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A hybrid SIR vector disease model with incubation is established, where susceptible host population satisfies the logistic equation
and the recovered host individuals are commercially harvested. It is utilized to discuss the transmission mechanism of infectious
disease and dynamical effect of commercial harvest on population dynamics. Positivity and permanence of solutions are analytically
investigated. By choosing economic interest of commercial harvesting as a parameter, dynamical behavior and local stability of
model system without time delay are studied. It reveals that there is a phenomenon of singularity induced bifurcation as well
as local stability switch around interior equilibrium when economic interest increases through zero. State feedback controllers are
designed to stabilizemodel system around the desired interior equilibria in the case of zero economic interest and positive economic
interest, respectively. By analyzing corresponding characteristic equation of model system with time delay, local stability analysis
around interior equilibrium is discussed due to variation of time delay. Hopf bifurcation occurs at the critical value of time delay
and corresponding limit cycle is also observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic
solutions are studied. Numerical simulations are carried out to show consistency with theoretical analysis.

1. Introduction

In recent decades, plenty of mathematical models describing
the population dynamics of infectious disease have been
extensively utilized to understand the transmission mecha-
nism of infectious disease within population ecosystem (see
[1–4] and references therein). Much research efforts have
been paid to susceptible-infective-recovered (SIR) vector
disease model and corresponding model dynamics (see
[5–12] and references therein). Generally, in modelling of
communicable disease, the incidence rate (the rate of new
infections) is considered to play a vital role in ensuring that
the model can provide a reasonable qualitative description of
the infectious disease dynamics [3, 4].

In order to discuss the spread of an infectious disease
transmitted by a vector (e.g., mosquitoes and rats), Takeuchi
et al. [7] formulated a delayed SIR epidemic model with

a bilinear incidence rate. Beretta et al. [8] considered the
global stability of disease free equilibrium and endemic
equilibrium of model system; it was shown that the disease
free equilibrium is globally stable for any time delay while
the endemic equilibrium is not feasible. By constructing
a suitable Lyapunov functional, sufficient conditions were
derived to guarantee that if the endemic equilibrium is
feasible, it is also globally stable for the delay being sufficiently
small. Ruan and Wang [13] studied the global dynamics of
an SIR model with vital dynamics and nonlinear incidence
rate of saturated mass action and global qualitative and
bifurcation analyses are carried out. Ma et al. [14] derived an
explicit expression of lower bound of the infective individual
of solution of model system, which was proposed as an open
problem. They therefore gave an estimation of the length of
timedelay ensuring global asymptotic stability of the endemic
equilibrium. Xu and Ma [15] proposed an SIR epidemic
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model with nonlinear incidence rate and time delay. By
analyzing the corresponding characteristic equations, local
stability of an endemic equilibrium and a disease free equi-
librium are discussed. An SIR model with distributed delay
and a general incidence function is studied inMcCluskey [9],
and the global dynamics for the SIR epidemiological system
is analyzed in Zhou and Cui [10]. Wang et al. [11] considered
the asymptotic behavior of the following SIR vector model:

̇

𝑆 (𝑡) = 𝑟 (1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the population density of
susceptible, infective, and recovered host individuals at time
𝑡, respectively. It is assumed that the population growth of
susceptible host individuals is governed by the logistic growth
with a carrying capacity 𝑘 > 0 as well as intrinsic birth rate
constant 𝑟 > 0. 𝛽 > 0 is the average number of constants per
infective per unit time and 𝜏 ≥ 0 denotes the incubation time,
and 𝜇

1
> 0 and 𝜇

2
> 0 stand for the death rate of infective and

recovered host individuals, respectively.𝑚 > 0 represents the
recovery rate of infective host individuals. The local stability
of endemic equilibrium is investigated, and conditions for
Hopf bifurcation to occur are derived in [11]. Along with
the line of this research, Enatsu et al. [12] analyze stability
of equilibria for a delayed SIR epidemic model, in which
population growth is subject to logistic growth in absence of
disease and the proposed model with a nonlinear incidence
rate satisfying suitable monotonicity conditions.

Nowadays, biological resource within ecosystem is com-
mercially harvested and sold with aim of achieving eco-
nomic interest [16, 17]. It is well known that harvesting has
a strong impact on the dynamic evolution of population
and several mathematical models have been established to
discuss dynamic effects of harvest effort on population in
ecological-epidemiological system, which can be found in
[18–21] and the references therein.The role of harvesting in a
predator-prey-parasite system is discussed in [18]; theoretical
results show that, using impulsive harvesting effort as control
parameter, it is not only possible to control the cyclic behavior
of the system populations leading to the persistence of all
species but other desired stable equilibrium including disease
free can be obtained. A ratio-dependent eco-epidemiological
system is proposed in [19] where prey population is subject
to harvesting. Positive invariance, boundedness, stability of
equilibria, and permanence of system have been established.
In [20], an eco-epidemiological model is studied where
prey disease is modeled by a susceptible-infective scheme,
and the role of harvesting and switching on the dynamics
of disease propagation and/or eradication is discussed. An
eco-epidemiological model with distributed time delay and
impulsive control strategy is investigated in [21]; local stability
and complex dynamical behavior are discussed. Under the
system of market economy, harvest effort is usually influ-
enced by variation of economic interest of commercial har-
vesting [16, 22]. It should be noted that the above mentioned

related work [18–21] only concentrate on the role of harvest
effort on population dynamics, while the dynamic effect of
economic interest on commercial harvesting and indirect
dynamic effect on ecosystem are not considered. The work
done in [12] is an extension of [11] with nonlinear incidence
rate, while dynamic effect of harvest effort on population
dynamics is not considered.

Recently, some hybrid dynamical models are proposed in
[23–28], which are utilized to discuss the interaction mech-
anism of harvested ecosystem from an economic perspec-
tive. Compared with the traditional mathematical models
(differential equations or difference equations) discussing the
population dynamics in ecosystem, the hybrid mathematical
models proposed in [23–28] are made up of differential
equations and algebraic equations, where differential equa-
tions concentrate on coexistence and interaction mechanism
of population and algebraic equations offer a simpler way
to study the effect of harvest effort on ecosystem from
an economic perspective. Complex dynamical behavior and
stability analysis in prey-predator ecosystems with stage-
structured population and gestation delay are considered
in [23–28]. In general, differential-algebraic models exhibit
more complicated dynamics than ordinary differential mod-
els. The differential-algebraic models have been applied
widely in power systems, aerospace engineering, chemical
processes, social management systems, biological systems,
network analysis and oil catalysis, and cracking process (see
[29–31] and references therein). With the help of differential-
algebraic model for the power systems and bifurcation
theory, complex dynamical behaviors of the power systems,
especially the bifurcation phenomena that reveal the insta-
bility mechanism of power systems have been extensively
studied, which can be found in [32–34] and the refer-
ences therein. Furthermore, some applications of differential-
algebraic models in the field of economy, which can be found
in [35, 36].

It is well known that the recovered host individuals are
naturally immune to vector disease [1], and its potential eco-
nomic interest can be commercially exploited. Furthermore,
harvest effort is usually influenced by variation of economic
interest of commercial harvesting [16, 22] under the system of
market economy. Consequently, it is necessary to discuss the
coexistence and interaction mechanism of population within
harvested epidemiological ecosystem as well as dynamical
effect of harvest effort due to variation of economic interest.
However, as far as knowledge goes, nobody has explicitly
proposed a mathematical model to discuss the dynamic
effect of commercial harvest on epidemiological system
under the system of market economy. The main objective of
this paper is to investigate the transmission mechanism of
infectious disease anddynamical effect of commercial harvest
on population dynamics, especially the complex dynamical
behavior and stability switch due to variation of incubation
and commercial harvest economic interest. The organisation
of the rest section of this paper is as follows. By introducing
commercial harvest effort into model system (1), a hybrid
epidemiological-economic model is established in Section 2.
Positivity and permanence of solutions of model system are
discussed in Section 3. In Section 4, qualitative analyses of
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model system are performed. Conditions for existence of
interior equilibrium of model system are studied. Dynam-
ical behavior of model system without incubation around
the interior equilibrium is investigated due to variation of
economic interest, and state feedback controllers are designed
to stabilize model system around the desired interior equi-
libria. Furthermore, local stability analysis of model system
with incubation is analyzed due to variation of time delay;
directions of Hopf bifurcation and stability of the bifurcating
periodic solutions are also studied. Numerical simulations
are made in Section 5, which are utilized to support the
theoretical findings obtained in this paper. Finally, this paper
ends with a conclusion.

2. Model Formulation

In 1954, Gordon [22] proposed the economic theory of
a common-property resource, which studies the effect of
harvest effort on ecosystem from an economic perspective.
In [22], an algebraic equation is proposed to investigate the
economic interest of yield of the harvest effort, which takes
form as follows:

Net Economic Revenue (NER)

= Total Revenue (TR) − Total Cost (TC) .
(2)

Associated with model (1), an algebraic equation, which
considers the economic interest V of the harvest effort on
recovered host individuals in epidemiological system, that is,
𝑅(𝑡), is established as follows:

𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) = V, (3)

where 𝐸(𝑡) represents the harvest effort on recovered host
individuals at time 𝑡. V represents the economic interest of
harvest effort on the recovered host individuals. 𝑤 and 𝑐
represent unit price of harvested population and cost of
harvest effort, respectively.

Based on (1) and (3), a delayed hybrid model which
consists of three differential equations and an algebraic
equation can be established as follows:

̇

𝑆 (𝑡) = 𝑟 (1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V,

(4)

where 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐸(𝑡), and other parameters share the
same interpretations mentioned in (1) and (3), and initial
conditions 𝜓 = (𝜓

1
, 𝜓

2
, 𝜓

3
, 𝜓

4
) for model system (4) are

defined in the Banach space:

{𝜓 ∈ 𝐶

+
([−𝜏, 0] ,R

4

+
) | 𝜓

1
(𝜃) = 𝑆 (𝜃) , 𝜓

2
(𝜃) = 𝐼 (𝜃) ,

𝜓

3
(𝜃) = 𝑅 (𝜃) , 𝜓

4
(𝜃) = 𝐸 (𝜃) } ,

(5)

where R4

+
= {(𝑆, 𝐼, 𝑅, 𝐸) ∈ R4

: 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝐸 ≥ 0}.
It is also assumed that 𝜓

𝑖
(0) > 0 (𝑖 = 1, 2, 3, 4) for a biological

reason.
Model system (4) can be expressed in the following form:

Ξ (𝑡)

̇

𝑋 (𝑡) = 𝐹 (𝑋 (𝑡)) , (6)

where

𝑋 (𝑡) = (𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡) , 𝐸 (𝑡))

𝑇
,

Ξ (𝑡) =

[

[

[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

]

]

]

]

,

𝐹 (𝑋 (𝑡)) =

[

[

[

[

𝐹

1
(𝑋 (𝑡))

𝐹

2
(𝑋 (𝑡))

𝐹

3
(𝑋 (𝑡))

𝐹

4
(𝑋 (𝑡))

]

]

]

]

=

[

[

[

[

[

𝑟(1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡)

𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡)

𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V

]

]

]

]

]

.

(7)

Remark 1. The algebraic equation in model system (6) con-
tains no differentiated variables; hence, the leading matrix
Ξ(𝑡) in model system (6) has a corresponding zero row.

Remark 2. The model proposed in [11], which composed
of differential equations, only discusses the interaction and
coexistence mechanism of susceptible, infective, and recov-
ered host individuals. Compared with the model proposed in
[11], algebraic equations are incorporated into the model sys-
tem (4), which focus on the economic interest of harvesting
on recovered host individuals. Hence, the established model
not only investigates interaction and coexistence mechanism
of population in harvested ecosystem but also studies the
dynamical behavior due to the variation of economic interest
of commercial harvesting and incubation.

3. Positivity and Permanence

Theorem 3. Any solutions of model system (4) with initial
conditions are positive.

Proof . For any solutions of model system (4), it is easy to
show that𝐹

𝑖
: R4+1

+
→ R4 is locally Lipschitz and satisfies the

condition, 𝐹
𝑖
(𝑋(𝑡))|

𝑋∈R4 > 0, where 𝐹
𝑖
(𝑋(𝑡)) (𝑖 = 1, 2, 3, 4)

have been defined in model system (4).
Due to the lemma in [37] and Theorem A.4 in [38], any

solution of the model system (4) with positive initial con-
ditions exists uniquely and each component of the solution
remainswithin the interval [0, 𝐴

0
) for some𝐴

0
> 0. Standard

and simple arguments show that solutions of model system
(4) always exist and stay positive. Hence, this completes the
positivity of the solutions of model system (4).

From a viewpoint of biological and economic interest
perspective, persistence of solutions of model system (4) in
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the case of economic interest V ≥ 0will be investigated in this
section. Some preliminaries are introduced as follows.

Definition 4 (see [39]). Model system (4) is said to be
permanent if there exists a compact region Ω

0
∈ intΩ such

that every solution ofmodel system (4)with initial conditions
will eventually enter and remain in regionΩ

0
.

Definition 5 (see [39]). Consider ametric space𝑄withmetric
𝑑. The distance 𝑑(𝑥, 𝑦) of a point 𝑥 ∈ 𝑄 from a subset 𝑌 of 𝑄
is defined by

𝑑 (𝑥, 𝑦) = inf
𝑦∈𝑌

𝑑 (𝑥, 𝑦) . (8)

It is further assumed that 𝑄 is the closure of an open set
𝑄

0, and 𝑄0
= 𝜕𝑄

0 is nonempty and is the boundary of 𝑄0.
Consequently,𝑄0

∪𝑄

0
= 𝑄,𝑄

0
∩𝑄

0
= Ø.Wewill also suppose

that 𝑇(𝑡) is a 𝑄0 semigroup on 𝑄 satisfying

𝑇 (𝑡) : 𝑄

0
→ 𝑄

0
, 𝑇 (𝑡) : 𝑄

0
→ 𝑄

0
. (9)

Let 𝑇
𝜕
(𝑡) = 𝑇(𝑡)|

𝑄
0

and 𝐴
𝜕
be the global attractor for

𝑇

𝜕
(𝑡).

Lemma 6 (see [39]). Suppose that 𝑇(𝑡) satisfies (9) and the
following conditions hold.

(i) There is a 𝑡
0
≥ 0 such that 𝑇(𝑡) is compact for 𝑡 > 𝑡

0
;

(ii) 𝑇(𝑡) is point dissipative in 𝑄;
(iii) ̃𝐴

𝜕
= ⋃

𝑥∈𝐴
𝜕

𝜔(𝑥) is isolated and has an acyclic
covering 𝑍.

Then 𝑇(𝑡) is uniformly persistent if and only if for each 𝑍
𝑖
∈ 𝑍,

𝑊

𝑠
(𝑍

𝑖
) ∩ 𝑄

0
= Ø for 𝑖 = 1, 2, . . . , 𝑛.

Lemma 7 (see [40]). Consider the following equation:

�̇� (𝑡) = 𝑎𝑢 (𝑡 − 𝜏) − 𝑏𝑢 (𝑡) , (10)

where 𝑎, 𝑏, 𝜏 > 0 and 𝑢(𝑡) > 0 for all −𝜏 ≤ 𝑡 ≤ 0; it derives the
following:

(i) If 𝑎 < 𝑏, then lim
𝑡→+∞

𝑢(𝑡) = 0,
(ii) If 𝑎 > 𝑏, then lim

𝑡→+∞
𝑢(𝑡) = +∞.

Lemma 8. For any solutions of model system (4), we have

lim sup
𝑡→+∞

𝑆 (𝑡) ≤ 𝑘,

lim sup
𝑡→+∞

(𝑆 (𝑡) + 𝐼 (𝑡)) ≤

𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

4𝑟 (𝜇

1
+ 𝑚)

.

(11)

Proof . By usingTheorem 3, it follows from the first equation
of model system (4) that

̇

𝑆 (𝑡) ≤ 𝑟 (1 −

𝑆 (𝑡)

𝑘

) 𝑆 (𝑡) ,
(12)

which derives that lim sup
𝑡→+∞

𝑆(𝑡) ≤ 𝑘.

According to Theorem 3 and the first and second equa-
tion of model system (4), it gives that

̇

𝑆 (𝑡) +

̇

𝐼 (𝑡) ≤ 𝑟 (1 −

𝑆 (𝑡)

𝑘

) 𝑆 (𝑡) − (𝜇

1
+ 𝑚) 𝐼 (𝑡) ,

(13)

which derives that lim sup
𝑡→+∞

(𝑆(𝑡) + 𝐼(𝑡)) ≤ 𝑘(𝑟 + 𝜇

1
+

𝑚)

2
/4𝑟(𝜇

1
+ 𝑚).

Lemma 9. If 𝜇
1
+ 𝑚 < 1, then (𝑆(𝑡), 𝐼(𝑡)) of solution of model

system (4) with initial conditions satisfies

lim inf
𝑡→+∞

𝑆 (𝑡) ≥ 𝑆

𝜂
, lim inf

𝑡→+∞

𝐼 (𝑡) ≥ 𝐼

𝜂
, (14)

where 𝑆
𝜂
> 0 and 𝐼

𝜂
> 0 are independent of corresponding

initial values of model system (4).

Proof. Firstly, let 𝐶+
([−𝜏, 0],R2

+
) denote space of continuous

functions mapping [−𝜏, 0] into R2

+
, where R2

+
= {(𝑥, 𝑦) | 𝑥 ≥

0, 𝑦 ≥ 0}:

𝑄

1
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) = 0, 𝜃 ∈ [−𝜏, 0]} ,

𝑄

2
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) > 0,

𝜙

2
(𝜃) = 0, 𝜃 ∈ [−𝜏, 0] } .

(15)

Denote 𝑄
0
= 𝑄

1
∪ 𝑄

2
, 𝑄 = 𝐶

+
([−𝜏, 0],R2

+
) and 𝑄0

=

int𝐶+
([−𝜏, 0],R2

+
).

Next, all conditions in Lemma 6 will be checked. In order
to facilitate the proof, we consider the following subsystem of
model system (4):

̇

𝑆 (𝑡) = 𝑟 (1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

(16)

where 𝑆(𝜃) ≥ 0, 𝐼(𝜃) ≥ 0 are continuous on 𝜃 ∈ [−𝜏, 0] and
𝑆(0) > 0, 𝐼(0) > 0.

ByDefinition 5 andmodel system (16), it is easy to see that
𝑄

0 and𝑄
0
are positively invariant, and conditions (i) and (ii)

of Lemma 6 clearly hold.
Since model system (16) possesses two constant solutions

in 𝑄
0
: ̃𝑃

0
∈ 𝑄

1
, ̃𝑃

1
∈ 𝑄

2
with the following form:

̃

𝑃

0
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) = 𝜙

2
(𝜃) = 0,

𝜃 ∈ [−𝜏, 0] } ,

̃

𝑃

1
= {(𝜙

1
, 𝜙

2
) ∈ 𝐶

+
([−𝜏, 0] ,R

2

+
) | 𝜙

1
(𝜃) = 1, 𝜙

2
(𝜃) = 0,

𝜃 ∈ [−𝜏, 0] } .

(17)

It follows from simple computation that

̇

𝑆 (𝑡)









(𝜙
1
,𝜙
2
)∈𝑄
1

= 0, 𝑆 (𝑡)









(𝜙
1
,𝜙
2
)∈𝑄
1

= 0 for 𝑡 ≥ 0. (18)
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Moreover, it follows from the second equation of model
system (16) that

̇

𝐼 (𝑡)









(𝜙
1
,𝜙
2
)∈𝑄
1

= − (𝜇

1
+ 𝑚) 𝐼 (𝑡) ≤ 0, (19)

which reveals that all points in 𝑄
1
approach to ̃

𝑃

0
; that is,

𝑄

1
= 𝑊

𝑠
(

̃

𝑃

0
). By using the similar analysis mentioned above,

it can be also concluded that all points in 𝑄
2
approach to ̃𝑃

1
;

that is, 𝑄
2
= 𝑊

𝑠
(

̃

𝑃

1
). Based on the above analysis, it shows

that invariant sets ̃𝑃
0
and ̃𝑃

1
are isolated invariant, and { ̃𝑃

0
,

̃

𝑃

1
}

is isolated and an acyclic covering. It can be concluded that
condition (iii) of Lemma 6 holds.

Finally, we will show that𝑊𝑠
(

̃

𝑃

𝑖
) ∩ 𝑄

0
= Ø for 𝑖 = 0, 1.

Based on the definition of ̃𝑃
0
, it is easy to show that𝑊𝑠

(

̃

𝑃

0
) ∩

𝑄

0
= Ø.We will show𝑊𝑠

(

̃

𝑃

1
)∩𝑄

0
= Ø in the following part.

If 𝑊𝑠
(

̃

𝑃

1
) ∩ 𝑄

0
̸=Ø, then there exists a positive solution

(𝑆(𝑡), 𝐼(𝑡)) to model system (16) with lim
𝑡→+∞

(𝑆(𝑡), 𝐼(𝑡)) =

(1, 0). If 𝜇
1
+𝑚 < 1, then 𝜇

1
+𝑚 < 1 − 𝜖 holds for sufficiently

small 𝜖 > 0 and there exists a positive constant 𝑇 = 𝑇(𝜖) such
that 𝑆(𝑡) > 1 − 𝜖 > 0, and 0 < 𝐼(𝑡) < 𝜖 for all 𝑡 ≥ 𝑇.

By the second equation of model system (16), it derives
that

̇

𝐼 (𝑡) ≥ (1 − 𝜖) 𝐼 (𝑡 − 𝜏) − (𝜇

1
+ 𝑚) 𝐼 (𝑡) (20)

holds for all 𝑡 ≥ 𝑇 + 𝜏.
Consider the following equation:

�̇� (𝑡) = (1 − 𝜖) 𝑥 (𝑡 − 𝜏) − (𝜇

1
+ 𝑚) 𝑥 (𝑡) , 𝑡 ≥ 𝑇 + 𝜏,

𝑥 (𝑡) = 𝐼 (𝑡) , 𝑇 ≤ 𝑡 ≤ 𝑇 + 𝜏.

(21)

Based on (21) and the comparison principle, it derives that
𝐼(𝑡) ≥ 𝑥(𝑡) for all 𝑡 > 𝑇.

On the other hand, if 𝜇
1
+ 𝑚 < 1, then it follows from

Lemma 7 that lim
𝑡→+∞

𝑥(𝑡) = +∞ for all solutions of (21).
It can be concluded that lim

𝑡→+∞
𝐼(𝑡) = ∞, which is a

contradiction to 𝐼(𝑡) < 𝜖. Consequently, it can be derived that
𝑊

𝑠
(

̃

𝑃

1
) ∩ 𝑄

0
= Ø.

According to the above analysis, all conditions of
Lemma 6 hold. By using Lemma 6, it can be obtained that

lim inf
𝑡→+∞

𝑆 (𝑡) ≥ 𝑆

𝜂
, lim inf

𝑡→+∞

𝐼 (𝑡) ≥ 𝐼

𝜂
, (22)

where 𝑆
𝜂
> 0 and 𝐼

𝜂
> 0 are independent of the correspond-

ing initial values of model system (4).

Theorem 10. If 𝜇
1
+ 𝑚 < 1, 𝑐𝜇

2
< 𝑚𝑤𝐼

𝜂
, and 0 ≤ V <

𝑐𝜇

2
+ 𝑚𝑤𝐼

𝜂
, then all solutions of model system (4) with initial

conditions are persistent.

Proof . According to Lemmas 8 and 9, it can be obtained that

𝑆

𝜂
≤ 𝑆 (𝑡) ≤ 𝑘, 𝑆 (𝑡) + 𝐼 (𝑡) ≤

𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

4𝑟 (𝜇

1
+ 𝑚)

,
(23)

hold for all 𝑡 > 0, which derive that

𝐼

𝜂
≤ 𝐼 (𝑡) ≤

𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

4𝑟 (𝜇

1
+ 𝑚)

− 𝑆

𝜂
.

(24)

When the economic interest V = 0, it follows from
Theorem 3 and the fourth equation of model system (4) that

𝑅 (𝑡) =

𝑐

𝑤

(25)

and ̇

𝑅(𝑡) = 0. Based on the third equation of model system
(4), it can be computed that 𝐸(𝑡) = (𝑚𝑤/𝑐)𝐼(𝑡) − 𝜇

2
. Accord-

ng to (24), it derives that

0 <

𝑚𝑤𝐼

𝜂
− 𝑐𝜇

2

𝑐

≤ 𝐸 (𝑡)

≤

𝑚𝑤 [𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

− 4𝑆

𝜂
𝑟 (𝜇

1
+ 𝑚)]

4𝑐𝑟 (𝜇

1
+ 𝑚)

− 𝜇

2

(26)

provided that 𝑐𝜇
2
< 𝑚𝑤𝐼

𝜂
.

In the case of V > 0, it derives that 𝐸(𝑡) = V/(𝑤𝑅(𝑡) − 𝑐)
based on implicit function theory [41]. According to the third
equation of model system (4), it can be obtained that

̇

𝑅 (𝑡) ≥ 𝑚𝐼

𝜂
+

𝑐𝜇

2
− V
𝑤

− 𝜇

2
𝑅 (𝑡) , (27)

which derives that

lim inf
𝑡→+∞

𝑅 (𝑡) ≥

𝑚𝑤𝐼

𝜂
+ 𝑐𝜇

2
− V

𝑤𝜇

2

:= 𝑅 > 0, (28)

provided that 0 < V < 𝑐𝜇
2
+ 𝑚𝑤𝐼

𝜂
.

It follows from Theorem 3 and the third equation of
model system (4) that

̇

𝑅 (𝑡) ≤ 𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) , (29)

which derives that

lim sup
𝑡→+∞

𝑅 (𝑡) ≤

𝑚 [𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

− 4𝑆

𝜂
𝑟 (𝜇

1
+ 𝑚)]

4𝑟𝜇

2
(𝜇

1
+ 𝑚)

:= 𝑅.

(30)

Hence, it gives that V/(𝑤𝑅 − 𝑐) ≤ 𝐸(𝑡) ≤ V/(𝑤𝑅 − 𝑐), and
it can be rewritten as follows:

4𝑟𝜇

2
V (𝜇

1
+ 𝑚)

𝑤𝑚 [𝑘(𝑟 + 𝜇

1
+ 𝑚)

2

− 4𝑆

𝜂
𝑟 (𝜇

1
+ 𝑚)] − 4𝑟𝑐𝜇

2
(𝜇

1
+ 𝑚)

≤ 𝐸 (𝑡) ≤

𝜇

2
V

𝑚𝑤𝐼

𝜂
− V

.

(31)

Based on (23), (24), (25), and (26), it can be concluded
that all solutions of model system (4) with initial conditions
are persistent in the case of V = 0, and it follows from (23),
(24), (28), (30) and (31) that all solutions of model system (4)
with initial conditions are persistent in the case of 0 < V <
𝑐𝜇

2
+ 𝑚𝑤𝐼

𝜂
.
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4. Qualitative Analysis of Model System

Dynamical effects of harvest effort and time delay on pop-
ulation dynamics are discussed in this section. It should be
noted that the interior equilibrium biologically interprets
that susceptible, infective, and recovered host individuals
survive as well as harvest on recovered host individuals
exists. Bifurcation phenomenon around the interior equi-
libria can reveal instability mechanism of model system,
which are theoretically relevant to infectious disease con-
trol and sustainable yield on recovered host individuals in
the real world. Consequently, we will mainly concentrate
on dynamical behavior and local stability analysis around
interior equilibrium of model system (4) in this paper.

4.1. Model System without Time Delay. In this section,
dynamical behavior of model system (4) without time delay
is investigated, and local stability analysis around the interior
equilibrium is discussed due to variation of economic inter-
est of commercial harvesting. Furthermore, state feedback
controllers are designed to stabilize model system around
the desired interior equilibria in the case of zero economic
interest and positive economic interest, respectively.

4.1.1. Singularity Induced Bifurcation

Theorem 11. Model system (4)without time delay has a singu-
larity induced bifurcation around the interior equilibrium, and
V = 0 is a bifurcation value. Furthermore, local stability switch
occurs as V increases through 0.

Proof. Based on the economic theory of a common-property
resource [22], there is a phenomenon of bioeconomic equi-
librium in the case of zero harvest economic interest; that is,
V = 0. An interior equilibrium can be obtained as follows:
𝑃

∗
(𝑆

∗
, 𝐼

∗
, 𝑅

∗
, 𝐸

∗
), where 𝑆∗ = (𝜇

1
+ 𝑚)/𝛽, 𝐼∗ = 𝑟(𝑘𝛽 −

𝜇

1
− 𝑚)/𝑘𝛽

2, 𝑅∗
= 𝑐/𝑤, and 𝐸∗

= (𝑤𝑚𝑟(𝑘𝛽 − 𝜇

1
− 𝑚) −

𝑐𝑘𝜇

2
𝛽

2
)/𝑐𝑘𝛽

2.
According to biological interpretation of the interior

equilibrium, it follows that 𝑆∗ > 0, 𝐼∗ > 0, 𝑅∗
> 0 and 𝐸∗

>

0. In order to guarantee the existence of interior equilibrium,
some inequalities are satisfied:

𝑘𝛽 − 𝜇

1
− 𝑚 > 0,

𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽

2
> 0.

(32)

Let V be a bifurcation parameter,𝐻(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))𝑇,

ℎ

1
(𝐻 (𝑡) , 𝐸 (𝑡) , V) = [

[

[

𝑟 (1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡)

]

]

]

,

ℎ

2
(𝐻 (𝑡) , 𝐸 (𝑡) , V) = 𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V.

(33)

It can be calculated that

trace (𝐷
𝐸
ℎ

1
adj (𝐷

𝐸
ℎ

2
) (𝐷

𝐻
ℎ

2
, 𝐷

𝐸
ℎ

2
))







𝑃
∗

= −

𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽

2

𝑘𝛽

2
.

(34)

By virtue of (32), it can be obtained that

trace (𝐷
𝐸
ℎ

1
adj (𝐷

𝐸
ℎ

2
) (𝐷

𝐻
ℎ

2
, 𝐷

𝐸
ℎ

2
))







𝑃
∗ ̸= 0. (35)

Furthermore, it can be also calculated that
















𝐷

𝐻
ℎ

1
𝐷

𝐸
ℎ

1

𝐷

𝐻
ℎ

2
𝐷

𝐸
ℎ

2















𝑃
∗

=

𝑟 (𝜇

1
+ 𝑚) (𝑘𝛽 − 𝜇

1
− 𝑚) [𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽

2
]

𝑘

2
𝛽

3
.

(36)

It follows from (32) that
















𝐷

𝐻
ℎ

1
𝐷

𝐸
ℎ

1

𝐷

𝐻
ℎ

2
𝐷

𝐸
ℎ

2















𝑃
∗

̸= 0. (37)

Based on Section IV(A) in [42], ℎ
3
(𝐻(𝑡), 𝐸(𝑡), V) can be

defined as follows:

ℎ

3
(𝐻 (𝑡) , 𝐸 (𝑡) , V) = det (𝐷

𝐸
𝑔) = 𝑤𝑅 (𝑡) − 𝑐. (38)

By simple computing,

























𝐷

𝐻
ℎ

1
𝐷

𝐸
ℎ

1
𝐷Vℎ1

𝐷

𝐻
ℎ

2
𝐷

𝐸
ℎ

2
𝐷Vℎ2

𝐷

𝐻
ℎ

3
𝐷

𝐸
ℎ

3
𝐷Vℎ3























𝑃
∗

=

𝑐𝑟 (𝜇

1
+ 𝑚) (𝑘𝛽 − 𝜇

1
+ 𝑚)

𝑘𝛽

. (39)

According to (32), it derives that

























𝐷

𝐻
ℎ

1
𝐷

𝐸
ℎ

1
𝐷Vℎ1

𝐷

𝐻
ℎ

2
𝐷

𝐸
ℎ

2
𝐷Vℎ2

𝐷

𝐻
ℎ

3
𝐷

𝐸
ℎ

3
𝐷Vℎ3























𝑃
∗

̸= 0. (40)

Based on the above analysis, four items (i–iv) can be
obtained as follows.

(i) It is easy to show that 𝐷
𝐸
ℎ

2
has a simple zero

eigenvalue:

ℎ

1
(𝐻 (𝑡) , 𝐸 (𝑡) , V)

𝑃
∗ = 0, ℎ

2
(𝐻 (𝑡) , 𝐸 (𝑡) , V)

𝑃
∗ = 0,

(41)

and trace(𝐷
𝐸
ℎ

1
adj(𝐷

𝐸
ℎ

2
)(𝐷

𝐻
ℎ

2
, 𝐷

𝐸
ℎ

2
))|

𝑃
∗ ̸= 0 based

on (35).
(ii) It follows from (37) that [𝐷𝐻ℎ1 𝐷𝐸ℎ1

𝐷
𝐻
ℎ
2
𝐷
𝐸
ℎ
2

] is nonsingular
around 𝑃∗.

(iii) By virtue of (40), it can be shown that

[

𝐷
𝐻
ℎ
1
𝐷
𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷
𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷
𝐸
ℎ
3
𝐷Vℎ3

] is nonsingular around 𝑃

∗; hence

rank [
𝐷
𝐻
ℎ
1
𝐷
𝐸
ℎ
1
𝐷Vℎ1

𝐷
𝐻
ℎ
2
𝐷
𝐸
ℎ
2
𝐷Vℎ2

𝐷
𝐻
ℎ
3
𝐷
𝐸
ℎ
3
𝐷Vℎ3

] = 5.
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(iv) It is easy to show rank (ℎ
1
(𝐻(𝑡), 𝐸(𝑡), V)) = 3 and

rank(ℎ
2
(𝐻(𝑡), 𝐸(𝑡), V)) = 1, which follows

rank[

[

𝐷

𝐻
ℎ

1
𝐷

𝐸
ℎ

1
𝐷Vℎ1

𝐷

𝐻
ℎ

2
𝐷

𝐸
ℎ

2
𝐷Vℎ2

𝐷

𝐻
ℎ

3
𝐷

𝐸
ℎ

3
𝐷Vℎ3

]

]

= rank (ℎ
1
(𝐻 (𝑡) , 𝐸 (𝑡) , V))

+ rank (ℎ
2
(𝐻 (𝑡) , 𝐸 (𝑡) , V)) + 1.

(42)

It should be noted that the conditions for singularity
induced bifurcation, which is introduced in Section III (A)
in [42], consist of three conditions, that is, SI1, SI2, and SI3.
According to the above items (i)–(iv), SI1, SI2, and SI3 are all
satisfied; hencemodel (4) without time delay has a singularity
induced bifurcation around the interior equilibrium 𝑃

∗ and
the bifurcation value is V = 0.

Along with the line of the above proof, for model (4)
without time delay, it follows from simple computing that

𝑀 = −trace (𝐷
𝐸
ℎ

1
adj (𝐷

𝐸
ℎ

2
) (𝐷

𝐻
ℎ

2
, 𝐷

𝐸
ℎ

2
))







𝑃
∗

=

𝑤𝑚𝑟 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽

2

𝑘𝛽

2
,

𝑁 = [𝐷Vℎ3 − [𝐷𝐻
ℎ

3
, 𝐷

𝐸
ℎ

3
] [

𝐷

𝐻
ℎ

1
𝐷

𝐸
ℎ

1

𝐷

𝐻
ℎ

2
𝐷

𝐸
ℎ

2

]

−1

[

𝐷Vℎ1
𝐷Vℎ2

]]

















𝑃
∗

=

𝑐𝑟 (𝜇

1
+ 𝑚) (𝑘𝛽 − 𝜇

1
− 𝑚)

𝑘𝛽

.

(43)

It follows from (32) that

𝑀

𝑁

=

𝑚𝑟𝑤 (𝑘𝛽 − 𝜇

1
− 𝑚) − 𝑐𝑘𝜇

2
𝛽

2

𝑐𝑟𝛽 (𝜇

1
+ 𝑚) (𝑘𝛽 − 𝜇

1
− 𝑚)

> 0. (44)

Inequality (44) satisfies Theorem 3 of [42]. According
to Theorem 3 of [42], when V increases through 0, one
eigenvalue (denoted by 𝜆

1
) of model system (4) without time

delay moves from C− to C+ along the real axis by diverging
through infinity; the movement behavior of this eigenvalue
influences the stability of model system (4) without time
delay.

Since the Jacobian ofmodel system (4) without time delay
evaluated around 𝑃∗ takes the following form:

𝐽

𝑃
∗ =

[

[

[

[

[

[

−

𝑟𝑆

∗

𝑘

−𝛽𝑆

∗
0 0

𝛽𝐼

∗
0 0 0

0 𝑚 − (𝜇

2
+ 𝐸

∗
) −𝑅

∗

0 0 𝑤𝐸

∗
0

]

]

]

]

]

]

, (45)

according to the leading matrix Ξ(𝑡) in model system (4)
and 𝐽

𝑃
∗ , the characteristic equation of the model system (4)

without time delay around 𝑃∗ is

det (𝜆Ξ − 𝐽
𝑃
∗) = 0. (46)

Table 1: Signs of real parts of eigen values of model (4) without time
delay around interior equilibrium 𝑃

∗.

Re𝜆
1

Re𝜆
2

Re𝜆
3

𝜐 < 0 − − −

𝜐 > 0 + − −

By virtue of simple computation, the characteristic equa-
tion is as follows:

𝜆

2
+

𝑟𝑆

∗

𝑘

𝜆 + 𝛽

2
𝑆

∗
𝐼

∗
= 0.

(47)

It can be concluded that the rest eigenvalues of model
system (4) without time delay (denoted by 𝜆

2
and 𝜆

3
) have

negative real parts by using the Routh-Hurwitz criteria [43].
It follows from Theorem 3 in [42] that there is only one
eigenvalue diverging to infinity as V increases through 0,
and the rest eigenvalues are continuous and nonzero and
cannot jump from one half open complex plane to another
one as V increases through 0. It has been shown that 𝜆

1

moves fromC− toC+ along the real axis by diverging through
infinity. Therefore, 𝜆

2
and 𝜆

3
are continuous and bounded

in the C− half plane as V increases through 0 and their
movement behaviors have no influence on the stability of
model system (4) without time delay around the interior
equilibrium 𝑃

∗.

According to Table 1 and the stability theory, it can be
concluded that model system (4) without time delay is stable
around 𝑃∗ as V < 0 and model system (4) without time delay
is unstable around 𝑃∗ as V > 0. Consequently, a stability
switch occurs as V increases through 0.

Remark 12. Some preliminaries of singularity induced bifur-
cation are introduced below. Parameter dependent differen-
tial-algebraic hybrid system of the form

�̇� (𝑡) = ℎ (𝑥 (𝑡) , 𝑦 (𝑡) , 𝜆) , ℎ : 𝑅

𝑛
× 𝑅

𝑚
× 𝑅

𝑝
→ 𝑅

𝑛
,

0 = 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝜆) , 𝑔 : 𝑅

𝑛
× 𝑅

𝑚
× 𝑅

𝑝
→ 𝑅

𝑚
,

(48)

where 𝑥(𝑡), 𝑦(𝑡), and 𝜆 have appropriate dimensions. It has
been shown recently that there are generically three types
of codimension one local bifurcation associated with the
differential-algebraic model (48), namely, saddle-node bifur-
cation, Hopf bifurcation, and singularity induced bifurcation
(see [42]).

The singularity induced bifurcation is firstly introduced
and analyzed in [42, 44]. It is a new type of bifurcation and
does not occur in usual ordinary differential equation system,
which has been characterized for differential-algebraic sys-
tem, and later improved in [45, 46]. Roughly speaking, the
singularity induced bifurcation refers to a stability change of
the differential-algebraic hybrid model (48) owing to some
eigenvalues of related linearization ℎ

𝑥
−ℎ

𝑦
𝑔

−1

𝑦
𝑔

𝑥
diverging to

infinity when Jacobian 𝑔
𝑦
is singular.
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One of the important consequences of the singularity
induced bifurcation is that it leads to an impulse phe-
nomenon, whichmay result in the collapse of the differential-
algebraic system (see [45]). More detailed introductions of
the singularity induced bifurcation can be found in [42, 44–
46].

Remark 13. It follows from Theorem 11 that there is a phe-
nomenon of singularity induced bifurcation around the inte-
rior equilibrium when economic interest increases through
zero, which can cause local stability switch of model sys-
tem (4). As stated in Remark 12, the singularity induced
bifurcation can result in impulse phenomenon, which may
lead to the collapse of the proposed model. In the harvested
epidemiological-economic system, the impulse phenomenon
is vividly reflected with the outbreak of infectious disease
during a short period in the real world. Under this climate,
the infected population will be beyond the carrying capacity
of environment, which is disastrous for sustainable develop-
ment of the harvested ecosystem as well as prosperous yield
on recovered host individuals.

4.1.2. State Feedback Controller. In order to maintain the
sustainable yield on recovered host individuals biological
resource as well as economic interest of commercial harvest-
ing at an ideal level, some corresponding control strategies
should be taken to eliminate the impulse phenomenon
caused by singularity induced bifurcation and stabilizemodel
(4) without time delay. In this subsection, state feedback
controllers are designed to stabilizemodel system (4) without
time delay around corresponding interior equilibria in the
case of V = 0 and V > 0, respectively.

According to the leading matrix Ξ(𝑡) in model system (4)
and 𝐽

𝑃
∗ in (45) (the Jacobian ofmodel system (4)without time

delay around the interior equilibrium𝑃∗), it can be calculated
that rank (𝐽

𝑃
∗ , Ξ𝐽

𝑃
∗ , Ξ

2
𝐽

𝑃
∗ , Ξ

3
𝐽

𝑃
∗) = 4. By using Theorem

2-2.1 in [47], it is easy to show that the model system (4)
without time delay is locally controllable around the interior
equilibrium 𝑃

∗ in the case of V = 0. Consequently, a state
feedback controller can be applied to stabilize the model
system (4) without time delay around 𝑃∗. By using Theorem
3-1.2 in [47], a state feedback controller 𝑢(𝑡) = 𝑙(𝐸(𝑡) − 𝐸∗

)

(𝑙 is a feedback gain and 𝐸∗ is the component of the interior
equilibrium 𝑃

∗) can be applied to stabilize model system (4)
without time delay around 𝑃∗.

Furthermore, the controlled model system (4) without
time delay takes the following form:

̇

𝑆 (𝑡) = 𝑟 (1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (𝑤𝑅 (𝑡) − 𝑐) − V + 𝑢 (𝑡) .

(49)

Theorem 14. When economic interest of harvesting is zero, V =
0, if the feedback gain 𝑙 satisfies the following inequality:

𝑙 > max { 𝑘𝑤𝐸

∗
𝑅

∗

𝑟𝑆

∗
+ 𝑘 (𝜇

2
+ 𝐸

∗
)

,

𝑤𝐸

∗
𝑅

∗

𝜇

2
+ 𝐸

∗
,

𝑟𝑤𝐸

∗
𝑅

∗

𝑘𝛽

2
𝐼

∗
+ 𝑟 (𝜇

2
+ 𝐸

∗
)

,

(𝑤𝐸

∗
𝑅

∗
[2𝑘𝑟 (𝜇

2
+ 𝐸

∗
) + 2𝑘

2
𝛽

2
𝐼

∗
+ 𝑟

2
𝑆

∗
]

+
√
4𝑘

4
𝛽

4
𝐼

∗2
+ 8 (𝜇

2
+ 𝐸

∗
) 𝑟𝑘

3
𝛽

2
𝐼

∗
+ 𝑟

4
𝑆

∗2
)

× (2𝑟 [𝑟 (𝜇

2
+ 𝐸

∗
) 𝑆

∗
+ 𝑘𝛽

2
𝐼

∗
𝑆

∗

+ 𝑘(𝜇

2
+ 𝐸

∗
)

2

])

−1

} ,

(50)

then singularity induced bifurcation is eliminated and model
system (49) is stable around 𝑃∗.

Proof. The Jacobian of themodel system (49) evaluated at the
interior equilibrium 𝑃

∗ takes the form

̃

𝐽

𝑃
∗ =

[

[

[

[

[

[

−

𝑟𝑆

∗

𝑘

−𝛽𝑆

∗
0 0

𝛽𝐼

∗
0 0 0

0 𝑚 − (𝜇

2
+ 𝐸

∗
) −𝑅

∗

0 0 𝑤𝐸

∗
𝑙

]

]

]

]

]

]

. (51)

According to the leading matrix Ξ(𝑡) in the model system
(4) and ̃𝐽

𝑃
∗ , the characteristic equation of model system (49)

around 𝑃∗ is det(𝜆Ξ − ̃𝐽
𝑃
∗) = 0, which can be expressed as

follows:

𝜆

3
+ 𝐵

1
𝜆

2
+ 𝐵

2
𝜆 + 𝐵

3
= 0, (52)

where 𝐵
1
= 𝜇

2
+ 𝐸

∗
+ 𝑟𝑆

∗
/𝑘 − 𝑤𝐸

∗
𝑅

∗
/𝑙, 𝐵

2
= 𝛽

2
𝐼

∗
𝑆

∗
+

(𝑟𝑆

∗
/𝑘)(𝜇

2
+ 𝐸

∗
− 𝑤𝐸

∗
𝑅

∗
/𝑙), and 𝐵

3
= 𝛽

2
𝐼

∗
𝑆

∗
(𝜇

2
+ 𝐸

∗
−

𝑤𝐸

∗
𝑅

∗
/𝑙).

By using the Routh-Hurwitz criteria [43], model (49) is
locally stable around 𝑃∗ if and only if 𝑙 satisfies

𝑙 > max { 𝑘𝑤𝐸

∗
𝑅

∗

𝑟𝑆

∗
+ 𝑘 (𝜇

2
+ 𝐸

∗
)

,

𝑤𝐸

∗
𝑅

∗

𝜇

2
+ 𝐸

∗
,

𝑟𝑤𝐸

∗
𝑅

∗

𝑘𝛽

2
𝐼

∗
+ 𝑟 (𝜇

2
+ 𝐸

∗
)

,

(𝑤𝐸

∗
𝑅

∗
[2𝑘𝑟 (𝜇

2
+ 𝐸

∗
) + 2𝑘

2
𝛽

2
𝐼

∗
+ 𝑟

2
𝑆

∗
]

+
√
4𝑘

4
𝛽

4
𝐼

∗2
+ 8 (𝜇

2
+ 𝐸

∗
) 𝑟𝑘

3
𝛽

2
𝐼

∗
+ 𝑟

4
𝑆

∗2
)

× (2𝑟 [𝑟 (𝜇

2
+ 𝐸

∗
) 𝑆

∗
+ 𝑘𝛽

2
𝐼

∗
𝑆

∗

+ 𝑘(𝜇

2
+ 𝐸

∗
)

2
])

−1

} .

(53)

Consequently, if the feedback gain satisfies the above
inequality, then model system (49) is stable around 𝑃∗ in the
case of zero interest of harvesting.
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Let ̃

𝑃

∗
(

̃

𝑆

∗
,

̃

𝐼

∗
,

̃

𝑅

∗
,

̃

𝐸

∗
) denote interior equilibrium of

model (4) in the case of positive economic interest of
harvesting (V > 0), where ̃𝑆∗ = (𝜇

1
+ 𝑚)/𝛽, ̃𝐼∗ = 𝑟(𝑘𝛽 −

𝜇

1
−𝑚)/𝑘𝛽

2, ̃𝐸∗
= V/(𝑤𝑅∗

− 𝑐), and ̃𝑅∗ satisfies the following
equation:

̃

𝑅

∗2
+

̃

𝐵

2
̃

𝑅

∗
+

̃

𝐵

3
= 0, (54)

where ̃𝐵
2
= (𝑘𝛽

2
(V − 𝑐𝜇

2
) + 𝑤𝑚𝑟(𝑚 + 𝜇

1
− 𝑘𝛽))/𝑘𝑤𝜇

2
𝛽

2,
̃

𝐵

3
= 𝑐𝑚𝑟(𝑘𝛽 − 𝑚𝑢

1
− 𝑚)/𝑘𝑤𝜇

2
𝛽

2.
Based on Routh-Hurwitz criteria [43], (54) has two

positive roots if economic interest V satisfies the following
inequalities:

0 < V < min{𝑐𝜇
2
+

𝑤𝑚𝑟 (𝑘𝛽 − 𝑚 − 𝜇

1
)

𝑘𝛽

2
,

(1 − 𝑐) 𝑐𝜇

2
+

𝑤𝑚𝑟 (𝑐 + 1) (𝑘𝛽 − 𝜇

1
− 𝑚)

𝑘𝛽

2
}

:= Ṽ.
(55)

As analyzed above, there are two interior equilibria
(denoted by ̃𝑃∗

1
and ̃𝑃∗

2
) when 0 < V∗ < Ṽ. In this subsection,

we only design the controller for the model (4) around the
interior equilibrium ̃

𝑃

∗

1
. Some symmetric results about ̃𝑃∗

2

can be also obtained, and ̃𝑃∗

1
is denoted as ̃𝑃∗ for simplicity

in the following part.

Theorem 15. When economic interest of harvesting is positive,
0 < V∗ < Ṽ, if feedback gain ̃𝑙 of controller 𝑢(𝑡) = ̃𝑙(𝐸(𝑡) − ̃𝐸∗

)

satisfies following inequality:

̃

𝑙 > max{ 𝑘𝑤

̃

𝐸

∗
̃

𝑅

∗

𝑟

̃

𝑆

∗
+ 𝑘 (𝜇

2
+

̃

𝐸

∗
)

,

𝑤

̃

𝐸

∗
̃

𝑅

∗

𝜇

2
+

̃

𝐸

∗
,

𝑟𝑤

̃

𝐸

∗
̃

𝑅

∗

𝑘𝛽

2
̃

𝐼

∗
+ 𝑟 (𝜇

2
+

̃

𝐸

∗
)

,

(𝑤

̃

𝐸

∗
̃

𝑅

∗
[2𝑘𝑟 (𝜇

2
+

̃

𝐸

∗
) + 2𝑘

2
𝛽

2
̃

𝐼

∗
+ 𝑟

2
̃

𝑆

∗
]

+
√
4𝑘

4
𝛽

4
̃

𝐼

∗2
+ 8 (𝜇

2
+

̃

𝐸

∗
) 𝑟𝑘

3
𝛽

2
̃

𝐼

∗
+ 𝑟

4
̃

𝑆

∗2
)

× (2𝑟 [𝑟 (𝜇

2
+

̃

𝐸

∗
)

̃

𝑆

∗
+ 𝑘𝛽

2
̃

𝐼

∗
̃

𝑆

∗

+ 𝑘(𝜇

2
+

̃

𝐸

∗
)

2

])} ,

(56)

then model system (49) is stable around the interior equilib-
rium ̃

𝑃

∗
(

̃

𝑆

∗
,

̃

𝐼

∗
,

̃

𝑅

∗
,

̃

𝐸

∗
).

Proof. The proof is similar to the proof of Theorem 14 of this
paper.

Remark 16. It follows from (55) and Theorem 15 that eco-
nomic interest of commercial harvesting should be regulated
within certain interval V ∈ (0, Ṽ), which guarantees the
existence of interior equilibrium in the case of positive

economic interest. After applying the state feedback con-
troller into model system (4) without time delay, model
system can be stabilized around the corresponding interior
equilibrium, respectively. The elimination of the singularity
induced bifurcation means the harvested epidemiological-
economic system restores to ecological balance and avoid-
ance of infectious disease outbreak.

4.2. Model System with Time Delay. By analyzing corre-
sponding characteristic equation of model system with time
delay, local stability analysis around the interior equilibrium
due to variation of time delay is discussed. Conditions for
existence ofHopf bifurcation are studied. Furthermore, direc-
tions of Hopf bifurcation and stability of periodic solutions
are investigated.

4.2.1. Local Stability and Hopf Bifurcation. As analyzed in
the above subsection, in the case of time delay and positive
economic interest of harvesting 0 < V∗ < Ṽwhere Ṽ is defined
in (55), there are two interior equilibria ̃𝑃∗

1
and ̃𝑃∗

2
for model

system (4) with respect to the positive economic interest V∗.
In this subsection, we only investigate dynamical behav-

ior of model system (4) around the interior equilibrium ̃

𝑃

∗

1
.

Some symmetric results about the interior equilibrium ̃

𝑃

∗

2

can be also obtained, and ̃𝑃∗

1
is denoted as ̃𝑃∗ for simplicity.

According to Jacobian evaluated at the interior equilibrium
̃

𝑃

∗ and the leading matrix Ξ(𝑡) in model system (4), we can
obtain the characteristic equation ofmodel system (4) around
̃

𝑃

∗, which can be expressed as follows:























































𝜆 +

𝑟

̃

𝑆

∗

𝑘

𝛽

̃

𝑆

∗
𝑒

−𝜆𝜏
0 0

−𝛽

̃

𝐼

∗
𝜆 − 𝛽

̃

𝑆

∗
𝑒

−𝜆𝜏
+ 𝜇

1
+ 𝑚 0 0

0 −𝑚 𝜆 + 𝜇

1
+

̃

𝐸

∗
̃

𝑅

∗

0 0 −𝑤

̃

𝐸

∗
−

V∗

̃

𝐸

∗























































= 0.

(57)

⇒

𝑀(𝜆) + 𝑁 (𝜆) 𝑒

−𝜆𝜏
= 0,

(58)

where

𝑀(𝜆) = 𝜆

3
+ 𝑚

1
𝜆

2
+ 𝑚

2
𝜆 + 𝑚

3
,

𝑁 (𝜆) = 𝑛

1
𝜆

2
+ 𝑛

2
𝜆 + 𝑛

3
,

𝑚

1
= 𝜇

2
+ (𝜇

1
+ 𝑚)(1 +

𝑟

𝑘𝛽

) −

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2
,

𝑚

2
=

𝜇

1
+ 𝑚

𝑘𝛽

[

[

𝑟(𝜇

1
+ 𝑚 + 𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2
)

+𝑘𝛽(𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2
)

]

]

,
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𝑚

3
=

𝑟(𝜇

1
+ 𝑚)

2

𝑘𝛽

[

[

𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

]

]

,

𝑛

1
= − 𝜇

1
− 𝑚,

𝑛

2
= − (𝜇

1
+ 𝑚)

×

[

[

𝜇

2
+

2𝑟 (𝜇

1
+ 𝑚) − 𝑘𝑟𝛽

𝑘𝛽

−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

]

]

,

𝑛

3
= − 𝑟 (𝜇

1
+ 𝑚) [

2 (𝜇

1
+ 𝑚)

𝑘𝛽

− 1]

×

[

[

𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

]

]

.

(59)

Now substituting 𝜆 = 𝑖𝜎 (𝜎 is a positive real number)
into (58) and separating the real and imaginary parts, two
transcendental equations can be obtained as follows:

𝜎

3
− 𝑚

2
𝜎 = 𝑛

2
𝜎 cos (𝜎𝜏) − (𝑛

3
− 𝑛

1
𝜎

2
) sin (𝜎𝜏) , (60)

𝑚

1
𝜎

2
− 𝑚

3
= (𝑛

3
− 𝑛

1
𝜎

2
) cos (𝜎𝜏) + 𝑛

2
𝜎 sin (𝜎𝜏) . (61)

By squaring and adding (60) and (61), it can be calculated
that

(𝑛

3
− 𝑛

1
𝜎

2
)

2

+ 𝑛

2

2
𝜎

2
= (𝑚

1
𝜎

2
− 𝑚

3
)

2

+ (𝜎

3
− 𝑚

2
𝜎)

2

,
(62)

⇒

𝜎

6
+ 𝐶

1
𝜎

4
+ 𝐶

2
𝜎

2
+ 𝐶

3
= 0, (63)

where𝐶
1
= 𝑚

2

1
−2𝑚

2
−𝑛

2

1
, 𝐶

2
= 𝑚

2

2
−2𝑚

1
𝑚

3
+2𝑛

1
𝑛

3
−𝑛

2

2
, 𝐶

3
=

𝑚

2

3
− 𝑛

2

3
.

According to the values of𝐶
𝑗
, (𝑗 = 1, 2, 3) and the Routh-

Hurwitz criteria [43], a simple assumption that (58) has at
least one positive real root 𝜎

0
is 𝐶

3
< 0, which derives that

𝑘𝛽 > 3(𝜇

1
+𝑚). Hence, under this assumption, (58) will have

a pair of purely imaginary roots of the form ±𝑖𝜎

0
.

By eliminating sin(𝜎𝜏) from (60) and (61), it can be
calculated that the 𝜏∗

𝑗
corresponding to 𝜎

0
is as follows:

𝜏

∗

𝑗
=

1

𝜎

0

× arccos[
𝑛

2
𝜎

2

0
(𝜎

2

0
− 𝑚

2
) + (𝑛

3
− 𝑛

1
𝜎

2

0
) (𝑚

1
𝜎

2

0
− 𝑚

3
)

(𝑛

3
− 𝑛

1
𝜎

2

0
)

2

+ (𝑛

2
𝜎

0
)

2
]

+

2𝑗𝜋

𝜎

0

,

(64)

where 𝑗 = 0, 1, 2, . . ..
By using Butler’s lemma [48], model system (4) is locally

stable around ̃

𝑃

∗ for 𝜏 < 𝜏

∗

0
. Subsequently, conditions for

existence ofHopf bifurcation in [39] are utilized to investigate
whether Hopf bifurcation occurs as 𝜏 increases through 𝜏∗

𝑗
.

Theorem 17. If 𝑘𝛽 > 3(𝜇

1
+ 𝑚), then model system (4)

undergoes Hopf bifurcation around the interior equilibrium ̃

𝑃

∗

when 𝜏 = 𝜏

∗

𝑗
, 𝑗 = 0, 1, 2, . . .. Furthermore, an attracting

invariant closed curve bifurcates from interior equilibrium ̃

𝑃

∗

when 𝜏 > 𝜏∗
0
and ‖𝜏 − 𝜏∗

0
‖ ≪ 1.

Proof. As mentioned above, let 𝜆 = 𝑖𝜎
0
represent the purely

imaginary root of (58). It follows from (58) that |𝑀(𝑖𝜎
0
)| =

|𝑁(𝑖𝜎

0
)|, which determines a set of possible values of 𝜎

0
.

In the following part, we determine the direction of
motion of 𝜆 = 𝑖𝜎

0
as 𝜏 is varied; namely, we determine

Θ = sign [d (Re 𝜆)
d𝜏

]

𝜆=𝑖𝜎
0

= sign[Re(d𝜆
d𝜏
)

−1

]

𝜆=𝑖𝜎
0

. (65)

By differentiating (58) with respect to 𝜏, it can be obtained
that

(

d𝜆
d𝜏
)

−1

=

3𝜆

2
+ 2𝑚

1
𝜆 + 𝑚

2

𝜆𝑒

−𝜆𝜏
(𝑛

1
𝜆

2
+ 𝑛

2
𝜆 + 𝑛

3
)

+

2𝑛

1
𝜆 + 𝑛

2

𝜆 (𝑛

1
𝜆

2
+ 𝑛

2
𝜆 + 𝑛

3
)

−

𝜏

𝜆

=

3𝜆

2
+ 2𝑚

1
𝜆 + 𝑚

2

−𝜆 (𝜆

3
+ 𝑚

1
𝜆

2
+ 𝑚

2
𝜆 + 𝑚

3
)

+

2𝑛

1
𝜆 + 𝑛

2

𝜆 (𝑛

1
𝜆

2
+ 𝑛

2
𝜆 + 𝑛

3
)

−

𝜏

𝜆

=

2𝜆

3
+ 𝑚

1
𝜆

2
− 𝑚

3

−𝜆

2
(𝜆

3
+ 𝑚

1
𝜆

2
+ 𝑚

2
𝜆 + 𝑚

3
)

+

𝑛

1
𝜆

2
− 𝑛

3

𝜆

2
(𝑛

1
𝜆

2
+ 𝑛

2
𝜆 + 𝑛

3
)

−

𝜏

𝜆

.

(66)

From (62) and the above equation, it can be obtained that

Θ = sign[Re(d𝜆
d𝜏
)

−1

]

𝜆=𝑖𝜎
0

=

1

𝜎

2

0

sign[
(𝑚

3
+ 𝑚

1
𝜎

2

0
) (𝑚

1
𝜎

2

0
− 𝑚

3
) + 2𝜎

4

0
(𝜎

2

0
− 𝑚

2
)

(𝑚

1
𝜎

2

0
− 𝑚

3
)

2

+ (𝜎

3

0
− 𝑚

2
𝜎

0
)

2

+

(𝑛

1
𝜎

2

0
+ 𝑛

3
) (𝑛

3
− 𝑛

1
𝜎

2

0
)

(𝑛

3
− 𝑛

1
𝜎

2

0
)

2

+ (𝑛

2
𝜎

0
)

2
]

= sign [((𝑚
3
+ 𝑚

1
𝜎

2

0
) (𝑚

1
𝜎

2

0
− 𝑚

3
) + 2𝜎

4

0
(𝜎

2

0
− 𝑚

2
)

+ (𝑛

1
𝜎

2

0
+ 𝑛

3
) (𝑛

3
− 𝑛

1
𝜎

2

0
))
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× ((𝑚

1
𝜎

2

0
− 𝑚

3
)

2

+ (𝜎

3

0
− 𝑚

2
𝜎

0
)

2

)

−1

]

= sign[
2𝜎

6

0
+ (𝑚

2

1
− 2𝑚

2
− 𝑛

2

1
) 𝜎

4

0
+ 𝑛

2

3
− 𝑚

2

3

(𝑚

1
𝜎

2

0
− 𝑚

3
)

2

+ (𝜎

3

0
− 𝑚

2
𝜎

0
)

2
] ,

= sign[
2𝜎

6

0
+ 𝐶

1
𝜎

4

0
− 𝐶

3

(𝑚

1
𝜎

2

0
− 𝑚

3
)

2

+ (𝜎

3

0
− 𝑚

2
𝜎

0
)

2
] .

(67)

According to the values of 𝐶
𝑗
, (𝑗 = 1, 2, 3) given in (58)

of this paper, it is easy to show that 𝐶
1
= 𝑚

2

1
− 2𝑚

2
− 𝑛

2

1
=

𝑟

2
(𝜇

1
+ 𝑚)

2
/𝑘

2
𝛽

2
+ [𝜇

2
− 𝑐V∗/(𝑤̃𝑅 − 𝑐)2]2 > 0.

Furthermore, if 𝑘𝛽 > 3(𝜇

1
+ 𝑚), then it can be shown

that 𝐶
3
> 0. Hence, it can be concluded that 2𝜎6

0
+ 𝐶

1
𝜎

4

0
−

𝐶

3
> 0, which derives sign[d(Re 𝜆)/d𝜏]

𝜏=𝜏
∗

𝑗
,𝜎=𝜎
0

> 0. Con-
sequently, the transversality condition holds and Hopf bifur-
cation occurs at 𝜎 = 𝜎

0
, 𝜏 = 𝜏∗

𝑗
. Furthermore, an attracting

invariant closed curve bifurcates from interior equilibrium
̃

𝑃

∗ when 𝜏 > 𝜏∗
0
and ‖𝜏 − 𝜏∗

0
‖ ≪ 1.

Remark 18. sign[d(Re 𝜆)/d𝜏]
𝜏=𝜏
∗

𝑗

> 0 signifies that there
exists at least one eigenvalue with positive real part for 𝜏 =
𝜏

∗

𝑗
, and the conditions for Hopf bifurcation in [39] are also

satisfied yielding the required periodic solution.

4.2.2. Properties of Hopf Bifurcation. By using normal theory
and center manifold theorem [49], directions of Hopf bifur-
cation and stability of the bifurcating periodic solutions are
discussed in this section. As analyzed in Section 4.1.2, when
economic interest of harvesting 0 < V∗ < Ṽ (V is defined in
(55)), it follows from implicit function theorem [41] and the
fourth equation of model system (4) that 𝐸(𝑡) = V∗/(𝑤𝑅(𝑡) −
𝑐). Furthermore, model system (4) can be transformed into
the following form:

̇

𝑆 (𝑡) = 𝑟 (1 −

𝑆 (𝑡)

𝑘

) − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) ,

̇

𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏) − 𝜇

1
𝐼 (𝑡) − 𝑚𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 𝑚𝐼 (𝑡) − 𝜇

2
𝑅 (𝑡) −

V∗𝑅 (𝑡)
𝑤𝑅 (𝑡) − 𝑐

.

(68)

Firstly, some transformations associated with component
(

̃

𝑆

∗
,

̃

𝐼

∗
,

̃

𝑅

∗
) of interior equilibrium ̃

𝑃

∗ are given as follows:

𝑦

1
= 𝑆 −

̃

𝑆

∗
, 𝑦

2
= 𝐼 −

̃

𝐼

∗
, 𝑦

3
= 𝑅 −

̃

𝑅

∗
,

𝑦

𝑖
(𝑡) = 𝑦

𝑖
(𝜏𝑡) , 𝜏 = 𝜌 + 𝜏

𝑗
, 𝜌 ∈ R = (−∞, +∞) .

(69)

Then 𝜌 = 0 is the Hopf bifurcation value of model system
(4). Bars of variables are dropped for simplicity of notations;
model system (4) is transformed to a functional differential
equation in 𝐶 = 𝐶([−1, 0],R3

) as

̇𝑦 (𝑡) = 𝐿

𝜌
(𝑦

𝑡
) + 𝑓 (𝜌, 𝑦

𝑡
) , (70)

where 𝐶 = 𝐶([−1, 0],R3
) is the Banach space of continuous

functions mapping the interval [−𝜏, 0] into R3, 𝑦(𝑡) =

(𝑦

1
(𝑡), 𝑦

2
(𝑡), 𝑦

3
(𝑡))

𝑇
∈ R3, 𝑦

𝑡
(𝜃) = 𝑦(𝑡 + 𝜃) for 𝜃 ∈ [−𝜏, 0]

and 𝐿
𝜌
: 𝐶 → R3, 𝑓 : R × 𝐶 → R3 are defined as follows,

respectively:

𝐿

𝜌
(𝜙) = (𝜏

𝑗
+ 𝜌)

×

(

(

−

𝑟

̃

𝑆

∗

𝑘

0 0

𝛽

̃

𝐼

∗
− (𝜇

1
+ 𝑚) 0

0 𝑚 −𝜇

2
+

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

)

)

×(

𝜙

1
(0)

𝜙

2
(0)

𝜙

3
(0)

) + (𝜏

𝑗
+ 𝜌)(

0 −𝛽

̃

𝑆

∗
0

0 𝛽

̃

𝑆

∗
0

0 0 0

)

×(

𝜙

1
(−1)

𝜙

2
(−1)

𝜙

3
(−1)

) ,

(71)

𝑓 (𝜌, 𝜙) = (𝜏

𝑗
+ 𝜌)(

−

𝑟

𝑘

𝜙

2

1
(0) − 𝛽𝜙

1
(0) 𝜙

2
(−1)

𝛽𝜙

1
(0) 𝜙

2
(−1)

∞

∑

𝑗=1

𝑓

(3)

𝑗
𝜙

𝑗

3
(0)

) , (72)

where 𝑓(3)

𝑗
= (d𝑖(−V∗𝑅/(𝑤𝑅 − 𝑐))/d𝑅𝑖

)|

(𝑆
∗
,𝐼
∗
,�̃�
∗
)
, 𝑗 = 1, 2, 3.

It is easy to show that 𝐿
𝜌
is a continuous linear func-

tion mapping 𝐶 into R3. According to Riesz representation
theorem [40], there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜌) of
bounded variation for 𝜃 ∈ [−1, 0] such that

𝐿

𝜌
(𝜙) = ∫

0

−1

d𝜂 (𝜃, 𝜌) 𝜙 (𝜃) , (73)

where 𝜙 ∈ 𝐶([−1, 0],R3
).

In fact, we can choose

𝜂 (𝜃, 𝜌) = (𝜏

𝑗
+ 𝜌)

×

(

(

−

𝑟

̃

𝑆

∗

𝑘

0 0

𝛽

̃

𝐼

∗
− (𝜇

1
+ 𝑚) 0

0 𝑚 −𝜇

2
+

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

)

)

×𝛿(𝜃)

− (𝜏

𝑗
+ 𝜌)(

0 −𝛽

̃

𝑆

∗
0

0 𝛽

̃

𝑆

∗
0

0 0 0

)𝛿 (𝜃 + 1) ,

(74)

where 𝛿 denotes the Dirac delta function.
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If 𝜙 is any given function in𝐶([−1, 0],R3
) and 𝑦(𝜙) is the

unique solution of the linearized equation ̇𝑦(𝑡) = 𝐿

𝜌
(𝑦

𝑡
) of

(70) with initial function 𝜙 at zero, then the solution operator
̃

𝑇(𝑡) : 𝐶 → 𝐶 is defined by

̃

𝑇 (𝑡) 𝜙 = 𝑦

𝑡
(𝜙) , 𝑡 ≥ 0. (75)

It follows from Lemma 7.1.1 in [39] that ̃𝑇(𝑡), 𝑡 ≥ 0 is a
strongly continuous semigroup of linear transformation on
[0, +∞) and the infinitesimal generator𝐴

𝜌
of ̃𝑇(𝑡), 𝑡 ≥ 0 is as

follows:

𝐴

𝜌
(𝜙) =

{

{

{

{

{

{

{

{

{

d𝜙 (𝜃)
d𝜃

, 𝜃 ∈ [−1, 0)

∫

0

−1

d𝜂 (𝜌, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

(76)

for 𝜙 ∈ 𝐶1
([−1, 0],R3

), the space of functions mapping the
interval [−1, 0] intoR3 which have continuous first derivative
and also define

𝑅 (𝜌) (𝜙) = {

0, 𝜃 ∈ [−1, 0)

𝑓 (𝜌, 𝜙) , 𝜃 = 0

(77)

then model system (70) is equivalent to

̇𝑦

𝑡
= 𝐴 (𝜌) 𝑦

𝑡
+ 𝑅 (𝜌) 𝑦

𝑡
. (78)

For 𝜓 ∈ 𝐶1
([0, 1], (R3

)

∗
), the space of functions mapping

interval [0, 1] into the three-dimensional row vectors which
have continuous first derivative, define

𝐴

∗
𝜙 (𝑠) =

{

{

{

{

{

{

{

{

{

−

d𝜓 (𝑠)
d𝑠

, 𝑠 ∈ (0, 1]

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(79)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,
(80)

where 𝜂(𝜃) = 𝜂(𝜃, 0). It follows from the above analysis 𝐴(0)
and 𝐴∗ are adjoint operators.

By virtue of discussion in Section 4.2.1, ±𝑖𝜔
0
𝜏

𝑗
are eigen-

values of 𝐴(0). Hence, they are also eigenvalues of 𝐴∗. In the
following, eigenvectors of 𝐴(0) and 𝐴∗ are corresponding to
𝑖𝜔

0
𝜏

𝑗
and −𝑖𝜔

0
𝜏

𝑗
, respectively.

Suppose 𝑞(𝜃) = (1, 𝑎, 𝑏)

𝑇
𝑒

𝑖𝜔
0
𝜏
𝑗
𝜃 is the eigenvec-

tors of 𝐴(0) corresponding to 𝑖𝜔

0
𝜏

𝑗
, which derives that

𝐴(0)𝑞(𝜃) = 𝑖𝜔

0
𝜏

𝑗
𝑞(𝜃). By using the definition of 𝐴(0), (71)

and (72), it gives that

(

(

−

𝑟

̃

𝑆

∗

𝑘

0 0

𝛽

̃

𝐼

∗
− (𝜇

1
+ 𝑚) 0

0 𝑚 −𝜇

2
+

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

)

)

𝑞(0)

+ (

0 −𝛽

̃

𝑆

∗
0

0 𝛽

̃

𝑆

∗
0

0 0 0

)𝑞 (−1) = 𝑖𝜔

0
𝑞 (0) .

(81)

For 𝑞(−1) = 𝑞(0)𝑒−𝑖𝜔0𝜏𝑗 , then it can be obtained that

𝑎 = −

𝑟 (𝜇

1
+ 𝑚) + 𝑖𝑘𝛽𝜔

0

𝑘𝛽 (𝜇

1
+ 𝑚) 𝑒

−𝑖𝜔
0
𝜏
𝑗

,

𝑏 =

𝑚(𝑤

̃

𝑅

∗
− 𝑐)

2

[𝑟 (𝑚 + 𝜇

1
) + 𝑖𝑘𝛽𝜔

0
]

𝑘𝛽 (𝜇

1
+ 𝑚) [𝑐V∗ − (𝜇

2
+ 𝑖𝜔

0
) (𝑤

̃

𝑅

∗
− 𝑐)

2

] 𝑒

−𝑖𝜔
0
𝜏
𝑗

.

(82)

Similarly, it follows from simple computation that eigen-
vector 𝑞∗(𝑠) = 𝐽(1, 𝑎

∗
, 𝑏

∗
)𝑒

𝑖𝜔
0
𝜏
𝑗
𝑠 of 𝐴∗ is corresponding to

−𝑖𝜔

0
𝜏

𝑗
, where

𝑎

∗
= −

𝑟 (𝜇

1
+ 𝑚) − 𝑖𝑘𝛽𝜔

0

𝑘𝛽 (𝜇

1
+ 𝑚) 𝑒

𝑖𝜔
0
𝜏
𝑗

,

𝑏

∗
=

𝑚(𝑤

̃

𝑅

∗
− 𝑐)

2

[𝑟 (𝜇

1
+ 𝑚) − 𝑖𝑘𝛽𝜔

0
]

𝑘𝛽 (𝜇

1
+ 𝑚) [𝑐V∗ − (𝜇

2
− 𝑖𝜔

0
) (𝑤

̃

𝑅

∗
− 𝑐)

2

] 𝑒

𝑖𝜔
0
𝜏
𝑗

.

(83)

In order to assume ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to deter-
mine the value of 𝐽 in the following part.

By virtue of (80), it derives that

⟨𝑞

∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐽 (1, 𝑎

∗
, 𝑏

∗

) (1, 𝑎, 𝑏)

𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐽 (1, 𝑎

∗
, 𝑏

∗
) 𝑒

−𝑖𝜔
0
𝜏
𝑗
(𝜉−𝜃)d𝜂 (𝜃)

× (1, 𝑎, 𝑏)

𝑇
𝑒

𝑖𝜔
0
𝜏
𝑗
𝜉d𝜉

= 𝐽 [1 + 𝑎𝑎

∗
+ 𝑏𝑏

∗

− ∫

0

−1

(1, 𝑎

∗
, 𝑏

∗

) 𝜃𝑒

𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃) (1, 𝑎, 𝑏)𝑇]

= 𝐽 [1 + 𝑎𝑎

∗
+ 𝑏𝑏

∗

+ 𝑘𝑏

∗

𝜏

𝑗
(

̃

𝑅

∗
+ 𝑏

̃

𝑆

∗
) 𝑒

𝑖𝜔
0
𝜏
𝑗
] .

(84)

Hence, we can choose 𝐽 as follows:

𝐽 =

1

1 + 𝑎𝑎

∗
+ 𝑏𝑏

∗
+ 𝑘𝑏

∗
𝜏

𝑗
(

̃

𝑅

∗
+ 𝑏

̃

𝑆

∗
) 𝑒

𝑖𝜔
0
𝜏
𝑗

. (85)
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Next, we will compute the coordinate to describe the
centre manifold 𝐶

0
at 𝜌 = 0. Let 𝑦

𝑡
be the solution of (78)

when 𝜌 = 0.
Define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑦

𝑡
⟩, 𝑊 (𝑡, 𝜃) = 𝑦

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(86)

On the center manifold 𝐶
0
, it derives that

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (87)

where

𝑊(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

(88)

𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in the

direction of 𝑞∗ and 𝑞∗.
It is noted that𝑊 is real if 𝑦

𝑡
is real, and we only consider

real solutions. For solution 𝑦
𝑡
∈ 𝐶

0
of (78), since 𝜌 = 0, it

derives that

�̇� (𝑡) = 𝑖𝜔

0
𝜏

𝑗
𝑧 + 𝑞

∗
(0) 𝑓 (0,𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧𝑞 (𝜃)})

≜ 𝑖𝜔

0
𝜏

𝑗
𝑧 + 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧) .

(89)

The above equation can be rewritten as follows:

�̇� (𝑡) = 𝑖𝜔

0
𝜏

𝑗
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) , (90)

where

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(91)

It follows from (86) and (88) that

𝑦

𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧

2

2

+ (1, 𝑎, 𝑏)

𝑇
𝑒

𝑖𝜔
0
𝜏
𝑗
𝜃
𝑧 + (1, 𝑎, 𝑏)

𝑇

𝑒

−𝑖𝜔
0
𝜏
𝑗
𝜃
𝑧 + ⋅ ⋅ ⋅ .

(92)

By virtue of (72), (91), and (92), it derives that

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝑞

∗
(0) 𝑓 (0, 𝑦

𝑡
)

= 𝜏

𝑗
𝐽(

−

𝑟

𝑘

𝑦

2

1𝑡
(0) − 𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

∞

∑

𝑗=1

𝑓

(3)

𝑗
𝑦

𝑗

3𝑡
(0)

)

= 𝜏

𝑗
𝐽

[

[

−

𝑟

𝑘

𝑦

2

1𝑡
(0) − 𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

+ 𝑎

∗
𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1) +

∞

∑

𝑗=1

𝑏

∗

𝑓

(3)

𝑗
𝑦

𝑗

3𝑡
(0)

]

]

= 𝜏

𝑗
𝐽

[

[

−

𝑟

𝑘

𝑦

2

1𝑡
(0) + (𝑎

∗
− 1) 𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

+

∞

∑

𝑗=1

𝑏

∗

𝑓

(3)

𝑗
𝑦

𝑗

3𝑡
(0)

]

]

= −

𝑟

𝑘

𝜏

𝑗
𝐽 [𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ 𝑜 (|(𝑧, 𝑧)|

3
)]

2

+ (𝑎

∗
− 1) 𝛽𝜏

𝑗
𝐽

× [𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ 𝑜 (|𝑧, 𝑧|

3
)]

× [𝑒

−𝑖𝜔
0
𝜏
𝑗
𝑧 + 𝑒

𝑖𝜔
0
𝜏
𝑗
𝑧 +𝑊

(2)

20
(−1)

𝑧

2

2

+𝑊

(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧

2

2

+ 𝑜 (|𝑧, z|3)]

+ 𝜏

𝑗
𝐽𝑏

∗

[𝑓

(3)

1
(𝑧 + 𝑧 +𝑊

(3)

20
(0)

𝑧

2

2

+𝑊

(3)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ 𝑜 (|𝑧, 𝑧|

3
))

+ 𝑓

(3)

2
(𝑧 + 𝑧 +𝑊

(3)

20
(0)

𝑧

2

2

+𝑊

(3)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧

2

2

+ 𝑜 (|𝑧, 𝑧|

3
)) + ⋅ ⋅ ⋅ ] .

(93)
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By comparing the coefficients with (91), it gives that

𝑔

20
= 2𝜏

𝑗
𝐽 [ −

𝑟

𝑘

+ (𝑎

∗
− 1) 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

+ 𝑏

∗

(

𝑓

(3)

1
𝑊

(3)

20
(0)

2

+ 𝑓

(3)

2
)] ,

𝑔

11
= 𝜏

𝑗
𝐽 [ −

2𝑟

𝑘

+ 2 (𝑎

∗
− 1) 𝛽 cos𝜔

0
𝜏

𝑗

+ 𝑓

(3)

1
𝑊

(3)

11
(0) + 2𝑓

(3)

2
] ,

𝑔

02
= 2𝜏

𝑗
𝐽 [ −

𝑟

𝑘

+ (𝑎

∗
− 1) 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

+ 𝑏

∗

(

𝑓

(3)

1
𝑊

(3)

02
(0)

2

+ 𝑓

(3)

2
)] ,

𝑔

21
= 2𝜏

𝑗
𝐽 [𝛽 (𝑎

∗
− 1)

× (𝑊

(2)

11
(−1) +

𝑊

(3)

20
(−1) + 𝑊

(1)

20
(0) 𝑒

𝑖𝜔
0
𝜏
𝑗

2

+𝑊

(1)

11
(0) 𝑒

−𝑖𝜔
0
𝜏
𝑗
)

−

𝑟

𝑘

(𝑊

(1)

20
(0) + 2𝑊

(1)

11
(0))

+𝑓

(3)

2
(𝑊

(3)

20
(0) + 2𝑊

(3)

11
(0)) ] .

(94)

Since 𝑔
21

is associated with 𝑊
20
(𝜃) and 𝑊

11
(𝜃), further

attempts should be carried out to compute 𝑊
20
(𝜃) and

𝑊

11
(𝜃).
By virtue of (78) and (86), we have

̇

𝑊 = ̇𝑦

𝑡
− �̇�𝑞 −

̇

𝑧𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0)

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (0) + 𝑓

0
} , 𝜃 = 0.

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(95)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻

20
(𝜃)

𝑧

2

2

+ 𝐻

11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(96)

By substituting the corresponding series into (95) and
comparing the coefficients, we have

(𝐴 − 2𝑖𝜔

0
𝜏

𝑗
)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊

11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(97)

It follows from (95) that for 𝜃 ∈ [−1, 0)

𝐻 (𝑧, 𝑧, 𝜃) = − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃)

= − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(98)

By comparing coefficients in (96) with those in (94), it
derives that

𝐻

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) , (99)

𝐻

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) . (100)

Based on the definition of 𝐴 and (97) and (99), it can be
obtained that

̇

𝑊

20
(𝜃) = 2𝑖𝜔

0
𝜏

𝑗
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (101)

For 𝑞(𝜃) = (1, 𝑎, 𝑏)𝑇𝑒𝑖𝜔0𝜏𝑗𝜃,

𝑊

20
(𝜃) =

𝑖𝑔

20

𝜔

0
𝜏

𝑗

𝑞 (0) 𝑒

𝑖𝜔
0
𝜏
𝑗
𝜃
+

𝑖𝑔

02

3𝜔

0
𝜏

𝑗

𝑞 (0) 𝑒

−𝑖𝜔
0
𝜏
𝑗
𝜃
+ 𝐺

1
𝑒

2𝑖𝜔
0
𝜏
𝑗
𝜃
,

(102)

where 𝐺
1
= (𝐺

(1)

1
, 𝐺

(2)

1
, 𝐺

(3)

1
) is a constant vector.

Similarly, it follows from (97) and (100) that

𝑊

11
(𝜃) = −

𝑖𝑔

11

𝜔

0
𝜏

𝑗

𝑞 (0) 𝑒

𝑖𝜔
0
𝜏
𝑗
𝜃
+

𝑖𝑔

11

𝜔

0
𝜏

𝑗

𝑞 (0) 𝑒

−𝑖𝜔
0
𝜏
𝑗
𝜃
+ 𝐺

2
,

(103)

where 𝐺
2
= (𝐺

(1)

2
, 𝐺

(2)

2
, 𝐺

(3)

2
) is a constant vector.

Subsequently, values of 𝐺
1
and 𝐺

2
should be computed.

By using the definition of 𝐴 and (95), we have

∫

0

−1

d𝜂𝑤
20
(𝜃) = 2𝑖𝜔

0
𝜏

𝑗
𝑊

20
(0) − 𝐻

20
(0) ,

(104)

∫

0

−1

d𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(0) ,

(105)

where 𝜂(𝜃) = 𝜂(0, 𝜃). Based on (95), it derives that in the case
of 𝜃 = 0,
𝐻(𝑧, 𝑧, 0) = − 2Re {𝑞∗ (0) 𝑓

0
𝑞 (0)} + 𝑓 (0)

= − 𝑞

∗
(0) 𝑓

0
𝑞 (0) − 𝑞

∗
(0) 𝑓

0
𝑞 (0) + 𝑓

0

= − 𝑔 (𝑧, 𝑧) 𝑞 (0) − 𝑔 (𝑧, 𝑧) 𝑞 (0) + 𝑓

0
,

(106)

which follows that

𝐻

20
(𝜃)

𝑧

2

2

+ 𝐻

11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅

= −𝑞 (0) (𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ ⋅ ⋅ ⋅ )

− 𝑞 (0) (𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ ⋅ ⋅ ⋅ ) + 𝑓

0
.

(107)
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By virtue of (72), it gives that

𝑓

0
= 𝜏

𝑘
(

−

𝑟

𝑘

𝑦

2

1𝑡
(0) − 𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

𝛽𝑦

1𝑡
(0) 𝑦

2𝑡
(−1)

∞

∑

𝑗=1

𝑓

(3)

𝑗
𝑦

𝑗

3𝑡
(0)

) . (108)

By virtue of (86), it can be obtained that

𝑦

𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝑧 (𝑡) 𝑞 (𝜃) + 𝑧 (𝑡) 𝑞 (𝜃)

= 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

21
(𝜃) 𝑧𝑧 + 𝑧 (𝑡) 𝑞 (𝜃)

+ 𝑧 (𝑡) 𝑞 (𝜃) + ⋅ ⋅ ⋅ .

(109)

Then we have

𝑓

0
= 𝜏

𝑗
(

−

𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝑓

(3)

1

𝑊

(3)

20
(0)

2

+ 𝑓

(3)

2

)𝑧

2

+ 𝜏

𝑘
(

−

2𝑟

𝑘

− 2𝛽 cos𝜔
0
𝜏

𝑗

2𝛽 cos𝜔
0
𝜏

𝑗

2𝑓

(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)

)𝑧𝑧 + ⋅ ⋅ ⋅ .

(110)

According to (107) and (110), we have

𝐻

20
(0) = − 𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0)

+ 2𝜏

𝑗
(

−

𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝑓

(3)

1

𝑊

(3)

20
(0)

2

+ 𝑓

(3)

2

),

(111)

𝐻

11
(0) = − 𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0)

+ 𝜏

𝑗
(

−

2𝑟

𝑘

− 2𝛽 cos𝜔
0
𝜏

𝑗

2𝛽 cos𝜔
0
𝜏

𝑗

2𝑓

(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)

) .

(112)

Since 𝑖𝜔
0
𝜏

𝑗
is the eigenvalue of 𝐴(0) and 𝑞(0) is the

corresponding eigenvector, we obtain that

(𝑖𝜔

0
𝜏

𝑗
𝐼 − ∫

0

−1

𝑒

𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔

0
𝜏

𝑗
𝐼 − ∫

0

−1

𝑒

−𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃)) 𝑞 (0) = 0,

(113)

where 𝐼 is identity matrix.
By substituting (102) and (111) into (104), it can be

obtained that

(2𝑖𝜔

0
𝜏

𝑗
𝐼 − ∫

0

−1

𝑒

2𝑖𝜔
0
𝜏
𝑗
𝜃d𝜂 (𝜃))𝐺

1

= 2𝜏

𝑗
(

−

𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝑓

(3)

1

𝑊

(3)

20
(0)

2

+ 𝑓

(3)

2

),

(114)

which can be rewritten as follows:

(

2𝑖𝜔

0
+

𝑟

̃

𝑆

∗

𝑘

𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗

0

−𝛽

̃

𝐼

∗
2𝑖𝜔

0
+ (𝜇

1
+ 𝑚) − 𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗

0

0 −𝑚 2𝑖𝜔

0
+ 𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

)𝐺

1
= 2(

−

𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝑓

(3)

1

𝑊

(3)

20
(0)

2

+ 𝑓

(3)

2

). (115)

Based on Grammar Law [43], 𝐺(1)

1
, 𝐺(2)

1
, and 𝐺(3)

1
can be

obtained as follows:

𝐺

(1)

1
=

2

𝑈

1











































−

𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗

0

𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

2𝑖𝜔

0
+ (𝜇

1
+ 𝑚) − 𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗

0

𝑓

(3)

1

𝑊

(3)

20
(0)

2

+ 𝑓

(3)

2
−𝑚 2𝑖𝜔

0
+ 𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2











































,
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𝐺

(2)

1
=

2

𝑈

1















































2𝑖𝜔

0
+

𝑟

̃

𝑆

∗

𝑘
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𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

0
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𝐼

∗
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𝑗

0

0 𝑓
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1
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(3)
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+ 𝑓

(3)
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∗
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+
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𝛽
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𝑆
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𝜏
𝑗

−

𝑟

𝑘

− 𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

−𝛽

̃

𝐼

∗
2𝑖𝜔

0
+ (𝜇

1
+ 𝑚) − 𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗

𝛽𝑒

−𝑖𝜔
0
𝜏
𝑗

0 −𝑚 𝑓
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1

𝑊
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20
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+ 𝑓
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where

𝑈

1
=













































2𝑖𝜔

0
+

𝑟

̃

𝑆

∗

𝑘

𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗
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−𝛽

̃

𝐼

∗
2𝑖𝜔

0
+ (𝜇

1
+ 𝑚) − 𝛽

̃

𝑆

∗
𝑒

−2𝑖𝜔
0
𝜏
𝑗

0

0 −𝑚 2𝑖𝜔

0
+ 𝜇

2
−

𝑐V∗

(𝑤
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Similarly, substituting (103) and (112) into (105), it can be
obtained that

(

(

𝑟

̃

𝑆

∗

𝑘

𝛽

̃

𝑆

∗
0

−𝛽

̃

𝐼

∗
𝜇

1
+ 𝑚 − 𝛽

̃

𝑆

∗
0

0 −𝑚 𝜇

2
−

𝑐V∗

(𝑤

̃

𝑅

∗
− 𝑐)

2

)

)

𝐺

2

= 2(

−

2𝑟

𝑘

− 2𝛽 cos𝜔
0
𝜏

𝑗

2𝛽 cos𝜔
0
𝜏

𝑗

2𝑓

(3)

2
+ 𝑓

(3)

1
𝑊

(3)

11
(0)

) .

(118)

Based on Grammar Law [43], 𝐺(1)

2
, 𝐺(2)

2
, and 𝐺(3)

2
can be

obtained as follows:

𝐺
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1

𝑈
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𝑘
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𝜏
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𝑗
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̃

𝑆

∗
0

2𝑓

(3)

2
+ 𝑓
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where

𝑈

2
=

















































𝑟

̃

𝑆

∗

𝑘

𝛽

̃

𝑆

∗
0

−𝛽

̃
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. (120)

It follows from the above computation and analysis that
𝑊

20
(𝜃) and 𝑊

11
(𝜃) can be determined based on (102) and

(103).
Furthermore, we can compute 𝑔

21
based on (94). Hence,

the following values can be computed as follows:

𝑑

1
(0) =

𝑖

2𝜔

0
𝜏

𝑗

(𝑔

20
𝑔

11
− 2









𝑔

11









2

−









𝑔

02









2

3

) +

𝑔

21

2

,

𝛿

2
= −

Re {𝑑
1
(0)}

Re {𝜆 (𝜏
𝑗
)}

,

𝛾

2
= 2Re (𝑑

1
(0)) ,

𝑇

2
=

Im {𝑑
1
(0)} + 𝛿

2
Im {𝜆 (𝜏

𝑗
)}

𝜔

0
𝜏

𝑗

.

(121)
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Table 2: Values of parameters for numerical simulation.

Parameter Value
𝑟 0.1
𝑘 1
𝛽 1
𝑚 0.1
𝜇

1
0.1

𝜇

2
0.1

𝑤 20
𝑐 1

By using similar arguments in [49], some properties of
bifurcating periodic solutions of model (4) in the center
manifold at the critical values are discussed in this paper.
Based on the analysis in Section 4.2.2 of this paper, the
following theorem can be concluded.

Theorem 19. The properties of Hopf bifurcation are deter-
mined by values in (121).

(i) 𝛿
2
determines directions of Hopf bifurcation: if 𝛿

2
>

0 (𝛿
2
< 0), then Hopf bifurcation is supercritical

(subcritical) and the bifurcating periodic solutions exist
for 𝜏 > 𝜏

𝑗
(𝜏 < 𝜏

𝑗
).

(ii) 𝛾
2
determines the stability of bifurcating periodic solu-

tions: bifurcating periodic solutions are stable (unsta-
ble) if 𝛾

2
< 0 (𝛾

2
> 0).

(iii) 𝑇
2
determines the period of bifurcating periodic solu-

tions: period increases (decreases) if 𝑇
2
> 0 (𝑇

2
< 0).

5. Numerical Simulation

In this section, some numerical simulations are provided to
substantiate the theoretical results obtained in Section 4 of
this paper.

5.1. Numerical Simulation of State Feedback Controller for
Singularity Induced Bifurcation and Local Stability Switch. In
this subsection, values of parameters are partially taken from
Section 5 of [11] and set in appropriate units, which can
be found in Table 2. Numerical simulations are provided to
illustrate the effectiveness of the state feedback controllers
designed in Section 4.1 in the case of zero economic interest
and positive economic interest, respectively.

In the case of zero economic interest, model (4) without
time delay takes the following form:

̇

𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇

𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) .

(122)
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Figure 1: Dynamical responses of model system (123) with state
feedback controller, which shows that model system (123) is stable
around (0.2, 0.08, 0.05, 0.06).

By using Theorem 11 of this paper, it can be shown
that the model (4) without time delay has a singularity
induced bifurcation around the interior equilibrium
𝑃

∗
(0.2, 0.08, 0.05, 0.06), and local stability switch occurs as V

increases through 0.
Based on the analysis in Section 4.1.2 and Theorem 14 of

this paper, a state feedback controller 𝑢(𝑡) = 𝑙(𝐸(𝑡) − 0.06)

can be applied to stabilize model system (122) around𝑃∗, and
then themodel system (122)with the state feedback controller
takes the following form:

̇

𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇

𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) + 𝑙 (𝐸 (𝑡) − 0.06) .

(123)

By using Theorem 14 of this paper, if the feedback gain 𝑙
satisfies 𝑙 > 2.2429, then model system (122) is stable around
𝑃

∗ and singularity induced bifurcation of the model system
(122) is also eliminated. The dynamical responses of model
system (122) can be shown in Figure 1.

Furthermore, based on the analysis and inequality (55)
in Section 4.1.2, there are two interior equilibria (denoted
by ̃𝑃∗

1
and ̃

𝑃

∗

2
) when 0 < V < 0.00668. In the following

part, we focus on the case of 0 < V < 0.00668, and the
economic interest is set as V∗ = 0.005 ∈ (0, 0.00668) in
appropriate unit, which is arbitrarily selected within the
interval (0, 0.00668) and is enough to merit the theoretical
analysis obtained in Section 4.1.2. By virtue of the given values
of parameters in Table 2 and (54), two interior equilibria
can be obtained as follows: ̃𝑃∗

1
(0.2, 0.08, 0.0557, 0.0439) and

̃

𝑃

∗

2
(0.2, 0.08, 0.07175, 0.0115). By using Theorem 11 of this
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paper, it can be shown that model system (124) is unstable
around ̃𝑃∗

1
and ̃𝑃∗

2
:

̇

𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇

𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) − 0.005.

(124)

Based on the analysis in Section 4.1.2 of this paper, state
feedback controllers 𝑢(𝑡) =

̃

𝑙(𝐸(𝑡) − 0.0439) and 𝑢(𝑡) =

̃

𝑙(𝐸(𝑡) − 0.0115) can be applied to stabilize the model system
(124) around ̃𝑃∗

1
and ̃𝑃∗

2
, respectively.Themodel system (124)

with respective state feedback controller takes the following
form:

̇

𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇

𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) − 0.005 +

̃

𝑙 (𝐸 (𝑡) − 0.0439) ,

(125)

̇

𝑆 (𝑡) = 0.1 (1 − 𝑆 (𝑡)) − 𝑆 (𝑡) 𝐼 (𝑡) ,

̇

𝐼 (𝑡) = 𝑆 (𝑡) 𝐼 (𝑡) − 0.1𝐼 (𝑡) − 0.1𝐼 (𝑡) ,

̇

𝑅 (𝑡) = 0.1𝐼 (𝑡) − 0.1𝑅 (𝑡) − 𝐸 (𝑡) 𝑅 (𝑡) ,

0 = 𝐸 (𝑡) (20𝑅 (𝑡) − 1) − 0.005 +

̃

𝑙 (𝐸 (𝑡) − 0.0115) .

(126)

By using Theorem 15 of this paper, if the feedback gain
̃

𝑙 satisfies ̃𝑙 > 3.753, then model system (125) is stable
around ̃𝑃∗

1
and model system (126) is stable around ̃𝑃∗

2
. The

dynamical responses of model system (125) and (126) can be
shown in Figures 2 and 3, respectively.

5.2. Numerical Simulation for Hopf Bifurcation and Local
Stability Switch. In this subsection,values of parameters are
partially taken from Section 5 of [11] and set in appropriate
units, which can be found in Table 3. Numerical simulations
are provided to support the theoretical findings obtained in
Section 4.2 of this paper.

Based on the analysis and inequality (55) in Section 4.1.2,
there are two interior equilibria (denoted by ̃

𝑃

∗

1
and ̃

𝑃

∗

2
)

when 0 < V < 0.01831. In the following part, we
focus on the case of 0 < V < 0.01831, and the eco-
nomic interest is set as V∗ = 0.012 ∈ (0, 0.01831) in
appropriate unit, which is arbitrarily selected within the
interval (0, 0.01831) and is enough to merit the theoretical
analysis obtained in Section 4.2. By virtue of the given values
of parameters in Table 3 and (54), two interior equilibria
can be obtained as follows: ̃𝑃∗

1
(0.2, 0.08, 0.0907, 0.0147) and

̃

𝑃

∗

2
(0.2, 0.08, 0.0573, 0.0821). Furthermore, it can be com-

puted that 𝑘𝛽 > 3(𝜇

1
+ 𝑚). Based on the analysis in
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Figure 2: Dynamical responses of model system (125) with state
feedback controller, which shows that model system (125) is stable
around (0.2, 0.08, 0.0557, 0.0439).
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Figure 3: Dynamical responses of model system (126) with state
feedback controller, which shows that model system (126) is stable
around (0.2, 0.08, 0.07175, 0.0115).

Table 3: Values of parameters for numerical simulation.

Parameter Value
𝑟 0.1
𝑘 1
𝛽 1
𝑚 0.13
𝜇

1
0.1

𝜇

2
0.1

𝑤 20
𝑐 1

Section 4.2.1, it satisfies the assumption that (58) has a
positive root, and then the corresponding 𝜏∗

0
= 2.7814

can be calculated by solving (64). It follows from (121) that
𝛿

2
= 1.2963 > 0, 𝛾

2
= −0.3012 < 0, and 𝑇

2
=

1.2467 > 0. Consequently, the interior equilibrium ̃

𝑃

∗

1
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Figure 4: Dynamical responses of model system (4) with time delay
𝜏 = 1.54, which shows that model system (4) is stable around
(0.2, 0.08, 0.0907, 0.0147).
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Figure 5: Dynamical responses of model system (4) with time delay
𝜏 = 3, which shows that model system (4) is unstable around
(0.2, 0.08, 0.0907, 0.0147).

remains stable for 𝜏 < 𝜏

∗

0
, and dynamical responses of

model system (4) with 𝜏 = 1.54 are plotted in Figure 4.
It should be noted that 𝜏 = 1.54 in Figure 4 is ran-domly
selected in the interval (0, 2.7814), which is enough to merit
the above mathematical study. Only the dynamical responses
and corresponding phase portrait of model (4) around ̃

𝑃

∗

1
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Figure 6: A limit cycle corresponding to the periodic solution in
Figure 5 in the S-I-R space.
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Figure 7: Limit cycle corresponding to the periodic solution in
Figure 5 in the S-I-E space.

are plotted; some symmetric results about ̃𝑃∗

2
can be also

obtained. As 𝜏 increases through 𝜏

∗

0
, a periodic solution

caused by the phenomenon of Hopf bifurcation occurs; that
is, a family of periodic solutions bifurcate from the interior
equilibrium ̃

𝑃

∗

1
. Since 𝛿

2
> 0 and 𝛾

2
< 0, the Hopf bifurcation

is supercritical, the directions of the Hopf bifurcation is 𝜏 >
𝜏

∗

0
, and these bifurcating periodic solutions from the interior

equilibrium ̃

𝑃

∗

1
at 𝜏∗

0
are stable. Dynamical responses of

model (4) with 𝜏 = 3 > 𝜏

∗

0
are plotted in Figure 5. Figures

6 and 7 show a limit cycle corresponding to the periodic
solution in Figure 5 in the S-I-R and S-I-E space, respectively.

6. Conclusion

It is well known that the recovered host individuals are
naturally immune to vector disease [1], and its potential eco-
nomic interest can be commercially exploited. Furthermore,
harvest effort is usually influenced by variation of economic
interest under market economy. Consequently, it is necessary
to discuss the coexistence and interaction mechanism of
population within harvested epidemiological ecosystem as
well as dynamical effect of harvest effort due to variation of
economic interest.
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By introducing commercial harvest effort into model
proposed in [11], a delayed hybrid mathematical model is
established to investigate the dynamical effect of commercial
harvesting and incubation time delay on epidemiological
economic system, which extends the work done in [11]
from a bioeconomic perspective. Positivity and persistence
of solutions of model system are discussed in Theorems 3
and 10, respectively. The economic interest of commercial
harvesting should be restricted within certain interval that
guarantees the existence of interior equilibrium, which can
be found in Remark 16. Since the interior equilibrium bio-
logically interprets that susceptible, infective, and recovered
host individuals survive as well as harvest on recovered
host individuals exist, the bifurcation phenomena around
the interior equilibria can reveal the instability mechanism
of model system, which are theoretically relevant to infec-
tious disease control and sustainable yield on recovered
host individuals. Consequently, we will mainly concentrate
on dynamical behavior and local stability switch around
interior equilibrium of model system (4) in this paper. As
analyzed in Theorem 11 of this paper, a singularity induced
bifurcation occurs which leads to local stability switch in
the case of positive economic interest of harvesting. In the
perspective of practical viewpoint, a direct damage done by
the singularity induced bifurcation to the proposed model
is impulse phenomenon, which may lead to outbreak of
infectious disease and hamper prosperous harvesting on
recovered host individual population resource in the har-
vested ecosystem, which can be found in Remark 13.With the
purpose ofmaintaining the economic interest at an ideal level,
state feedback controllers are designed to stabilize model
system around the desirable interior equilibria in the case
of zero economic interest and positive economic interest,
respectively. The design of the state feedback controller can
be found inTheorems 14 and 15 of this paper. The theoretical
results and numerical simulations obtained in this paper
suggest that incorporating harvest effort on recovered host
individuals can not only prevent the stability switch of model
system,but also drive model system to stable equilibrium,
which will contribute to the persistence and sustainable yield
of the harvested ecosystem.

Further attempts are made to understand the dynamical
effect of incubation time delay and economic interest on local
stability of model system around interior equilibrium. Local
stability analysis reveals that incubation delay is responsible
for local stability switch of the proposed model, and a family
of periodic solutions bifurcate from the interior equilibrium
which occurs as incubation delay increases through a critical
threshold, which can be found in Theorem 17. The direc-
tion and stability of Hopf bifurcation are also discussed in
Theorem 19 of this paper, which reveals that Hopf bifurcation
is supercritical, the directions of Hopf bifurcation is 𝜏 > 𝜏∗

0
,

and these bifurcating periodic solutions from the interior
equilibrium are stable. The model proposed in [11] does not
discuss the harvest effort on economic population. For the
model proposed in [11], the threshold value of incubation
delay where Hopf bifurcation occurs in [11] is 𝜏

0
= 2.0842.

However, the harvest effort on recovered host individuals is
considered in this paper. As calculated in Section 5.2 of this

paper, the Hopf bifurcation occurs at 𝜏∗
0
= 2.7814 in the case

of positive economic interest. It is obvious that 𝜏∗
0
> 𝜏

0
, which

implies that the harvesting has a stabilizing impact on the
dynamical behavior of population dynamics; cyclic behavior
caused by incubation delay can be deferred by introduction
of commercial harvesting effort.

It should be noted that somehybrid dynamicalmodels are
proposed in [23–28], which are utilized to discuss the inter-
action mechanism of harvested ecosystem from an economic
perspective in recent years. Complex dynamical behavior
and stability analysis in prey-predator ecosystems with stage-
structured population and gestation delay are considered.
However, as far as knowledge goes, nobody has explicitly
proposed amathematicalmodel to discuss the dynamic effect
of commercial harvest on epidemiological system under
the market economy environment. The main objective of
this paper is to investigate the transmission mechanism of
infectious disease anddynamical effect of commercial harvest
on population dynamics, especially the complex dynamical
behavior and stability switch due to variation of incubation
and commercial harvest economic interest, which makes
the work studied in this paper has some new and positive
features.
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