 𝑥
𝑖
) , 𝑔 (𝑥

∗

𝑖
, 𝑥
𝑖
) Δ𝑤
𝑖
⟩

(22)
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by using (20). Summing up both sides of inequality (22) from
𝑖 = 0 to 𝑛 − 1 (𝑛 ≥ 1), we get

𝐶
𝑛ℎ𝑥𝑛



2

≤
𝑥0


2

+ [1 − 𝐶
−ℎ
+
1 − 𝐺

𝐺
]

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

+ (
𝜆
3

𝐺
)

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

(Δ𝑤
𝑖
)
2𝑥𝑖



2

+
3𝐾ℎ
2
+ 𝜆
2
ℎ

𝐺

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

+ [

(3𝐾ℎ
2
+ 𝜆
2
ℎ) 𝜆
3

𝐺
+ 𝜆
4
]

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

(Δ𝑤
𝑖
)
2𝑥𝑖



2

+ 2

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

⟨𝑥
𝑖
+ ℎ𝑓 (𝑥

∗

𝑖
, 𝑥
𝑖
) , 𝑔 (𝑥

∗

𝑖
, 𝑥
𝑖
) Δ𝑤
𝑖
⟩ .

(23)

Let M(1)
𝑛

= ∑
𝑛−1

𝑖=0
𝐶
(𝑖+1)ℎ

|𝑥
𝑖
|
2
((Δ𝑤
𝑖
)
2
− ℎ). Since 𝐸((Δ𝑤

𝑛
)
2
−

ℎ) = 0 and 𝑥
𝑛
isF
𝑛ℎ
-measurable, we obtain

𝐸 [M
(1)

𝑛
| F
(𝑛−1)ℎ

]

=M
(1)

𝑛−1
+ 𝐸 [𝐶

𝑛ℎ𝑥𝑛−1


2

((Δ𝑤
𝑛−1
)
2

− ℎ) | F
(𝑛−1)ℎ

]

=M
(1)

𝑛−1
+ 𝐶
𝑛ℎ𝑥𝑛−1



2

𝐸 [((Δ𝑤
𝑛−1
)
2

− ℎ) | F
(𝑛−1)ℎ

]

=M
(1)

𝑛−1
,

(24)

which implies thatM(1)
𝑛

is a martingale.
Similarly,

M
(2)

𝑛
=

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

((Δ𝑤
𝑖
)
2

− ℎ) ,

M
(3)

𝑛
= 2

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

⟨𝑥
𝑖
+ ℎ𝑓 (𝑥

∗

𝑖
, 𝑥
𝑖
) , 𝑔 (𝑥

∗

𝑖
, 𝑥
𝑖
) Δ𝑤
𝑖
⟩

(25)

are also martingales. Therefore,

M
𝑛
=
𝜆
3

𝐺
M
(1)

𝑛
+ [

𝜆
3
(3𝐾ℎ
2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
]M
(2)

𝑛
+M
(3)

𝑛

(26)

is a martingale withM
0
= 0. Then we have

𝐶
𝑛ℎ𝑥𝑛



2

≤
𝑥0


2

+ [−𝐶
−ℎ
+
1 + 𝜆
3
ℎ

𝐺
]

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

+ [

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ]

×

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

+M
𝑛
.

(27)

Noting that there are two approximating cases of the time
dependent delay term 𝑋(𝑡

𝑛
− 𝜏(𝑡
𝑛
)) in (3), the following

analysis will be divided into two situations. First, we have

𝐶
𝑛ℎ𝑥𝑛



2

≤
𝑥0


2

+ [−𝐶
−ℎ
+
1 + 𝜆
3
ℎ

𝐺
]

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

+ [

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ]

×

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝜓 (𝑡𝑖 − 𝜏 (𝑡𝑖))



2

+M
𝑛

(28)

under condition 𝑡
𝑛
< 𝜏(𝑡
𝑛
). There exists an ℎ

2
such that, for

any 0 < ℎ < ℎ
1
∧ ℎ
2
, 𝐶−ℎ − (1 + 𝜆

3
ℎ)/𝐺 > 0, where ∧ is the

minimal operator. Further, we set𝐴1
𝑛
= 0 for any nonnegative

integer 𝑛, 𝐴2
0
= 0,

𝐴
2

𝑛
= [𝐶
−ℎ
−
1 + 𝜆
3
ℎ

𝐺
]

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2 (29)

for 𝑛 ≥ 1, and

𝑍
𝑛
= 𝐶
𝑛ℎ𝑥𝑛



2

,

𝑍
0
=
𝑥0


2

+ [

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ]

×

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝜓 (𝑡𝑖 − 𝜏 (𝑡𝑖))



2

.

(30)

Therefore, a direct application of Theorem 4 to the sequence
𝑍
𝑛
yields that

lim sup
𝑛→∞

𝐶
𝑛ℎ𝑥𝑛



2

≤ +∞. (31)

Choose the 𝛾 > 0, such that 𝐶 = 𝑒𝛾 and hence

lim sup
𝑛→∞

𝑒
𝛾𝑛ℎ𝑥𝑛



2

≤ +∞. (32)

We therefore obtain that, for any 0 < ℎ < ℎ
1
∧ ℎ
2
,

lim sup
𝑛→∞

1

𝑛ℎ
log 𝑥𝑛

 ≤ −
𝛾

2
, a.s (33)

as required.
Now, let us discuss the second situation: 𝑡

𝑛
≥ 𝜏(𝑡

𝑛
).

Inequality (27) gives

𝐶
𝑛ℎ𝑥𝑛



2

≤
𝑥0


2

+ [−𝐶
−ℎ
+
1 + 𝜆
3
ℎ

𝐺
]

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

+ 2[

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ]

×

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

(𝜇
2
𝑥
𝑖−𝑞
𝑖
+1



2

+ (1 − 𝜇)
2
𝑥
𝑖−𝑞
𝑖



2

)

+M
𝑛
.

(34)
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(b) ℎ = 0.4; 𝜇 = 0.5
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(c) ℎ = 0.4; 𝜇 = 1.0
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(d) ℎ = 0.2; 𝜇 = 1.0

Figure 1: Almost sure stability of SSBE method applied to (1) with 𝛼 = −10, 𝜎 = 1, 𝜆 = 1, and 𝛽 = 2.

Since

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

𝑥
𝑖−𝑞
𝑖



2

=
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𝑖=−𝑞
𝑖

𝐶
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𝑖
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2

+

𝑛−1

∑

𝑖=0

𝐶
(𝑖+𝑞
𝑖
+1)ℎ𝑥𝑖



2

−

𝑛−1

∑

𝑖=𝑛−𝑞
𝑖

𝐶
(𝑖+𝑞
𝑖
+1)ℎ𝑥𝑖



2

,

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ

𝑥
𝑖−𝑞
𝑖
+1



2

=

−1

∑

𝑖=−𝑞
𝑖
+1

𝐶
(𝑖+𝑞
𝑖
)ℎ𝑥𝑖



2

+

𝑛−1
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𝑖=0

𝐶
(𝑖+𝑞
𝑖
)ℎ𝑥𝑖



2

−

𝑛−1

∑

𝑖=𝑛−𝑞
𝑖
+1

𝐶
(𝑖+𝑞
𝑖
)ℎ𝑥𝑖



2

,

(35)

we have

𝑍
𝑛
≤ 𝑍
0
− 𝐴
2

𝑛
+M
𝑛
, (36)

where

𝑍
𝑛
= 𝐶
𝑛ℎ𝑥𝑛



2

+ 2𝜇
2
[

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
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4
ℎ]

×

𝑛−1

∑
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𝑖
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𝐶
(𝑖+𝑞
𝑖
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2

+ 2(1 − 𝜇)
2

[
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3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
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4
ℎ]

×

𝑛−1

∑

𝑖=𝑛−𝑞
𝑖

𝐶
(𝑖+𝑞
𝑖
+1)ℎ𝑥𝑖



2

,

𝐴
2

𝑛
= [𝐶

−ℎ
−
1 + 𝜆
3
ℎ

𝐺
− 2𝜇
2

× (

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
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𝐺
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(b) ℎ = 1.0; 𝜇 = 0.5
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(c) ℎ = 1.0; 𝜇 = 1.0
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(d) ℎ = 0.9; 𝜇 = 1.0
Figure 2: Almost sure stability of SSBE method applied to (1) with 𝛼 = −10, 𝜎 = 1, 𝜆 = 3, and 𝛽 = 1.

− 2(1 − 𝜇)
2

(

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ)𝐶
𝑞
𝑖]

×

𝑛−1

∑

𝑖=0

𝐶
(𝑖+1)ℎ𝑥𝑖



2

.

(37)

There exists an ℎ
3
such that, for any 0 < ℎ < ℎ

1
∧ ℎ
3
,

𝐶
−ℎ
−
1 + 𝜆
3
ℎ

𝐺
− 2𝜇
2
(

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ)𝐶
𝑞
𝑖
−1

− 2(1 − 𝜇)
2

(

(1 + 𝜆
3
ℎ) (3𝐾ℎ

2
+ 𝜆
2
ℎ)

𝐺
+ 𝜆
4
ℎ)𝐶
𝑞
𝑖 > 0.

(38)

Similarly, the solution 𝑥
𝑛
is almost surely exponentially stable

by usingTheorem 4.
Consequently, we conclude that, for any 0 < ℎ < ℎ

1
∧

ℎ
2
∧ ℎ
3
, the SSBE approximate solution 𝑥

𝑛
is almost surely

exponentially stable.

4. Numerical Experiments

In this section, we present some numerical examples to
illustrate our theoretical analysis. We calculated 500 sample
paths of the approximate solution and plotted them along the
time 𝑡 (see, e.g., Figure 1(a)). Figures 1 to 2 depict the results
by SSBE method in the log-scaled vertical axis. Here we set
𝑑 = 1, drift coefficient 𝑓 = 𝛼𝑋(𝑡) + 𝜎 sin(𝑋(𝑡 − 𝜏)), diffusion
coefficient 𝑔 = 𝜆𝑋(𝑡)+𝛽 sin(𝑋(𝑡−𝜏)), initial function𝜓(𝑡) =
𝑡 + 1, and delay function 𝜏(𝑡) = 3(cos(𝑡/2))2 + 3.

Figures 1 to 2 show that the SSBE approximate solution
𝑥
𝑛
has better almost sure stability in the case of choosing the

parameter𝜇 = 0.5 in (3). Comparing Figures 1(c) and 1(d), the
almost sure stability of approximate solution can be obtained
by reducing the step size ℎ.
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