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We establish the necessary condition of optimality for optimal control problem governed by some pseudoparabolic differential
equations involving monotone graphs. Some approximating control process and examples are given.

1. Introduction

We will study the following optimal control problem gov-
erned by nonlinear pseudoparabolic variational inequalities
of the following form:

𝑑𝑀𝑦

𝑑𝑡
+ 𝐴𝑦 + 𝛽 (𝑦) ∋ 𝐵𝑢 a.e in (0, 𝑇) ,

𝑦 (0) = 𝑦
0
,

(1)

with the state constraint

𝐹 (𝑦 (⋅)) ⊂ 𝑆. (2)

The pay-off function is given by

𝐿 (𝑦 (⋅) , 𝑢 (⋅)) = ∫

𝑇

0

[𝑔 (𝑡, 𝑦 (⋅)) + ℎ (𝑢 (⋅))] 𝑑𝑡, (3)

where 𝑄 = Ω × (0, 𝑇), Ω ⊂ R𝑁 is a bounded domain with
smooth boundary.

For the problem (1)–(3), we have the following assump-
tions.

(H1) 𝑀 is a selfadjoint operator in 𝐻 = Ł2 (Ω) with
𝐷(𝑀) ⊂ 𝐷(𝐴 + 𝛽) such that for every 𝑦 ∈ 𝐷(𝑀),

(𝑀𝑦, 𝑦) ≥ 𝑎
𝑦

2
, 𝑎 > 0. (4)

Throughout in the sequel, we will denote by | ⋅ |
and (⋅, ⋅) the norm and the scalar product of 𝐻,
respectively. The norm of the control set 𝑈 will
be denoted by | ⋅ |

𝑈
and the scalar product ⟨⋅, ⋅⟩,

respectively. 𝐷(𝑀),𝐷(𝐴 + 𝛽) denote the domain of
operator𝑀,𝐴 + 𝛽, respectively.

(H2) 𝑉 ⊂ 𝐻 is a real Hilbert space such that 𝑉 is dense in
𝐻 and 𝑉 ⊂ 𝐻 ⊂ 𝑉

 algebraically and topologically,
where 𝑉 is the dual of 𝑉. Further, the injection of 𝑉
into𝐻 is compact.

𝐴 : 𝑉 → 𝑉
 is a linear continuous and symmetric

operator from𝑉 to𝑉 satisfying the coercivity condi-
tion

(𝐴𝑦, 𝑦) ≥ 𝑤
𝑦

2

𝑉
+ 𝛼
𝑦

2

𝐻
∀𝑦 ∈ 𝑉, (5)

where 𝑤 > 0 and 𝛼 ≥ 0.

(H3) 𝛽 is a maximal monotone graph in R × R with 0 ∈
𝛽(0). Let 𝜙(𝑦) : 𝐻 → R = (−∞, +∞] be the lower
semicontinuous convex function defined by 𝜙(𝑦) =
∫
Ω
𝑗(𝑦)𝑑𝑥, where 𝑗 : R → R is such that 𝜕𝑗 = 𝛽.

Moreover,

(𝐴𝑦, 𝛽
𝜖
(𝑦)) ≥ 0 ∀𝑦 ∈ 𝐷 (𝐴) , 𝜖 > 0, (6)
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where 𝛽
𝜖
(𝑟) = 𝜖

−1
(𝑟 − (1 + 𝜖𝛽)

−1
𝑟) for all 𝜖 > 0, 𝑟 ∈ R.

For every 𝜉 ∈ 𝛽, there exists a constant 𝑐 such that

𝜉 (𝑠)
 ≤ 𝑐 (1 + |𝑠|

𝑝+1
) , (7)

where 0 ≤ 𝑝 ≤ 2/(𝑁 − 2) if 𝑁 > 2 and 0 ≤ 𝑝 <

+∞ if 𝑁 = 1, 2. 𝜕𝑗 denotes the generalized Clarke
subdifferential of the function 𝑗.

(H4) 𝐵 is a linear continuous operator from a real Hilbert
space 𝑈 to𝐻.

(H5) Let Z be a Banach space with the dual Z∗ strictly
convex. 𝑆 ⊂ Z is a closed convex subset with finite
codimensionality [1–3]. 𝐹 : 𝐿

2
(0, 𝑇; 𝑉) → Z is of

class 𝐶1.
(H6) The functional ℎ : 𝑈 → R is convex and lower

semicontinuous (l. s. c), such that

ℎ (𝑢) ≥ 𝑐
1|𝑢|

2

𝑈
+ 𝑐

2
, (8)

where 𝑐
1
> 0, 𝑐

2
∈ R, for all 𝑢 ∈ 𝑈.

(H7) 𝑔 : [0, 𝑇]×𝐻 → R+ is measurable in 𝑡, and for every
𝛿 > 0, there exists 𝐿

𝛿
> 0 independent of 𝑡 such that

𝑔(𝑡, 0) ∈ 𝐿
∞
(0, 𝑇) and

𝑔 (𝑡, 𝑦1) − 𝑔 (𝑡, 𝑦2)
 ≤ 𝐿𝛿

𝑦1 − 𝑦2
𝐻

∀𝑡 ∈ [0, 𝑇] ,

𝑦1
𝐻 +

𝑦2
𝐻 ≤ 𝛿.

(9)

Remark 1. Note that, by (H3), system (1) is equivalent to

𝑑𝑀𝑦

𝑑𝑡
+ 𝐴𝑦 + 𝜕𝜙 (𝑦 (𝑡)) ∋ 𝐵𝑢 a.e 𝑡 ∈ (0, 𝑇) ,

𝑦 (0) = 𝑦0.

(10)

As we know, by Barbu [4] (see Chapter 4) and Theorem
1.1 of [5], we have the following.

Lemma2. Let (𝐻1)–(𝐻4) hold.Then, for any 𝑦
0
∈ 𝐷(𝑀)∩𝑉,

𝑢 ∈ 𝐿
2
(0, 𝑇; 𝑈), (1) admits a unique solution 𝑦(𝑥, 𝑡) satisfying

𝑦 ∈ 𝑊
1,2
([0, 𝑇] ;𝐻) ∩ 𝐿

2
(0, 𝑇;𝐷 (𝑀) ∩ 𝑉) ∩ 𝐶 ([0, 𝑇] ;𝐻) .

(11)

Now we formulate the optimal control problems as
follows.

Let 𝐴
𝑎𝑑

= {(𝑦, 𝑢) ∈ 𝑊
1,2
([0, 𝑇];𝐻) ∩ 𝐶([0, 𝑇];𝐻) ∩

𝐿
2
(0, 𝑇;𝐷(𝑀)) × 𝐿

2
(0, 𝑇; 𝑈) | 𝑦 is the solution of (10) with

(2)}.
We will find

min 𝐿 (𝑦, 𝑢) over (𝑦, 𝑢) ∈ 𝐴
𝑎𝑑
. (P)

Recently, some optimal control problems governed by
pseudoparabolic equations have already been discussed. Lin-
ear optimal control problems for pseudoparabolic equations
were considered bymany authors (cf. [6–12]). However, these

problems studied in [7–12] do not involve state constraints
and maximal monotone graph. On the other hand, optimal
control problems governed by some parabolic variational
inequalities (cf. [4, 13–19]) have already been discussed. Li
and Yong [1] studied the maximal principle for optimal
control governed by some nonlinear parabolic equations
with two point boundary (time variable) state constraints.
In Cases’ work [20], the state constraint was considered, but
the state equation did not involve monotone graph. He [21]
studied the optimal control problems involving some special
maximal monotone graph (Lipschitz continuous) with state
constraint. Wang [2, 3] also discussed the optimal control
problem governed by the state equation involving some
maximal monotone graph.

The present work in this paper considers the optimal
control problem governed by the pseudoparabolic equations
which is different from what they discussed in [7–9, 12], with
the state constraints which is similar to those in [3, 4, 21].

The plan of this paper is as follows. Section 2 gives an
approximating control process. In Section 3, we state and
prove the necessary conditions on optimality for the problem
(P). In Section 4, some examples are given.

2. The Approximating Control Process

Let (𝑦∗, 𝑢∗) be optimal for the problem (P). Then

𝑑𝑀𝑦
∗

𝑑𝑡
+ 𝐴𝑦

∗
+ 𝜕𝜙 (𝑦

∗
(𝑡)) ∋ 𝐵𝑢

∗ a.e 𝑡 ∈ (0, 𝑇) ,

𝑦
∗
(0) = 𝑦

0
,

(12)

with

𝐹 (𝑦
∗
) ∈ 𝑆,

𝐿 (𝑦
∗
, 𝑢
∗
) = inf 𝐿 (𝑦, 𝑢) over (𝑦, 𝑢) ∈ 𝐴

𝑎𝑑
.

(13)

From a perturbation theorem for m-accretive operators
([22], Lemma 5) and (H2), (H3), we easily know that𝐶(= 𝐴+
𝛽) is m-accretive in𝐻.

Now consider the following approximating equation:

𝑑𝑀𝑦

𝑑𝑡
+ 𝐶

𝜖
𝐽
𝑀

𝜖
𝑦 = 𝐵𝑢 a.e in (0, 𝑇) ,

𝑦 (0) = 𝑦
0
,

(14)

where 𝐶
𝜖
= 𝜖

−1
(𝐼 − 𝐽

𝐶

𝜖
) and 𝐽𝐶

𝜖
= (𝐼 + 𝜖𝐶)

−1. By Lemma 2,
for any 𝑦

0
∈ 𝐷(𝑀) ∩ 𝑉, 𝑢 ∈ 𝐿2(0, 𝑇; 𝑈), (14) has a unique

solution in𝑊1,2
((0, 𝑇];𝐻) ∩ 𝐶([0, 𝑇];𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉).

Besides, we have the following result on (14).

Lemma 3. For 𝜖 > 0 given, let 𝑢
𝑛
∈ 𝐿

2
(0, 𝑇; 𝑈), 𝑢

𝑛
→

�̃� weakly in 𝐿
2
(0, 𝑇; 𝑈), and 𝑦, 𝑦

𝑛
the solutions of (14)

corresponding to �̃� and 𝑢
𝑛
, respectively. Then, there exists some

subsequence of {𝑦
𝑛
}, still denoted by itself, such that 𝑦

𝑛
→ 𝑦

strongly in 𝐶([0, 𝑇];𝐻) ∩ 𝐿2(0, 𝑇; 𝑉).
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Proof. Multiplying (14) by 𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡) and using the self-

adjointness of𝑀, we see the following:

𝑑

𝑑𝑡


𝑀

1/2

𝜖
𝑦
𝑛
(𝑡)


2

+ 2 (𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡) , 𝐽

𝑀

𝜖
𝑦
𝑛
(𝑡))

= 2 (𝐵𝑢
𝑛
, 𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡)) .

(15)

Then (H1)–(H3) yield

𝑑

𝑑𝑡


𝑀

1/2

𝜖
𝑦
𝑛 (𝑡)



2

≤ 𝑐

𝑀

1/2

𝜖
𝑦
𝑛 (𝑡)



2

+ 𝑐
𝐵𝑢𝑛


2
, (16)

where 𝑀
𝜖
= 𝜖

−1
(𝐼 − 𝐽

𝑀

𝜖
). Integrating the above inequality

from 0 to 𝑡(𝑡 ∈ (0, 𝑇]) and using Gronwall’s inequality, we see
the following:


𝑀

1/2

𝜖
𝑦
𝑛
(𝑡)


2

≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (17)

Note that from (H1),𝑀 has a bounded inverse operator
on𝐻 and

𝑎

𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡)


2

≤

𝑀

1/2
𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡)


2

≤

𝑀

1/2

𝜖
𝑦
𝑛
(𝑡)


2

. (18)

Together (17) and (18), we have the following:


𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡)


2

≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (19)

Since |V|2 = 𝜖(𝑀
𝜖
V, V) + (𝐽𝑀

𝜖
V, V) for every V ∈ 𝐻, taking

into account (17) and (19), we have the following:

𝑦𝑛 (𝑡)

2
≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (20)

Multiplying (14) by𝑀
𝜖
𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡), we see

𝑑

𝑑𝑡

𝑀𝜖
𝑦
𝑛
(𝑡)

2
+ 2 (𝐶

𝜖
𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡) ,𝑀

𝜖
𝐽
𝑀

𝜖
𝑦
𝑛
(𝑡))

= 2 (𝐵𝑢
𝑛
,𝑀

𝜖
𝐽
𝑀

𝜖
𝑦
𝑛 (𝑡)) .

(21)

Then we get the following:

𝑑

𝑑𝑡

𝑀𝜖
𝑦
𝑛 (𝑡)


2
≤ 𝑐
𝑀𝜖

𝑦
𝑛 (𝑡)


2
+ 𝑐
𝑢𝑛

2

𝑈
. (22)

Applying Gronwall’s inequality to the above inequality
and noting that {𝑢

𝑛
} is bounded, we have the following:

𝑀𝜖
𝑦
𝑛 (𝑡)

 ≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (23)

From (H2), (H3) and (18), we see

𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝑛 (𝑡)


≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (24)

Then in view of (14), (24) gives


𝑀
𝑑

𝑑𝑡
𝑦
𝑛
(𝑡)



2

≤ 𝑐 + 𝑐
𝑢𝑛

2

𝑈
; (25)

thus we see

𝑀
𝑑

𝑑𝑡
𝑦
𝑛
(𝑡)

𝑇
≤ 𝑐, (26)

which implies
𝑀𝑦𝑛 (𝑡)

 ≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] ,



𝑑

𝑑𝑡
𝑦
𝑛
(𝑡)

𝑇
≤ 𝑐.

(27)

Here, | ⋅ |
𝑇
is the norm in 𝐿2(0, 𝑇;𝐻). For every𝑚, 𝑛 > 0

𝑑

𝑑𝑡


𝑀

1/2
(𝑦
𝑚
− 𝑦

𝑛
)


2

+ 2 (𝐶
𝜖
𝐽
𝑀

𝜖
(𝑦
𝑚
− 𝑦

𝑛
) , (𝑦

𝑚
− 𝑦

𝑛
))

≤
𝑢𝑚 − 𝑢𝑛


2

𝑈
+
𝑦𝑚 − 𝑦𝑛


2
.

(28)

By some calculation, we see

𝑀

1/2
(𝑦
𝑚
− 𝑦

𝑛
)


2

≤ 𝑐
𝑢𝑚 − 𝑢𝑛


2

𝑇
∀𝑡 ∈ [0, 𝑇] . (29)

Hence {𝑀1/2
𝑦
𝑛
} and {𝑦

𝑛
} are Cauchy sequences in

𝐶([0, 𝑇];𝐻). Note that (H2); then there exists a function 𝑦 ∈
𝐶([0, 𝑇]; 𝐷(𝑀

1/2
)) such that as 𝑛 → ∞

𝑦
𝑛
→ 𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) ∩ 𝐿2 (0, 𝑇; 𝑉) ,

𝑀
1/2
𝑦
𝑛
→𝑀

1/2
𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) ∩ 𝐿2 (0, 𝑇; 𝑉) .

(30)

This completes the proof.

Next, we define the approximation 𝑔𝜖 of 𝑔 and ℎ𝜖 of ℎ as
follows. For the details, we refer to [2–4]. Let

𝑔
𝜖
(𝑡, 𝑦) = ∫

𝑅
𝑁

𝑔 (𝑡, 𝑃
𝑁
𝑦 (𝑠) − 𝜖Λ𝑁

𝑠) 𝜌 (𝑠) 𝑑𝑠, 𝜖 > 0. (31)

Here, 𝜌 is a mollifier in 𝑅𝑁, 𝑁 = [𝜖
−1
]. 𝑃

𝑁
: 𝐿

2
→

𝑋
𝑁

is the projection of 𝐿2(Ω) on 𝑋
𝑁
, which is the finite

dimensional space generated by {𝑒
𝑖
}
𝑁

𝑖=1
, where {𝑒

𝑖
}
∞

𝑖=1
is an

orthonormal basis in 𝐿2(Ω). Λ
𝑁
: 𝑅

𝑁
→ 𝑋

𝑁
is the operator

defined by Λ
𝑁
(𝑠) = ∑

𝑁

𝑖=1
𝑠
𝑖
𝑒
𝑖
, 𝑠 = (𝑠

1
, . . . , 𝑠

𝑁
).

We define ℎ
𝜖
: 𝑈 → R:

ℎ
𝜖
(𝑦) = inf {

𝑦 − 𝑥

2

𝑈

2𝜖
+ ℎ (𝑥) : 𝑥 ∈ 𝐿

2
(0, 𝑇; 𝑈)} ,

𝜖 > 0.

(32)

Now we define the penalty 𝐿
𝜖
: 𝐿

2
(0, 𝑇; 𝑈) → R by

𝐿
𝜖 (𝑢) = ∫

𝑇

0

[𝑔
𝜖
(𝑡, 𝑦

𝜖 (𝑡)) + ℎ𝜖 (𝑢)] 𝑑𝑡 +
1

2

𝑢 − 𝑢
∗
2

𝐿
2
(0,𝑇;𝑈)

+
1

2𝜖1/2
[𝜖
1/2
+ 𝑑

𝑆
(𝐹 (𝑦

𝜖
(𝑡)))]

2

,

(33)

where𝑦
𝜖
is the solution of (14).𝑑

𝑆
(𝐹(𝑦

𝜖
))denotes the distance

of 𝐹(𝑦
𝜖
) to 𝑆.

The approximating optimal control problems are as fol-
lows:

Minimize 𝐿
𝜖
(𝑢) over 𝑢 ∈ 𝐿2 (0, 𝑇; 𝑈) . (P𝜖)

From Lemma 3, we easily show the following existence of
the optimal solutions for (P𝜖) (see [2, 3]).
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Theorem 4. (P𝜖) has at least one optimal solution.

The following results are useful in discussing the approx-
imating control problems.

Lemma 5. Let 𝑢
𝜖
→ 𝑢weakly in 𝐿

2
(0, 𝑇; 𝑈) as 𝜖 → 0.Then

there exists a subsequence {𝑦
𝜖
}, still denoted itself

𝑦
𝜖
→ 𝑦 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐶 ([0, 𝑇] ;𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) , (34)

as 𝜖 → 0, where 𝑦
𝜖
is the solutions of (14) corresponding to 𝑢

𝜖

and 𝑦 is the solutions of (10) corresponding to 𝑢.

Proof. Rewrite (14) as follows:

𝑑𝑀𝑦
𝜖
(𝑡)

𝑑𝑡
+ 𝐶

𝜖
𝐽
𝑀

𝜖
𝑦
𝜖 (𝑡) = 𝐵𝑢𝜖 (𝑡) a.e in (0, 𝑇) ,

𝑦
𝜖
(0) = 𝑦

0
.

(35)

Multiplying (35) by 𝐽𝑀
𝜖
𝑦
𝜖
(𝑡), we see

𝑑

𝑑𝑡


𝑀

1/2

𝜖
𝑦
𝜖 (𝑡)



2

+ 2 (𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖 (𝑡) , 𝐽

𝑀

𝜖
𝑦
𝜖 (𝑡))

= 2 (𝐵𝑢
𝜖
, 𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡)) .

(36)

Then, (H1)–(H3) yield

𝑑

𝑑𝑡


𝑀

1/2

𝜖
𝑦
𝜖 (𝑡)



2

≤ 𝑐

𝑀

1/2

𝜖
𝑦
𝜖 (𝑡)



2

+ 𝑐
𝐵𝑢𝜖


2
. (37)

Integrating the above inequality from 0 to 𝑡(𝑡 ∈ (0, 𝑇]) and
using Gronwall’s inequality, we have the following:


𝑀

1/2

𝜖
𝑦
𝜖
(𝑡)


2

≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] , (38)

together with (18) implies


𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡)


2

≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (39)

Since |V|2 = 𝜖(𝑀
𝜖
V, V) + (𝐽𝑀

𝜖
V, V) for every V ∈ 𝐻, taking

into account (36) (39), we see

𝑦𝜖 (𝑡)

2
≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (40)

Multiplying (35) by𝑀
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡), we see

𝑑

𝑑𝑡

𝑀𝜖
𝑦
𝜖
(𝑡)

2
+ 2 (𝐶

𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡) ,𝑀

𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡))

= 2 (𝐵𝑢
𝜖
,𝑀

𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡)) .

(41)

Then we get the following:

𝑑

𝑑𝑡

𝑀𝜖
𝑦
𝜖 (𝑡)


2
≤ 𝑐
𝑀𝜖

𝑦
𝜖 (𝑡)


2
+ 𝑐
𝑢𝜖

2

𝑈
, (42)

from which it follows that
𝑀𝜖

𝑦
𝜖
(𝑡)
 ≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (43)

From (H2), (H3), and (18), we see

𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡)

≤ 𝑐. (44)

Then in view of (14) and (24) give


𝑀
𝑑

𝑑𝑡
𝑦
𝜖 (𝑡)



2

≤ 𝑐 + 𝑐
𝑢𝑛

2

𝑈
, (45)

Thus, we see

𝑀
𝑑

𝑑𝑡
𝑦
𝜖
(𝑡)

𝑇
≤ 𝑐, (46)

which implies
𝑀𝑦𝜖 (𝑡)

 ≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] , (47)


𝑑

𝑑𝑡
𝑦
𝜖
(𝑡)

𝑇
≤ 𝑐. (48)

For every𝑚, 𝑛 > 0,

𝑑

𝑑𝑡


𝑀

1/2
(𝑦

𝜖𝑚
− 𝑦

𝜖𝑛
)


2

+ 2 (𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐶

𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
, 𝑦
𝜖𝑚
− 𝑦

𝜖𝑛
)

≤

𝑢
𝜖𝑚
− 𝑢

𝜖𝑛



2

𝑈
+

𝑦
𝜖𝑚
− 𝑦

𝜖𝑛



2

,

(49)

Using the identities 𝑤 = 𝐽
𝑀

𝜖𝑚
𝑤 + 𝜖

𝑚
𝑀
𝜖𝑚
𝑤 for every 𝑤 ∈

𝐻, and so forth, we see

(𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐶

𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
, 𝑦
𝜖𝑚
− 𝑦

𝜖𝑛
)

= (𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐶

𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
, 𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐽

𝑀

𝜖𝑛
𝑦
𝜖𝑛
)

+ (𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐶

𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
, 𝜖
𝑚
𝑀
𝜖𝑚
𝑦
𝜖𝑚
− 𝜖

𝑛
𝑀
𝜖𝑛
𝑦
𝜖𝑛
)

≥ (𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐶

𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
, 𝜖
𝑚
𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝜖

𝑛
𝐶
𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
)

+ (𝐶
𝜖𝑚
𝐽
𝑀

𝜖𝑚
𝑦
𝜖𝑚
− 𝐶

𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
, 𝜖
𝑚
𝑀
𝜖𝑚
𝑦
𝜖𝑚
− 𝜖

𝑛
𝑀
𝜖𝑛
𝑦
𝜖𝑛
)

≥ −𝑐 (𝜖
𝑚
+ 𝜖

𝑛
) .

(50)

Because of (43) and (44), we obtain the following:



𝑑

𝑑𝑡
𝑀

1/2
(𝑦

𝜖𝑚
− 𝑦

𝜖𝑛
)



2

≤ 𝑐

𝑀

1/2
(𝑦

𝜖𝑚
− 𝑦

𝜖𝑛
)


2

+ 𝑐

𝑢
𝜖𝑚
− 𝑢

𝜖𝑛



2

𝑈

+ 𝑐 (𝜖
𝑚
+ 𝜖

𝑛
) ,

(51)

where 𝑐 is a constant independent of𝑚 and 𝑛.ThenGronwall’s
inequality yields


𝑀

1/2
(𝑦

𝜖𝑚
− 𝑦

𝜖𝑛
)


2

≤ 𝑐 {

𝑢
𝜖𝑚
− 𝑢

𝜖𝑛



2

𝑇
+ (𝜖

𝑚
+ 𝜖

𝑛
)}

∀𝑡 ∈ [0, 𝑇] .

(52)
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Hence, {𝑀1/2
𝑦
𝜖𝑛
} and {𝑦

𝜖𝑛
} are Cauchy sequences in

𝐶([0, 𝑇];𝐻). Note that (H2); then there exists a function
𝑦 ∈ 𝐶([0, 𝑇]; 𝐷(𝑀

1/2
)) ∩ 𝐿

2
(0, 𝑇; 𝑉) such that as 𝑛 → ∞,

𝜖
𝑛
→ 0,

𝑦
𝜖𝑛
→ 𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) ∩ 𝐿2 (0, 𝑇; 𝑉) ,

𝑀
1/2
𝑦
𝜖𝑛
→ 𝑀

1/2
𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) .

(53)

Thus, we deduce that as 𝜖
𝑛
→ 0,

𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
→ 𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) , (54)

Note that

𝑀
1/2
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
→ 𝑀

1/2
𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) . (55)

Indeed, we see


𝑀

1/2
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
−𝑀

1/2
𝑦


2

≤ 2

𝑀

1/2
(𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
− 𝑦

𝜖𝑛
)


2

+

𝑀

1/2
(𝑦

𝜖𝑛
− 𝑦)



2

= −2𝜖
𝑛
(𝑀

𝜖𝑛
𝑦
𝜖𝑛
,𝑀

𝜖𝑛
𝑦
𝜖𝑛
−𝑀𝑦

𝜖𝑛
) +


𝑀

1/2
(𝑦

𝜖𝑛
− 𝑦)



2

≤ 𝑐𝜖
𝑛
+

𝑀

1/2
(𝑦

𝜖𝑛
− 𝑦)



2

→ 0,

(56)

for all 𝑡 ∈ [0, 𝑇]. From (43) and (46), {𝑀
𝜖𝑛
𝑦
𝜖𝑛
} is uniformly

bounded and equicontinuous in 𝐶([0, 𝑇];𝐻). Hence the
Ascoli-Arzela theorem gives that as 𝜖

𝑛
→ 0, for every V ∈

𝐻, (𝑀
𝜖𝑛
𝑦
𝜖𝑛
, V) → (𝑀𝑦, V) strongly in 𝐶([0, 𝑇]). In virtue of

(46) and (48), weak closedness of 𝑑/𝑑𝑡, and 𝑀, it is shown
that

𝑑𝑦
𝜖𝑛

𝑑𝑡
→

𝑑𝑦

𝑑𝑡
weakly in 𝐿2 (0, 𝑇;𝐻) ,

𝑀𝑑𝑦
𝜖𝑛

𝑑𝑡
→

𝑀𝑑𝑦

𝑑𝑡
weakly in 𝐿2 (0, 𝑇;𝐻) .

(57)

Therefore, 𝑦 ∈ 𝐴𝐶([0, 𝑇]; 𝐷(𝑀)) and 𝑑𝑦/𝑑𝑡 ∈ 𝐿
2
(0,

𝑇;𝐷(𝑀)). By 𝐴𝐶([0, 𝑇];𝐻]), we denote the space of all 𝐻-
valued strongly absolutely continuous functions on [0, 𝑇].We
easily get that 𝑦(𝑡) ∈ 𝐷(𝐶) a.e. 𝑡 ∈ (0, 𝑇) and there exists a
function 𝜉 ∈ 𝐿∞(0, 𝑇;𝐻) such that as 𝜖

𝑛
→ 0,

𝐶
𝜖𝑛
𝐽
𝑀

𝜖𝑛
𝑦
𝜖𝑛
→ 𝜉 weakly star in 𝐿∞ (0, 𝑇;𝐻) , (58)

and 𝜉(𝑡) ∈ 𝐶𝑦 = 𝐴𝑦 + 𝛽(𝑦) a.e. 𝑡 ∈ (0, 𝑇). Thus, letting
𝜖
𝑛
→ 0 in (35), we see

𝑑𝑀𝑦 (𝑡)

𝑑𝑡
+ 𝐴𝑦 + 𝜉 (𝑡) = 𝐵𝑢 (𝑡) a.e in (0, 𝑇) ,

𝑦 (0) = 𝑦
0
.

(59)

Lemma 6. Let 𝑦
0
∈ 𝐷(𝑀) ∩ 𝑉, 𝑢 ∈ 𝐿

2
(0, 𝑇; 𝑈); then

𝑦
𝜖
→ 𝑦 strongly in 𝐶([0, 𝑇];𝐻) as 𝜖 → 0, where 𝑦

𝜖
is

the solutions of (14) corresponding to 𝑢 and 𝑦 is the solutions
of (1) corresponding to 𝑢 with the initial condition 𝑦(0) = 𝑦

0
.

Furthermore,
𝑦𝜖 − 𝑦

𝐶([0,𝑇];𝐻) ≤ 𝑐𝜖
1/2
. (60)

Proof. By the same argument in the proof of Lemma 5, we
have the following:

𝑦
𝜖
→ 𝑦 strongly in 𝐶 ([0, 𝑇] ;𝐻) ∩ 𝐿2 (0, 𝑇; 𝑉) . (61)

We have for all 𝜖 and 𝜆,
𝑑𝑀(𝑦

𝜖
(𝑡) − 𝑦

𝜆
(𝑡))

𝑑𝑡
+ 𝐶

𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
(𝑡) − 𝐶

𝜆
𝐽
𝑀

𝜆
𝑦
𝜆
(𝑡) = 0

a.e in (0, 𝑇) ,

𝑦
𝜖 (0) − 𝑦𝜆 (0) = 0.

(62)

Multiplying (62) by 𝑦
𝜖
(𝑡) − 𝑦

𝜆
(𝑡), we have

𝑑

𝑀

1/2
(𝑦
𝜖
(𝑡) − 𝑦

𝜆
(𝑡))


2

𝑑𝑡

+ 2 (𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖 (𝑡) − 𝐶𝜆𝐽

𝑀

𝜆
𝑦
𝜆 (𝑡) , 𝑦𝜖 (𝑡) − 𝑦𝜆 (𝑡)) = 0.

(63)

Using the identities 𝑤 = 𝐽𝑀
𝜖
𝑤 + 𝜖𝑀

𝜖
𝑤 for every 𝑤 ∈ 𝐻,

and so forth, we get the following:

(𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
− 𝐶

𝜆
𝐽
𝑀

𝜆
𝑦
𝜆
, 𝑦
𝜖
− 𝑦

𝜆
)

= (𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
− 𝐶

𝜆
𝐽
𝑀

𝜆
𝑦
𝜆
, 𝐽
𝑀

𝜖
𝑦
𝜖
− 𝐽

𝑀

𝜆
𝑦
𝜆
)

+ (𝐶
𝜖
𝐽
𝑀

𝜖
𝑦
𝜖
− 𝐶

𝜆
𝐽
𝑀

𝜆
𝑦
𝜆
, 𝜖𝑀

𝜖
𝑦
𝜖
− 𝜆𝑀

𝜆
𝑦
𝜆
)

≥ −𝑐 (𝜖 + 𝜆) .

(64)

Thus, we see

𝑑

𝑀

1/2
(𝑦
𝜖
(𝑡) − 𝑦

𝜆
(𝑡))


2

𝑑𝑡
≤ 𝑐 (𝜖 + 𝜆) ;

(65)

then

𝑀

1/2
(𝑦
𝜖
(𝑡) − 𝑦

𝜆
(𝑡))


2

𝐶([0,𝑇];𝐻)
≤ 𝑐 (𝜖 + 𝜆) . (66)

Because of (61), letting 𝜆 → 0 in (66), we get (60).

Lemma 7. Let 𝑢
𝜖
be optimal for the problem (P𝜖) and 𝑦

𝜖
be

the solution of (14) corresponding to 𝑢
𝜖
. For 𝜖 → 0, then

𝑦
𝜖
→ 𝑦

∗
𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐶 ([0, 𝑇] ;𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) ,

𝑢
𝜖
→ 𝑢

∗
𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿

2
(0, 𝑇; 𝑈) .

(67)

Proof. For any 𝜖 > 0, we have the following:

𝐿
𝜖
(𝑢
𝜖
) ≤ 𝐿

𝜖
(𝑢
∗
)

= ∫

𝑇

0

[𝑔
𝜖
(𝑡, 𝑦

𝜖
(𝑡)) + ℎ

𝜖
(𝑢
∗
(𝑡))] 𝑑𝑡

+
1

2𝜖1/2
[𝜖
1/2
+ 𝑑

𝑆
(𝐹 (𝑦

𝜖
(𝑡)))]

2

.

(68)
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By Lemma 5, we know 𝑦
𝜖
→ 𝑦

∗
strongly in 𝐶([0, 𝑇];𝐻).

So we have the following:

𝑔
𝜖
(𝑡, 𝑦

𝜖
) → 𝑔 (𝑡, 𝑦

∗
) ∀𝑡 ∈ [0, 𝑇] ,

ℎ
𝜖
(𝑢
𝜖
) → ℎ (𝑢

∗
) .

(69)

So

lim
𝜖→0

∫

𝑇

0

𝑔
𝜖
(𝑡, 𝑦

𝜖 (𝑡)) 𝑑𝑡 = ∫

𝑇

0

𝑔 (𝑡, 𝑦
∗ (𝑡)) 𝑑𝑡,

lim
𝜖→0

∫

𝑇

0

ℎ
𝜖
(𝑢
∗ (𝑡)) 𝑑𝑡 = ∫

𝑇

0

ℎ (𝑢
∗ (𝑡)) 𝑑𝑡.

(70)

Similarly, by (60) and (H5), we obtain the following:

1

2𝜖1/2
[𝜖
1/2
+ 𝑑

𝑆
(𝐹 (𝑦

𝜖
))]

2

≤
1

2𝜖1/2
[𝜖
1/2
+
𝐹 (𝑦𝜖) − 𝐹 (𝑦∗)

𝑍]
2

≤ 𝑐𝜖 → 0 as 𝜖 → 0.

(71)

Then, we get the following:

lim sup
𝜖→0

𝐿
𝜖
(𝑢
𝜖
) ≤ 𝐿 (𝑢

∗
) . (72)

On the other hand, since {𝑢
𝜖
} is bounded in 𝐿2(0, 𝑇; 𝑈),

there exists 𝑢
1
∈ 𝐿

2
(0, 𝑇; 𝑈) such that, on some subsequence

𝜖, still denoted by itself, as 𝜖 → 0,

𝑢
𝜖
→ 𝑢

1
weakly in 𝐿

2
(0, 𝑇; 𝑈) , (73)

and so, by Lemma 5,

𝑦
𝜖
→ 𝑦

1
= 𝑦 (𝑢

1
) strongly in 𝐶 (0, 𝑇;𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) .

(74)

By (66), one can check easily that

1

2𝜖1/2
[𝜖
1/2
+ 𝑑

𝑆
(𝐹 (𝑦

𝜖
))]

2

≤ 𝑐. (75)

Thus, 𝑑
𝑆
(𝐹(𝑦

𝜖
)) → 0 as 𝜖 → 0. Since 𝑆 is closed and

convex, 𝐹(𝑦
1
) = lim

𝜖→0
𝐹(𝑦

𝜖
) ∈ 𝑆. Since the function 𝑢 →

∫
𝑇

0
ℎ(𝑢)𝑑𝑡 is weakly lower semicontinuous on 𝐿2(0, 𝑇; 𝑈), we

see

lim inf
𝜖→0

𝐿
𝜖
(𝑢
𝜖
) ≥ 𝐿 (𝑢

1
) ≥ 𝐿 (𝑢

∗
) . (76)

Together with (72), we obtain

lim
𝜖→0

𝐿
𝜖
(𝑢
𝜖
) = 𝐿 (𝑢

∗
) . (77)

Therefore,

lim
𝜖→0

∫

𝑇

0

𝑢𝜖 − 𝑢∗

2

𝑈
𝑑𝑡 = 0. (78)

Hence, 𝑦
1
= 𝑦

∗
, 𝑢

1
= 𝑢

∗
. This completes the proof.

3. Necessary Condition on Optimality

Let 𝜕𝑔 the generalized gradient of 𝑦 → 𝑔(𝑡, 𝑦). Let 𝑌∗ =
(𝐻

𝑠
(Ω))


+ 𝑉

 which is the dual of 𝑌 = 𝐻𝑠
(Ω) ∩ 𝑉 with 𝑠 >

𝑁/2.
Firstly, we consider the following Cauchy problem:

𝑑𝑀𝑝
𝜖

𝑑𝑡
− 𝐴𝑝

𝜖
− ̇𝛽

𝜖
(𝑦
𝜖
) 𝑝

𝜖
− [𝐹


(𝑦
𝜖
)]
∗

𝜉
𝜖

= 𝜆
𝜖
∇𝑔

𝜖
(𝑡, 𝑦

𝜖
) in (0.𝑇) ,

𝑝
𝜖
(𝑇) = 0,

(79)

where ̇𝛽
𝜖
= (𝛽

𝜖
)
, 𝛽

𝜖
= 𝜖

−1
(𝐼 − (𝐼 + 𝜖𝛽)

−1
), 𝛽𝜖 = ∫∞

−∞
[𝛽
𝜖
(𝑟 −

𝜖
2
𝜃)−𝛽

𝜖
(−𝜖

2
𝜃)]𝜌(𝜃)𝑑𝜃+𝛽

𝜖
(0), and 𝜌 is a 𝐶∞

0
-mollifier onR.

Lemma 8. Problem (79) has a unique absolutely continuous
function 𝑝

𝜖
∈ 𝐿

2
(0, 𝑇; 𝑉)∩𝐶([0, 𝑇];𝐻)with 𝑝

𝜖
∈ 𝐿

2
(0, 𝑇; 𝑉


),

such that

𝑝𝜖 (𝑡)

2

2
+ ∫

𝑇

0

𝑝𝜖 (𝑡)

2

𝑉
𝑑𝑡 ≤ 𝑐 ∀𝜖 > 0, 𝑡 ∈ [0, 𝑇] , (80)

∫
𝑄


𝑝
𝜖
̇𝛽
𝜖
(𝑦
𝜖
)

𝑑𝑥 𝑑𝑡 ≤ 𝑐 ∀𝜖 > 0. (81)

Proof. From (H1)–(H3) and ̇𝛽
𝜖
(𝑦
𝜖
) ≥ 0, it is seen that 𝐶 =

𝑀
−1
(𝐴 + ̇𝛽

𝜖
(𝑦
𝜖
)) : 𝑉 → 𝑉

 is demicontinuous monotone
operator that satisfies

(𝐶𝜔, 𝜔) ≥ 𝑤‖𝜔‖
𝑝
+ 𝑐 ∀𝜔 ∈ 𝑉,

‖𝐶𝜔‖∗ ≤ 𝑐 (1 + ‖𝜔‖
𝑝−1
) ,

(82)

where𝑤 > 0 and 𝑝 ≥ 2. It follows byTheorem 1.9 of [4] that
(79) has a unique solution𝑝

𝜖
∈ 𝐿

2
(0, 𝑇; 𝑉)∩𝐶([0, 𝑇];𝐻)with

𝑝


𝜖
∈ 𝐿

2
(0, 𝑇; 𝑉


). Multiplying (79) by 𝐽𝑀

𝜖
𝑝
𝜖
(𝑡) and using the

self-adjointness of𝑀 and integrating over [𝑡, 𝑇], we see


𝑀

1/2

𝜖
𝑝
𝜖
(𝑡)


2

+ 𝑤∫

𝑇

𝑡

𝑝𝜖(𝑠)

2

𝑉
𝑑𝑠 ≤ 𝑐∫

𝑇

𝑡


𝑀

1/2

𝜖
𝑝
𝜖
(𝑠)


2

𝑑𝑠 + 𝑐,

(83)

Because of 𝑎|𝐽𝑀
𝜖
𝑝
𝜖
(𝑡)|

2
≤ |𝑀

1/2
𝐽
𝑀

𝜖
𝑝
𝜖
(𝑡)|

2
≤ |𝑀

1/2

𝜖
𝑝
𝜖
(𝑡)|

2,
|𝜆
𝜖
∇𝑔

𝜖
(𝑡, 𝑦

𝑛
)|
𝐿
∞
(0,𝑇;𝐻)

≤ 𝑐 and |[𝐹(𝑦
𝜖
)]
∗
𝜉
𝜖
|
𝐿
2
(0,𝑇;𝑉


)
≤ 𝑐. And

so by Gronwall’s lemma we obtain the following:


𝑀

1/2

𝜖
𝑝
𝜖
(𝑡)


2

2
+ ∫

𝑇

0

𝑝𝜖(𝑠)

2

𝑉
𝑑𝑠 ≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (84)

Combining the above equalities, we see


𝐽
𝑀

𝜖
𝑝
𝜖 (𝑡)



2

2
≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (85)

Since 𝑤 = 𝐽𝑀
𝜖𝑚
𝑤 + 𝜖

𝑚
(𝑀

𝜖𝑚
𝑤,𝑤) for every 𝑤 ∈ 𝐻, taking

into account the above equalities, we have the following:

𝑝𝜖 (𝑡)

2

2
≤ 𝑐 ∀𝑡 ∈ [0, 𝑇] . (86)
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Thus, we obtain (80).
Multiplying (79) by 𝜁(𝑝

𝜖
) and integrate on𝑄, where 𝜁 is a

smooth monotonically increasing approximation of the sign
function such that 𝜁(0) = 0. For instance

𝜁 = 𝜁
𝜆
(𝑟) = ∫

∞

−∞

(𝜁
𝜆
(𝑟 − 𝜆𝜃) − 𝜁

𝜆
(−𝜆𝜃)) 𝜌 (𝜃) 𝑑𝜃, (87)

where 𝜁
𝜆
(𝑟) = 𝑟|𝑟|

−1 for |𝑟| ≥ 𝜆, 𝜁
𝜆
(𝑟) = 𝜆

−1
𝑟 for |𝑟| < 𝜆, and

𝜌 is a 𝐶∞
0
-mollifier. Then (𝐴𝑝

𝜖
(𝑡), 𝜁(𝑝

𝜖
(𝑡))) ≥ 0; therefore,

∫
𝑄

̇𝛽
𝜖
(𝑦
𝜖
) 𝜁 (𝑝

𝜖
) 𝑝

𝜖
𝑑𝑥 𝑑𝑡 ≤ ∫

𝑄


∇
𝑦
𝑔
𝜖
(𝑡, 𝑦

𝜖
) 𝜁 (𝑝

𝜖
)

𝑑𝑥 𝑑𝑡,

∀𝜖 > 0.

(88)

Then, letting 𝜁 tend to the sign function, we get (81).

We state the main results of the necessary conditions on
optimality as follows.

Theorem 9. Suppose that (𝐻1)–(𝐻7) hold. Let (𝑦
∗
, 𝑢
∗
) be

an optimal pair of problem (P). Then, there exists function
𝑝 ∈ 𝐿

∞
(0, 𝑇;𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) ∩ 𝐵𝑉([0, 𝑇]; 𝑌

∗
), a measure

𝜇 ∈ (𝐿
∞
(𝑄))

, 𝜆
0
∈ R, 𝜉

0
∈ Z∗ satisfying

𝑑

𝑑𝑡
𝑀𝑝 − 𝐴𝑝 − 𝜇 − [𝐹


(𝑦
∗
)]
∗

𝜉
0
∈ 𝐿

∞
(0, 𝑇;𝐻) ,

𝑑

𝑑𝑡
𝑀𝑝 (𝑡) − 𝐴𝑝 (𝑡) − 𝜇 − [𝐹


(𝑦
∗
)]
∗

× 𝜉
0
∈ 𝜆

0
𝜕𝑔 (𝑡, 𝑦

∗
) 𝑎.𝑒.𝑖𝑛 (0, 𝑇) ,

𝑝 (𝑇) = 0,

⟨𝜉
0
, 𝑤 − 𝐹 (𝑦

∗
)⟩ ≤ 0 ∀𝑤 ∈ 𝑆,

𝐵
∗
𝑝 ∈ 𝜆

0
𝜕ℎ (𝑢

∗
(𝑡)) , 𝑎.𝑒. 𝑡 ∈ (0, 𝑇) ,

(𝜆
0
, 𝜉
0
) ̸= 0.

(89)

Proof. Since (𝑦
𝜖
, 𝑢
𝜖
) is optimal for problem (P𝜖), we see

𝐿
𝜖
(𝑢
𝜌

𝜖
) ≥ 𝐿

𝜖
(𝑢
𝜖
) for any 𝜌 > 0, V ∈ 𝐿2 (0, 𝑇; 𝑉) . (90)

Here 𝑢𝜌
𝜖
= 𝑢

𝜖
+ 𝜌V. Thus,

𝐿
𝜖
(𝑢
𝜌

𝜖
) − 𝐿

𝜖
(𝑢
𝜖
)

𝜌
≥ 0. (91)

By some calculation, we have the following:

lim
𝜌→0

∫

𝑇

0

𝑔
𝜖
(𝑡, 𝑦

𝜌

𝜖
(𝑡)) − 𝑔

𝜖
(𝑡, 𝑦

𝜖
(𝑡))

𝜌

= ∫

𝑇

0

(∇𝑔
𝜖
(𝑡, 𝑦

𝜖
(𝑡)) , 𝑧

𝜖
) 𝑑𝑡,

(92)

where 𝑧
𝜖
∈ 𝐶([0, 𝑇];𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) ∩ 𝑊

1,2
([0, 𝑇];𝐻) is the

following solution to the linear equation
𝑑𝑀𝑧

𝑑𝑡
+ 𝐴𝑧 + ̇𝛽

𝜖
(𝑦
𝜖
) 𝑧 = 𝐵V in (0, 𝑇) ,

𝑧 (0) = 0.

(93)

Hence, we also have the following:

𝜆
𝜖
[∫

𝑇

0

⟨∇𝑔
𝜖
(𝑡, 𝑦

𝜖
) , 𝑧

𝜖
⟩ 𝑑𝑡 + ∫

𝑇

0

⟨∇ℎ
𝜖
(𝑢
𝜖
) , V⟩ 𝑑𝑡]

+ ⟨𝜉
𝜖
, 𝐹


(𝑦
𝜖
) 𝑧

𝜖
⟩ ≥ ∫

𝑇

0

⟨𝑢
∗
− 𝑢

𝜖
, V⟩𝑑𝑡,

(94)

where

𝜆
𝜖
=

𝜖
1/2

𝑑
𝑆
(𝐹 (𝑦

𝜖
)) + 𝜖1/2

,

𝜉
𝜖
= {

∇𝑑
𝑆
(𝐹 (𝑦

𝜖
)) , if 𝐹 (𝑦𝜖) ∉ 𝑆,

0 otherwise,

(95)

and 𝜉
𝜖
∈ 𝜕𝑑

𝑆
(𝐹(𝑦

𝜖
)). Since 𝑆 is convex and closed, we see

𝜉𝜖
𝑍∗ = {

1, if 𝐹 (𝑦𝜖) ∉ 𝑆,

0 otherwise,

1 ≤ 𝜑
2

𝜖
+
𝜉𝜖

2

𝑍
∗ ≤ 2.

(96)

So, we see

𝜆
𝜖
→ 𝜆

0
, 𝜉

𝜖
→ 𝜉

0
weakly in 𝑍∗. (97)

It follows from Lemma 7 that 𝑦
𝜖

→ 𝑦
∗

strongly in
𝐶([0, 𝑇];𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉). By the same arguments as those

in [2–4], there exists 𝑝 ∈ 𝐶([0, 𝑇];𝐻) ∩ 𝐿
2
(0, 𝑇; 𝑉) ∩

𝐵𝑉([0, 𝑇]; 𝑌
∗
) and 𝜇 ∈ (𝐿

∞
(𝑄))

∗ such that, on some
subsequence 𝜖, still denoted itself

𝑝
𝜖 (𝑡) → 𝑝 strongly in 𝑌∗, ∀𝑡 ∈ [0, 𝑇] , (98)

where 𝐵𝑉([0, 𝑇]; 𝑌∗) is the space of all 𝑌∗-valued functions
𝑝 : [0, 𝑇] → 𝑌

∗ with bounded variation on [0, 𝑇]. On the
other hand, by (80), we see

𝑝
𝜖
→ 𝑝 weakly star in 𝐿∞ (0, 𝑇;𝐻) ,

weakly in 𝐿2 (0, 𝑇; 𝑉) .
(99)

Note that 𝑉 → 𝐻 is compact, for every 𝜆 > 0, there is
𝛿(𝜆) > 0 such that
𝑝𝜖 (𝑡) − 𝑝 (𝑡)

2 ≤
𝑝𝜖 (𝑡) − 𝑝 (𝑡)

𝑉 + 𝛿 (𝜆)
𝑝𝜖 (𝑡) − 𝑝 (𝑡)

𝑌∗

∀𝑡 ∈ [0, 𝑇] .

(100)

This yields

𝑝
𝜖
→ 𝑝 strongly in 𝐿2 (0, 𝑇;𝐻) ,

𝑝
𝜖
(𝑡) → 𝑝 (𝑡) weakly in 𝐻 ∀𝑡 ∈ [0, 𝑇] .

(101)

Moreover, by (81) we infer that there is𝜇 ∈ (𝐿∞(𝑄))∗ such
that, on some generalized subsequence 𝜖,

̇𝛽
𝜖
(𝑦
𝜖
) 𝑝

𝜖
→ 𝜇 weakly star in (𝐿∞ (𝑄))∗,

∇𝑔
𝜖
(𝑡, 𝑦

𝜖
) → 𝜂 weakly star in 𝐿∞ (0, 𝑇;𝐻) )∗,

𝜂 (𝑡) ∈ 𝜕𝑔 (𝑡, 𝑦
∗
) a.e. 𝑡 ∈ (0, 𝑇) .

(102)
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Since 𝐹 is continuously differentiable from 𝐿
2
(0, 𝑇; 𝑉) to

𝑍,

[𝐹

(𝑦
𝜖
)]
∗

𝜉
𝜖
→ [𝐹


(𝑦
∗
)]
∗

𝜉
0

weakly 𝐿2 (0, 𝑇; 𝑉) .
(103)

Now letting 𝜖 → 0 in (79), it follows that

𝑑

𝑑𝑡
𝑀𝑝 − 𝐴𝑝 − 𝜇 − [𝐹


(𝑦
∗
)]
∗

𝜉
0
∈ 𝐿

∞
(0, 𝑇;𝐻) , (104)

𝑑

𝑑𝑡
𝑀𝑝 (𝑡) − 𝐴𝑝 (𝑡) − 𝜇 − [𝐹


(𝑦
∗
)]
∗

× 𝜉
0
∈ 𝜆

0
𝜕𝑔 (𝑡, 𝑦

∗
) a.e. in (0, 𝑇) ,

𝑝 (𝑇) = 0.

(105)

It follows from (93), (94), and (79) that

− ∫

𝑇

0

⟨𝐵
∗
𝑝
𝜖
, V⟩𝑑𝑡 + 𝜆

𝜖
∫

𝑇

0

⟨∇ℎ
𝜖
(𝑢
𝜖
) , V⟩𝑑𝑡

≥ ∫

𝑇

0

⟨𝑢
∗
− 𝑢

𝜖
, V⟩𝑑𝑡, ∀V ∈ 𝐿2 (0, 𝑇; 𝑉) .

(106)

By Lemma 7, 𝑢
𝜖
→ 𝑢

∗
strongly in 𝐿2(0, 𝑇; 𝑈), it follows

∫

𝑇

0

⟨∇ℎ
𝜖
(𝑢
𝜖
) , V⟩ 𝑑𝑡 → ∫

𝑇

0

⟨∇𝜁 (𝑡) , V⟩ 𝑑𝑡,

𝜁 (𝑡) ∈ 𝜕ℎ (𝑢
∗
) a.e. in (0, 𝑇) , ∀V ∈ 𝐿2 (0, 𝑇; 𝑉) .

(107)

Thus,

− ∫

𝑇

0

⟨𝐵
∗
𝑝, V⟩ 𝑑𝑡 + 𝜆

0
∫

𝑇

0

⟨𝜁 (𝑡) , V⟩ 𝑑𝑡 ≥ 0,

∀V ∈ 𝐿2 (0, 𝑇; 𝑉) .

(108)

Since 𝜉
𝜖
∈ 𝑑

𝑆
(𝐹(𝑦

𝜖
)), we get ⟨𝜉

𝜖
, 𝑤 − 𝐹(𝑦

𝜖
)⟩ ≤ 0 for all

𝑤 ∈ 𝑆. Now we claim that (𝜆
0
, 𝜉
0
) ̸= 0. Indeed, if 𝜆

0
= 0,

we have that {𝜉
𝜖
} is bounded in 𝑍∗. By (H3), 𝑆 has finite

codimentionality, so dose 𝑆 − 𝐹(𝑦∗). Thus, it follows that
𝜉
𝜖
→ 𝜉

0
weakly in 𝑍∗ and

⟨𝜉
0
, 𝑤 − 𝐹 (𝑦

∗
)⟩ ≤ 0 ∀𝑤 ∈ 𝑆. (109)

Finally, if (𝜆
0
, 𝑝) = 0, it follows from (105) that 𝜇 +

[𝐹

(𝑦
∗
)]
∗
𝜉
0
= 0. So in the case that 𝜇 ∉ 𝑅([𝐹(𝑦∗)]∗), we

must have (𝜆
0
, 𝑝) ̸= 0. Together with (104), (105), and (109),

we completes the proof.

4. Some Examples

In this section, we present two examples.

Example 1. Consider the initial value controlled system

𝑦
𝑡
− 𝑦

𝑥𝑥𝑡
+ 𝑦𝑦

𝑥
+ 𝛽 (𝑦) ∋ 𝐵𝑢 in (0, 1) × [0, 𝑇] ,

𝑦 (0, 𝑡) = 𝑦 (1, 𝑡) = 0 𝑡 ∈ [0, 𝑇] ,

𝑦 (𝑥, 0) = 𝑦
0

in (0, 1) ,

(110)

where 1 𝑦 = 𝑦(𝑥, 𝑡) is a function on R × [0, 𝑇] and 𝛽(⋅) is a
multivalued function on R.

If 𝛽(𝑦) = 0, rewrite (110) in the form

𝑦
𝑡
− 𝑦

𝑥𝑥𝑡
+ 𝑦𝑦

𝑥
= 𝐵𝑢 in (0, 1) × [0, 𝑇] ,

𝑦 (0, 𝑡) = 𝑦 (1, 𝑡) = 0 𝑡 ∈ [0, 𝑇] ,

𝑦 (𝑥, 0) = 𝑦
0

in (0, 1) .

(111)

(111) was introduced by Benjamin et al. [23] as an approximate
equation of the propagation of one-dimensional waves of
small amplitude in water. If 𝑦

𝑥
≥ 0, 𝛽(⋅) satisfies (H3). 𝑦

0
∈

𝐻
2
((0, 1))∩𝐻

1

0
((0, 1)). Since 𝛽

𝜖
is a Lipschitz continuous and

monotone increasing function, integration by parts yields

∫
R

𝛽
𝜖
(𝑦) (𝐼 −

𝑑
2

𝑑𝑥2
)𝑦𝑑𝑥 ≥ 0 for every 𝑦 ∈ 𝐻2

(R) .

(112)

Thus, 𝐶(= 𝐴+𝛽) is m-accretive in𝐻. We easily proof the
following result.

Theorem 10. Suppose that (𝐻1)–(𝐻7) hold. Let (𝑦
∗
, 𝑢
∗
) be

an optimal pair of problem (P). Then there exists function
𝑝 ∈ 𝐿

∞
(0, 𝑇;𝐻) ∩ 𝐿

2
(0, 𝑇; 𝑉) ∩ 𝐵𝑉([0, 𝑇]; 𝑌

∗
), a measure

𝜇 ∈ (𝐿
∞
(𝑄))

 and 𝑅 with 𝜆
0
, 𝜉
0
satisfying

(𝐼 −
𝑑
2

𝑑𝑥2
)
𝑑

𝑑𝑡
𝑝 − 𝑦𝑝

𝑥
− 𝜇 − [𝐹


(𝑦
∗
)]
∗

× 𝜉
0
∈ 𝐿

∞
(0, 𝑇;𝐻) ,

(𝐼 −
𝑑
2

𝑑𝑥2
)
𝑑

𝑑𝑡
𝑝 − 𝑦𝑝

𝑥
− 𝜇 − [𝐹


(𝑦
∗
)]
∗

× 𝜉
0
∈ 𝜆

0
𝜕𝑔 (𝑡, 𝑦

∗
) 𝑎.𝑒.𝑖𝑛 (0, 1) × [0, 𝑇] ,

𝑝 (0, 𝑡) = 𝑝 (1, 𝑡) = 0 𝑖𝑛 [0, 𝑇] ,

𝑝 (𝑥, 𝑇) = 0 𝑖𝑛 (0, 1) .

⟨𝜉
0
, 𝑤 − 𝐹 (𝑦

∗
)⟩ ≤ 0 ∀𝑤 ∈ 𝑆,

𝐵
∗
𝑝 ∈ 𝜆

0
𝜕ℎ (𝑢

∗
) (𝑡) , 𝑎.𝑒. 𝑡 ∈ (0, 𝑇) ,

(𝜆
0
, 𝜉
0
) ̸= 0.

(113)

Example 2. Consider the initial boundary value controlled
system

(𝐼 − Δ)
𝑑𝑦 (𝑥, 𝑡)

𝑑𝑡
− Δ𝑦 (𝑥, 𝑡) + 𝛽 (𝑦 (𝑥, 𝑡)) ∋ 𝐵𝑢 (𝑥, 𝑡)

in Ω × [0, 𝑇] ,

𝑦 (𝑥, 𝑡) = 0 on 𝜕Ω × [0, 𝑇] ,

𝑦 (𝑥, 0) = 𝑦0 inΩ,

(114)

whereΩ ⊂ R𝑁 is a bounded domain with smooth boundary.
𝑦
0
∈ 𝐻

1

0
(Ω) ∩𝐻

2
(Ω), 𝛽(⋅) satisfies (H3). 𝑀𝑦 = (𝐼 − Δ)𝑦 with
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𝐷(𝑀) = 𝐻
1

0
(Ω) ∩ 𝐻

2
(Ω), 𝐴𝑦 = −Δ𝑦. Since 𝛽

𝜖
is a monotone

function,

∫
Ω

𝛽
𝜖
(𝑦) (−Δ𝑦) 𝑑𝑥 ≥ 0, for every 𝑦 ∈ 𝐻2

0
(Ω) ∩ 𝐻

2
(Ω) .

(115)

Then, 𝐶(= 𝐴 + 𝛽) is m-accretive in 𝐻. We easily obtain
similar necessary condition of optimality of problem (P).
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