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Circulant matrices may play a crucial role in solving various differential equations. In this paper, the techniques used herein are
based on the inverse factorization of polynomial.We give the explicit determinants of the RFP𝑟L𝑟R circulantmatrices and RLP𝑟F𝑟L
circulant matrices involving Fibonacci, Lucas, Pell, and Pell-Lucas number, respectively.

1. Introduction

It has been found out that circulant matrices play an impor-
tant role in solving differential equations in various fields such
as Lin and Yang discretized the partial integrodifferential
equation (PIDE) in pricing options with the preconditioned
conjugate gradient (PCG) method, where constructed the
circulant preconditioners. By using the FFT, the cost for
each linear system is 𝑂(𝑛 log 𝑛) where 𝑛 is the size of the
system in [1]. Lei and Sun [2] proposed the preconditioned
CGNR (PCGNR) method with a circulant preconditioner
to solve such Toeplitz-like systems. Kloeden et al. adopted
the simplest approximation schemes for (1) in [3] with the
Euler method, which reads (5) in [3]. They exploited that
the covariance matrix of the increments can be embedded
in a circulant matrix. The total loops can be done by fast
Fourier transformation, which leads to a total computational
cost of 𝑂(𝑚 log𝑚) = 𝑂(𝑛 log 𝑛). By using a Strang-type
block-circulant preconditioner, Zhang et al. [4] speeded up
the convergent rate of boundary-value methods. In [5], the
resulting dense linear system exhibits so much structure that
it can be solved very efficiently by a circulant preconditioned
conjugate gradient method. Ahmed et al. used coupled map
lattices (CML) as an alternative approach to include spatial
effects in FOS. Consider the 1-system CML (10) in [6]. They
claimed that the system is stable if all the eigenvalues of
the circulant matrix satisfy (2) in [6]. Wu and Zou in [7]

discussed the existence and approximation of solutions of
asymptotic or periodic boundary-value problems of mixed
functional differential equations.They focused on (5.13) in [7]
with a circulant matrix, whose principal diagonal entries are
zeroes.

Circulant matrix family have important applications in
various disciplines including image processing, communica-
tions, signal processing, encoding, and preconditioner. They
have been put on firm basis with the work of Davis [8] and
Jiang and Zhou [9]. The circulant matrices, long a fruitful
subject of research, have in recent years been extended in
many directions [10–13]. The 𝑓(𝑥)-circulant matrices are
another natural extension of this well-studied class and can
be found in [14–20]. The 𝑓(𝑥)-circulant matrix has a wide
application, especially on the generalized cyclic codes in [14].
The properties and structures of the 𝑥𝑛 − 𝑟𝑥 − 𝑟-circulant
matrices, which are called RFP𝑟L𝑟R circulant matrices, are
better than those of the general 𝑓(𝑥)-circulant matrices, so
there are good algorithms for determinants.

There are many interests in properties and generalization
of some special matrices with famous numbers. Jaiswal
evaluated some determinants of circulant whose elements
are the generalized Fibonacci numbers [21]. Dazheng gave
the determinant of the Fibonacci-Lucas quasicyclic matrices
[22]. Lind presented the determinants of circulant and skew
circulant involving Fibonacci numbers in [23]. Shen et al.
[24] discussed the determinant of circulant matrix involving
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Fibonacci and Lucas numbers. Akbulak and Bozkurt [25]
gave the norms of Toeplitz involving Fibonacci and Lucas
numbers. The authors [26, 27] discussed some properties
of Fibonacci and Lucas matrices. Stanimirović et al. gave
generalized Fibonacci and Lucas matrix in [28]. Z. Zhang
and Y. Zhang [29] investigated the Lucas matrix and some
combinatorial identities.

Firstly, we introduce the definitions of theRFP𝑟L𝑟Rcircu-
lant matrices and RLP𝑟F𝑟L circulant matrices and properties
of the related famous numbers. Then, we present the main
results and the detailed process.

2. Definition and Lemma

Definition 1. A row first-plus-𝑟last 𝑟-right (RFP𝑟L𝑟R) circu-
lant matrix with the first row (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), denoted by

RFP𝑟LRcirc
𝑟
fr(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), means a square matrix of the

form

𝐴 =(

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑟𝑎
𝑛−1

𝑎
0
+ 𝑟𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑟𝑎
𝑛−2

𝑟𝑎
𝑛−1

+ 𝑟𝑎
𝑛−2

⋅ ⋅ ⋅ 𝑎
𝑛−3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑟𝑎
1

𝑟𝑎
2
+ 𝑟𝑎
1

⋅ ⋅ ⋅ 𝑎
0
+ 𝑟𝑎
𝑛−1

). (1)

Note that the RFP𝑟L𝑟R circulant matrix is a 𝑥𝑛 − 𝑟𝑥 − 𝑟
circulant matrix, which is neither an extension nor special
case of the circulant matrix [8]. They are two completely
different kinds of special matrices.

We define Θ
(𝑟,𝑟)

as the basic RFP𝑟L𝑟R circulant matrix;
that is,

Θ
(𝑟,𝑟)

=(

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 ⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 0 1

𝑟 𝑟 0 ⋅ ⋅ ⋅ 0 0

)

𝑛×𝑛

= RFP𝑟LRcirc
𝑟
fr (0, 1, 0, . . . , 0) .

(2)

Both the minimal polynomial and the characteristic poly-
nomial of Θ

(𝑟,𝑟)
are 𝑔(𝑥) = 𝑥

𝑛

− 𝑟𝑥 − 𝑟, which has only
simple roots, denoted by 𝜀

𝑘
(𝑘 = 1, 2, . . . , 𝑛). In addition,

Θ
(𝑟,𝑟)

satisfiesΘ𝑗
(𝑟,𝑟)

= RFP𝑟LRcirc
𝑟
fr(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑗−1

) and

Θ
𝑛

(𝑟,𝑟)
= 𝑟𝐼
𝑛
+ 𝑟Θ
(𝑟,𝑟)

. Then a matrix 𝐴 can be written in the
form

𝐴 = 𝑓 (Θ
(𝑟,𝑟)

) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
Θ
𝑖

(𝑟,𝑟)
, (3)

if and only if 𝐴 is a RFP𝑟L𝑟R circulant matrix, where the
polynomial 𝑓(𝑥) = ∑

𝑛−1

𝑖=0
𝑎
𝑖
𝑥
𝑖 is called the representer of the

RFP𝑟L𝑟R circulant matrix 𝐴.
Since Θ

(𝑟,𝑟)
is nonderogatory, then 𝐴 is a RFM𝑟L𝑟R

circulant matrix if and only if𝐴 commutes withΘ
(𝑟,𝑟)

; that is,
𝐴Θ
(𝑟,𝑟)

= Θ
(𝑟,𝑟)

𝐴. Because of the representation, RFM𝑟L𝑟R
circulant matrices have very nice structure and the algebraic
properties also can be easily attained. Moreover, the product
of two RFM𝑟L𝑟R circulant matrices and the inverse 𝐴−1 are
again RFM𝑟L𝑟R circulant matrices.

Definition 2. A row last-plus-𝑟first 𝑟-left (RLP𝑟F𝑟L) circu-
lant matrix with the first row (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), denoted by

RLP𝑟FLcirc
𝑟
fr(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
), means a square matrix of the

form

𝐵 =(

𝑎
0

⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑎
𝑛−1

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

+ 𝑟𝑎
0

𝑟𝑎
0

𝑎
2

⋅ ⋅ ⋅ 𝑟𝑎
0
+ 𝑟𝑎
1

𝑟𝑎
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
𝑛−1

+ 𝑟𝑎
0
⋅ ⋅ ⋅ 𝑟𝑎

𝑛−3
+ 𝑟𝑎
𝑛−2

𝑟𝑎
𝑛−2

). (4)

Let 𝐴 = RLP𝑟FLcirc
𝑟
fr(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
) and 𝐵 =

RFP𝑟LRcirc
𝑟
fr(𝑎
𝑛−1

, 𝑎
𝑛−2

, . . . , 𝑎
0
). By explicit computation,

we find

𝐴 = 𝐵𝐼
𝑛
, (5)

where 𝐼
𝑛
is the backward identity matrix of the form

𝐼
𝑛
=(

1

1

c
1

1

). (6)

The Fibonacci, Lucas, Pell, and the Pell-Lucas sequences
[30–36] are defined by the following recurrence relations,
respectively:

𝐹
𝑛+1

= 𝐹
𝑛
+ 𝐹
𝑛−1

, where 𝐹
0
= 0, 𝐹

1
= 1,

𝐿
𝑛+1

= 𝐿
𝑛
+ 𝐿
𝑛−1

, where 𝐿
0
= 2, 𝐿

1
= 1,

𝑃
𝑛+1

= 2𝑃
𝑛
+ 𝑃
𝑛−1

, where 𝑃
0
= 0, 𝑃

1
= 1,

𝑄
𝑛+1

= 2𝑄
𝑛
+ 𝑄
𝑛−1

, where 𝑄
0
= 2, 𝑄

1
= 2.

(7)

The first few values of these sequences are given by the
following table (𝑛 ≥ 0):

𝑛 0 1 2 3 4 5 6 7

𝐹
𝑛
0 1 1 2 3 5 8 13

𝐿
𝑛
2 1 3 4 7 11 18 29

𝑃
𝑛
0 1 2 5 12 29 70 169

𝑄
𝑛
2 2 6 14 34 82 198 478

(8)

The sequences {𝐹
𝑛
}, {𝐿
𝑛
}, {𝑃
𝑛
}, and {𝑄

𝑛
} are given by the

Binet formulae

𝐹
𝑛
=

𝛼
𝑛

− 𝛽
𝑛

𝛼 − 𝛽

, 𝐿
𝑛
= 𝛼
𝑛

+ 𝛽
𝑛

,

𝑃
𝑛
=

𝛼
𝑛

1
− 𝛽
𝑛

1

𝛼
1
− 𝛽
1

, 𝑄
𝑛
= 𝛼
𝑛

1
+ 𝛽
𝑛

1
,

(9)

where 𝛼, 𝛽 are the roots of the characteristic equation 𝑥2−𝑥−
1 = 0 and 𝛼

1
, 𝛽
1
are the roots of the characteristic equation

𝑥
2

− 2𝑥 − 1 = 0.
By Proposition 5.1 in [14], we deduce the following

lemma.
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Lemma 3. Let 𝐴 = RFP𝑟LRcirc
𝑟
fr(𝑎
0
, . . . , 𝑎

𝑛−1
); then the

eigenvalues of 𝐴 are

𝑓 (𝜀
𝑘
) =

𝑛−1

∑

𝑖=0

(𝑎
𝑖
𝜀
𝑖

𝑘
) , (10)

and in addition,

det𝐴 =

𝑛

∏

𝑘=1

𝑛−1

∑

𝑖=0

(𝑎
𝑖
𝜀
𝑖

𝑘
) , (11)

where 𝜀
𝑘
(𝑘 = 1, 2, . . . , 𝑛) are the roots of the equation

𝑥
𝑛

− 𝑟𝑥 − 𝑟 = 0. (12)

Lemma 4. Consider

𝑛

∏

𝑘=1

(𝑐 + 𝜀
𝑘
𝑏 + 𝜀
2

𝑘
𝑎)

= 𝑐
𝑛

− 𝑟𝑐 [(𝑎𝑠)
𝑛−1

+ (𝑎𝑡)
𝑛−1

]

− 𝑟 [(𝑎𝑠)
𝑛

+ (𝑎𝑡)
𝑛

] + 𝑟
2

𝑎
𝑛−1

(𝑐 − 𝑏 + 𝑎) ,

(13)

where

𝑠 =

−𝑏 + √𝑏
2
− 4𝑎𝑐

2𝑎

, 𝑡 =

−𝑏 − √𝑏
2
− 4𝑎𝑐

2𝑎

, (14)

and 𝜀
𝑘
(𝑘 = 1, 2, . . . , 𝑛) satisfy (12), 𝑎, 𝑏, 𝑐 ∈ R, 𝑎 ̸= 0.

Proof. Consider

𝑛

∏

𝑘=1

(𝑐 + 𝜀
𝑘
𝑏 + 𝜀
2

𝑘
𝑎) = 𝑎

𝑛

𝑛

∏

𝑘=1

(𝜀
2

𝑘
+

𝑏

𝑎

𝜀
𝑘
+

𝑐

𝑎

)

= 𝑎
𝑛

𝑛

∏

𝑘=1

(𝜀
𝑘
− 𝑠) (𝜀

𝑘
− 𝑡)

= 𝑎
𝑛

𝑛

∏

𝑘=1

(𝑠 − 𝜀
𝑘
) (𝑡 − 𝜀

𝑘
) ,

(15)

while

𝑠 + 𝑡 = −

𝑏

𝑎

, 𝑠𝑡 =

𝑐

𝑎

,

𝑠 =

−𝑏 + √𝑏
2
− 4𝑎𝑐

2𝑎

, 𝑡 =

−𝑏 − √𝑏
2
− 4𝑎𝑐

2𝑎

.

(16)

Since 𝜀
𝑘
(𝑘 = 1, 2, . . . , 𝑛) satisfy (12), we must have

𝑥
𝑛

− 𝑟𝑥 − 𝑟 =

𝑛

∏

𝑘=1

(𝑥 − 𝜀
𝑘
) . (17)

So
𝑛

∏

𝑘=1

(𝑐 + 𝜀
𝑘
𝑏 + 𝜀
2

𝑘
𝑎)

= 𝑎
𝑛

(𝑠
𝑛

− 𝑠𝑟 − 𝑟) (𝑡
𝑛

− 𝑡𝑟 − 𝑟)

= 𝑎
𝑛

[(𝑠𝑡)
𝑛

− 𝑟𝑠𝑡 (𝑠
𝑛−1

+ 𝑡
𝑛−1

) − 𝑟 (𝑠
𝑛

+ 𝑡
𝑛

)]

+ 𝑎
𝑛

[𝑟
2

(𝑠 + 𝑡 + 𝑠𝑡 + 1)]

= 𝑎
𝑛

[(

𝑐

𝑎

)

𝑛

− 𝑟

𝑐

𝑎

(𝑠
𝑛−1

+ 𝑡
𝑛−1

) − 𝑟 (𝑠
𝑛

+ 𝑡
𝑛

)]

+ 𝑎
𝑛

[𝑟
2

(

𝑐

𝑎

−

𝑏

𝑎

+ 1)]

= 𝑐
𝑛

− 𝑟𝑐 [(𝑎𝑠)
𝑛−1

+ (𝑎𝑡)
𝑛−1

] − 𝑟 [(𝑎𝑠)
𝑛

+ (𝑎𝑡)
𝑛

]

+ 𝑟
2

𝑎
𝑛−1

(𝑐 − 𝑏 + 𝑎) .

(18)

3. Determinant of the RFP𝑟L𝑟R and RLP𝑟F𝑟L
Circulant Matrices with the Fibonacci
Numbers

Theorem 5. Let A = RFP𝑟LRcirc
𝑟
fr(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
). Then

detA =

(−𝑟𝐹
𝑛
)
𝑛

− (−𝑟)
𝑛+1

𝐹
𝑛−1

𝑛−1

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

+

(−𝑟)
𝑛+1

𝐹
𝑛−1

𝑛−1
𝐹
𝑛
(𝑔
𝑛−1

1
+ ℎ
𝑛−1

1
)

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

+

(−𝑟)
𝑛+1

𝐹
𝑛

𝑛−1
(𝑔
𝑛

1
+ ℎ
𝑛

1
)

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

,

(19)

where

𝑔
1
=

(𝑟𝐹
𝑛
+ 𝑟𝐹
𝑛−1

− 1)

−2𝑟𝐹
𝑛−1

+

√𝑟
2
(𝐹
𝑛
− 𝐹
𝑛−1

)
2

− 2𝑟 (𝐹
𝑛
+ 𝐹
𝑛+1

)

−2𝑟𝐹
𝑛−1

,

ℎ
1
=

(𝑟𝐹
𝑛
+ 𝑟𝐹
𝑛−1

− 1)

−2𝑟𝐹
𝑛−1

−

√𝑟
2
(𝐹
𝑛
− 𝐹
𝑛−1

)
2

− 2𝑟 (𝐹
𝑛
+ 𝐹
𝑛+1

)

−2𝑟𝐹
𝑛−1

.

(20)

Proof. Thematrix A can be written as

A =(

𝐹
0

𝐹
1

⋅ ⋅ ⋅ 𝐹
𝑛−1

𝑟𝐹
𝑛−1

𝐹
0
+ 𝑟𝐹
𝑛−1

⋅ ⋅ ⋅ 𝐹
𝑛−2

...
... d

...
𝑟𝐹
2

𝑟𝐹
3
+ 𝑟𝐹
2

⋅ ⋅ ⋅ 𝐹
1

𝑟𝐹
1

𝑟𝐹
2
+ 𝑟𝐹
1

⋅ ⋅ ⋅ 𝐹
0
+ 𝑟𝐹
𝑛−1

)

𝑛×𝑛

. (21)
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Using Lemma 3, the determinant of A is

detA =

𝑛

∏

𝑘=1

(𝐹
0
+ 𝐹
1
𝜀
𝑘
+ ⋅ ⋅ ⋅ + 𝐹

𝑛−1
𝜀
𝑛−1

𝑘
)

=

𝑛

∏

𝑘=1

(

𝛼 − 𝛽

𝛼 − 𝛽

𝜀
𝑘
+ ⋅ ⋅ ⋅ +

𝛼
𝑛−1

− 𝛽
𝑛−1

𝛼 − 𝛽

𝜀
𝑛−1

𝑘
)

=

𝑛

∏

𝑘=1

−𝑟𝐹
𝑛−1

𝜀
2

𝑘
+ (1 − 𝑟𝐹

𝑛−1
− 𝑟𝐹
𝑛
) 𝜀
𝑘
− 𝑟𝐹
𝑛

1 − 𝜀
𝑘
− 𝜀
2

𝑘

.

(22)

Using Lemma 4, we obtain

detA =

(−𝑟𝐹
𝑛
)
𝑛

− (−𝑟)
𝑛+1

𝐹
𝑛−1

𝑛−1

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

+

(−𝑟)
𝑛+1

𝐹
𝑛−1

𝑛−1
𝐹
𝑛
(𝑔
𝑛−1

1
+ ℎ
𝑛−1

1
)

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

+

(−𝑟)
𝑛+1

𝐹
𝑛

𝑛−1
(𝑔
𝑛

1
+ ℎ
𝑛

1
)

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

,

(23)

where

𝑔
1
=

(𝑟𝐹
𝑛
+ 𝑟𝐹
𝑛−1

− 1)

−2𝑟𝐹
𝑛−1

+

√𝑟
2
(𝐹
𝑛
− 𝐹
𝑛−1

)
2

− 2𝑟 (𝐹
𝑛
+ 𝐹
𝑛+1

)

−2𝑟𝐹
𝑛−1

,

ℎ
1
=

(𝑟𝐹
𝑛
+ 𝑟𝐹
𝑛−1

− 1)

−2𝑟𝐹
𝑛−1

−

√𝑟
2
(𝐹
𝑛
− 𝐹
𝑛−1

)
2

− 2𝑟 (𝐹
𝑛
+ 𝐹
𝑛+1

)

−2𝑟𝐹
𝑛−1

.

(24)

Using the method in Theorem 5 similarly, we also have
the following.

Theorem 6. Let A󸀠 = RFP𝑟LRcirc
𝑟
fr(𝐹
𝑛−1

, . . . , 𝐹
0
). Then

detA󸀠 =
(𝑟 − 𝐹

𝑛−1
)
𝑛

− 𝑟 (𝑟 − 𝐹
𝑛−1

) (𝐹
𝑛
− 𝑟)
𝑛−1

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

−

𝑟(𝐹
𝑛
− 𝑟)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2
.

(25)

Theorem 7. Let F = RLP𝑟FLcirc
𝑟
fr(𝐹
0
, . . . , 𝐹

𝑛−1
). Then

det F =
(𝑟 − 𝐹

𝑛−1
)
𝑛

− 𝑟 (𝑟 − 𝐹
𝑛−1

) (𝐹
𝑛
− 𝑟)
𝑛−1

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

× (−1)
𝑛(𝑛−1)/2

−

𝑟(𝐹
𝑛
− 𝑟)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2
(−1)
𝑛(𝑛−1)/2

.

(26)

Proof. Thematrix F can be written as

F = (

𝐹
0

⋅ ⋅ ⋅ 𝐹
𝑛−2

𝐹
𝑛−1

𝐹
1

⋅ ⋅ ⋅ 𝐹
𝑛−1

+ 𝑟𝐹
0

𝑟𝐹
0

𝐹
2

⋅ ⋅ ⋅ 𝑟𝐹
0
+ 𝑟𝐹
1

𝑟𝐹
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐹
𝑛−1

+ 𝑟𝐹
0
⋅ ⋅ ⋅ 𝑟𝐹

𝑛−3
+ 𝑟𝐹
𝑛−2

𝑟𝐹
𝑛−2

)

= (

𝐹
𝑛−1

𝐹
𝑛−2

⋅ ⋅ ⋅ 𝐹
0

𝑟𝐹
0

𝐹
𝑛−1

+ 𝑟𝐹
0

⋅ ⋅ ⋅ 𝐹
1

...
... d

...
𝑟𝐹
𝑛−3

𝑟𝐹
𝑛−4

+ 𝑟𝐹
𝑛−3

⋅ ⋅ ⋅ 𝐹
𝑛−2

𝑟𝐹
𝑛−2

𝑟𝐹
𝑛−3

+ 𝑟𝐹
𝑛−2

⋅ ⋅ ⋅ 𝐹
𝑛−1

+ 𝑟𝐹
0

)

×(

0 0 ⋅ ⋅ ⋅ 0 1

0 ⋅ ⋅ ⋅ 0 1 0

... c c c
...

0 1 0 ⋅ ⋅ ⋅ 0

1 0 0 ⋅ ⋅ ⋅ 0

) = A
󸀠

Γ.

(27)

Hence, we have

det F = detA󸀠 det Γ, (28)

where A󸀠 = RFP𝑟LRcirc
𝑟
fr(𝐹
𝑛−1

, 𝐹
𝑛−2

, . . . , 𝐹
0
) and its deter-

minant is obtained fromTheorem 6,

detA󸀠 =
(𝑟 − 𝐹

𝑛−1
)
𝑛

− 𝑟 (𝑟 − 𝐹
𝑛−1

) (𝐹
𝑛
− 𝑟)
𝑛−1

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

−

𝑟(𝐹
𝑛
− 𝑟)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2
.

(29)

In addition,

det Γ = (−1)𝑛(𝑛−1)/2, (30)

so

det F =
(𝑟 − 𝐹

𝑛−1
)
𝑛

− 𝑟 (𝑟 − 𝐹
𝑛−1

) (𝐹
𝑛
− 𝑟)
𝑛−1

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

× (−1)
𝑛(𝑛−1)/2

−

𝑟(𝐹
𝑛
− 𝑟)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2
(−1)
𝑛(𝑛−1)/2

.

(31)

4. Determinant of the RFM𝑟L𝑟R and RLM𝑟F𝑟L
Circulant Matrices with the Lucas Numbers

Theorem 8. Let B = RFP𝑟LRcirc
𝑟
fr(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
). Then

detB =

(2 − 𝑟𝐿
𝑛
)
𝑛

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

+

(−𝑟)
𝑛

𝐿
𝑛−1

𝑛−1
(2 − 𝑟𝐿

𝑛
) (𝑔
𝑛−1

2
+ ℎ
𝑛−1

2
)

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

−

(−𝑟)
𝑛

𝐿
𝑛−1

𝑛−1
[𝑟𝐿
𝑛−1

(𝑔
𝑛

2
+ ℎ
𝑛

2
) − 3𝑟]

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

,

(32)
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where

𝑔
2
=

1 + 𝑟𝐿
𝑛−1

+ 𝑟𝐿
𝑛

−2𝑟𝐿
𝑛−1

+

√𝑟
2
(𝐿
𝑛
− 𝐿
𝑛−1

)
2

+ 10𝑟𝐿
𝑛−1

+ 2𝑟𝐿
𝑛
+ 1

−2𝑟𝐿
𝑛−1

,

ℎ
2
=

1 + 𝑟𝐿
𝑛−1

+ 𝑟𝐿
𝑛

−2𝑟𝐿
𝑛−1

−

√𝑟
2
(𝐿
𝑛
− 𝐿
𝑛−1

)
2

+ 10𝑟𝐿
𝑛−1

+ 2𝑟𝐿
𝑛
+ 1

−2𝑟𝐿
𝑛−1

.

(33)

Proof. Thematrix B can be written as

B =(

𝐿
0

𝐿
1

⋅ ⋅ ⋅ 𝐿
𝑛−1

𝑟𝐿
𝑛−1

𝐿
1
+ 𝑟𝐿
𝑛−1

⋅ ⋅ ⋅ 𝐿
𝑛−2

...
... d

...
𝑟𝐿
2

𝑟𝐿
3
+ 𝑟𝐿
2

⋅ ⋅ ⋅ 𝐿
1

𝑟𝐿
1

𝑟𝐿
2
+ 𝑟𝐿
1

⋅ ⋅ ⋅ 𝐿
0
+ 𝑟𝐿
𝑛−1

). (34)

Using Lemma 3, we have

detB =

𝑛

∏

𝑘=1

(𝐿
0
+ 𝐿
1
𝜀
𝑘
+ ⋅ ⋅ ⋅ + 𝐿

𝑛−1
𝜀
𝑛−1

𝑘
)

=

𝑛

∏

𝑘=1

[2 + (𝛼 + 𝛽) 𝜀
𝑘
+ ⋅ ⋅ ⋅ + (𝛼

𝑛−1

+ 𝛽
𝑛−1

) 𝜀
𝑛−1

𝑘
]

=

𝑛

∏

𝑘=1

−𝑟𝐿
𝑛−1

𝜀
2

𝑘
− (1 + 𝑟𝐿

𝑛
+ 𝑟𝐿
𝑛−1

) 𝜀
𝑘
− 2 + 𝑟𝐿

𝑛

1 − 𝜀
𝑘
− 𝜀
2

𝑘

.

(35)

According to Lemma 4, we obtain

𝑛

∏

𝑘=1

[−𝑟𝐿
𝑛−1

𝜀
2

𝑘
− (1 + 𝑟𝐿

𝑛
+ 𝑟𝐿
𝑛−1

) 𝜀
𝑘
+ 2 − 𝑟𝐿

𝑛
]

= (2 − 𝑟𝐿
𝑛
)
𝑛

+ (−𝑟)
𝑛

𝐿
𝑛−1

𝑛−1
(2 − 𝑟𝐿

𝑛
) (𝑔
𝑛−1

2
+ ℎ
𝑛−1

2
)

− (−𝑟)
𝑛

𝐿
𝑛−1

𝑛−1
[𝑟𝐿
𝑛−1

(𝑔
𝑛

2
+ ℎ
𝑛

2
) − 3𝑟] .

(36)

Then, we get

detB =

(2 − 𝑟𝐿
𝑛
)
𝑛

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

+

(−𝑟)
𝑛

𝐿
𝑛−1

𝑛−1
(2 − 𝑟𝐿

𝑛
) (𝑔
𝑛−1

2
+ ℎ
𝑛−1

2
)

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

−

(−𝑟)
𝑛

𝐿
𝑛−1

𝑛−1
[𝑟𝐿
𝑛−1

(𝑔
𝑛

2
+ ℎ
𝑛

2
) − 3𝑟]

1 − 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ (−1)

𝑛−1

𝑟
2

,

(37)

where

𝑔
2
=

1 + 𝑟𝐿
𝑛−1

+ 𝑟𝐿
𝑛

−2𝑟𝐿
𝑛−1

+

√𝑟
2
(𝐿
𝑛
− 𝐿
𝑛−1

)
2

+ 10𝑟𝐿
𝑛−1

+ 2𝑟𝐿
𝑛
+ 1

−2𝑟𝐿
𝑛−1

,

ℎ
2
=

1 + 𝑟𝐿
𝑛−1

+ 𝑟𝐿
𝑛

−2𝑟𝐿
𝑛−1

−

√𝑟
2
(𝐿
𝑛
− 𝐿
𝑛−1

)
2

+ 10𝑟𝐿
𝑛−1

+ 2𝑟𝐿
𝑛
+ 1

−2𝑟𝐿
𝑛−1

.

(38)

Using the method in Theorem 8 similarly, we also have
the following.

Theorem 9. Let B󸀠 = RFP𝑟LRcirc
𝑟
fr(𝐿
𝑛−1

, . . . , 𝐿
0
). Then

detB󸀠 =
(−𝑟 − 𝐿

𝑛−1
)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

+

2
𝑛−1

𝑟
𝑛

(𝑟 + 𝐿
𝑛−1

) (𝑔
𝑛−1

3
+ ℎ
𝑛−1

3
)

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

+

2
𝑛−1

𝑟
𝑛

[−2𝑟 (𝑔
𝑛

3
+ ℎ
𝑛

3
) + 𝑟 (𝐿

𝑛
− 𝐿
𝑛−1

)]

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

,

(39)

where

𝑔
3
=

𝐿
𝑛
− 𝑟 + √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

,

ℎ
3
=

𝐿
𝑛
− 𝑟 − √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

.

(40)

Theorem 10. Let L = RLP𝑟FLcirc
𝑟
fr(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
). Then

detL =

(−𝑟 − 𝐿
𝑛−1

)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2
(−1)
𝑛(𝑛−1)/2

+

2
𝑛−1

𝑟
𝑛

(𝑟 + 𝐿
𝑛−1

) (𝑔
𝑛−1

3
+ ℎ
𝑛−1

3
)

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

(−1)
𝑛(𝑛−1)/2

+

2
𝑛−1

𝑟
𝑛

[−2𝑟 (𝑔
𝑛

3
+ ℎ
𝑛

3
) + 𝑟 (𝐿

𝑛
− 𝐿
𝑛−1

)]

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

× (−1)
𝑛(𝑛−1)/2

,

(41)

where

𝑔
3
=

𝐿
𝑛
− 𝑟 + √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

,

ℎ
3
=

𝐿
𝑛
− 𝑟 − √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

.

(42)
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Proof. Thematrix L can be written as

L = (

𝐿
0

⋅ ⋅ ⋅ 𝐿
𝑛−2

𝐿
𝑛−1

𝐿
1

⋅ ⋅ ⋅ 𝐿
𝑛−1

+ 𝑟𝐿
0

𝑟𝐿
0

... d
...

...
𝐿
𝑛−2

⋅ ⋅ ⋅ 𝑟𝐿
𝑛−4

+ 𝑟𝐿
𝑛−3

𝑟𝐿
𝑛−3

𝐿
𝑛−1

− 𝑟𝐿
0
⋅ ⋅ ⋅ 𝑟𝐿

𝑛−3
+ 𝑟𝐿
𝑛−2

𝑟𝐿
𝑛−2

)

= (

𝐿
𝑛−1

𝐿
𝑛−2

⋅ ⋅ ⋅ 𝐿
0

𝑟𝐿
0

𝐿
𝑛−1

+ 𝑟𝐿
0

⋅ ⋅ ⋅ 𝐿
1

...
... d

...
𝑟𝐿
𝑛−3

𝑟𝐿
𝑛−4

+ 𝑟𝐿
𝑛−3

⋅ ⋅ ⋅ 𝐿
𝑛−2

𝑟𝐿
𝑛−2

𝑟𝐿
𝑛−3

+ 𝑟𝐿
𝑛−2

⋅ ⋅ ⋅ 𝐿
𝑛−1

+ 𝑟𝐿
0

)

×(

0 0 ⋅ ⋅ ⋅ 0 1

0 ⋅ ⋅ ⋅ 0 1 0

... c c c
...

0 1 0 ⋅ ⋅ ⋅ 0

1 0 0 ⋅ ⋅ ⋅ 0

) = B
󸀠

Γ.

(43)

Thus, we have

detL = detB󸀠 det Γ, (44)

where matrix B󸀠 = RFP𝑟LRcirc
𝑟
fr(𝐿
𝑛−1

, . . . , 𝐿
0
) and its

determinant can be obtained fromTheorem 9,

det𝐵󸀠 =
(−𝑟 − 𝐿

𝑛−1
)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

+

2
𝑛−1

𝑟
𝑛

(𝑟 + 𝐿
𝑛−1

) (𝑔
𝑛−1

3
+ ℎ
𝑛−1

3
)

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

+

2
𝑛−1

𝑟
𝑛

[−2𝑟 (𝑔
𝑛

3
+ ℎ
𝑛

3
) + 𝑟 (𝐿

𝑛
− 𝐿
𝑛−1

)]

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

,

(45)

where

𝑔
3
=

𝐿
𝑛
− 𝑟 + √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

,

ℎ
3
=

𝐿
𝑛
− 𝑟 − √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

.

(46)

In addition,

det Γ = (−1)𝑛(𝑛−1)/2, (47)

so the determinant of matrix L is

detL =

(−𝑟 − 𝐿
𝑛−1

)
𝑛

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2
(−1)
𝑛(𝑛−1)/2

+

2
𝑛−1

𝑟
𝑛

(𝑟 + 𝐿
𝑛−1

) (𝑔
𝑛−1

3
+ ℎ
𝑛−1

3
)

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

(−1)
𝑛(𝑛−1)/2

+

2
𝑛−1

𝑟
𝑛

[−2𝑟 (𝑔
𝑛

3
+ ℎ
𝑛

3
) + 𝑟 (𝐿

𝑛
− 𝐿
𝑛−1

)]

(−1)
𝑛

+ 𝑟𝐿
𝑛−1

− 𝑟𝐿
𝑛
+ 𝑟
2

× (−1)
𝑛(𝑛−1)/2

,

(48)

where

𝑔
3
=

𝐿
𝑛
− 𝑟 + √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

,

ℎ
3
=

𝐿
𝑛
− 𝑟 − √(𝑟 − 𝐿

𝑛
)
2

+ 8𝑟 (𝑟 + 𝐿
𝑛−1

)

4𝑟

.

(49)

5. Determinants of the RFP𝑟L𝑟R and RLP𝑟F𝑟L
Circulant Matrix with the Pell Numbers

Theorem 11. If C = RFP𝑟LRcirc
𝑟
fr(𝑃
0
, 𝑃
1
, . . . , 𝑃

𝑛−1
), then

detC =

(−𝑟𝑃
𝑛
)
𝑛

1 − 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2(−1)

𝑛−1

𝑟
2

+

[𝑃
𝑛
(𝑔
𝑛−1

4
+ ℎ
𝑛−1

4
) + 𝑃
𝑛−1

(𝑔
𝑛

4
+ ℎ
𝑛

4
) − 1]

1 − 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2(−1)

𝑛−1

𝑟
2

× (−𝑟)
𝑛+1

𝑃
𝑛−1

𝑛−1
,

(50)

where

𝑔
4
=

𝑟𝑃
𝑛−1

+ 𝑟𝑃
𝑛
− 1

−2𝑟𝑃
𝑛−1

+

√𝑟
2
(𝑃
𝑛
− 𝑃
𝑛−1

)
2

− 2𝑟 (𝑃
𝑛
+ 𝑃
𝑛−1

) + 1

−2𝑟𝑃
𝑛−1

,

ℎ
4
=

𝑟𝑃
𝑛−1

+ 𝑟𝑃
𝑛
− 1

−2𝑟𝑃
𝑛−1

−

√𝑟
2
(𝑃
𝑛
− 𝑃
𝑛−1

)
2

− 2𝑟 (𝑃
𝑛
+ 𝑃
𝑛−1

) + 1

−2𝑟𝑃
𝑛−1

.

(51)

Proof. Thematrix C can be written as

C =
(

(

𝑃
0

𝑃
1

⋅ ⋅ ⋅ 𝑃
𝑛−1

𝑟𝑃
𝑛−1

𝑃
0
+ 𝑟𝑃
𝑛−1

𝑃
1

𝑃
𝑛−2

... 𝑟𝑃
𝑛−1

+ 𝑟𝑃
𝑛−2

d
...

𝑟𝑃
2

... ⋅ ⋅ ⋅ 𝑃
1

𝑟𝑃
1

𝑟𝑃
2
+ 𝑟𝑃
1

⋅ ⋅ ⋅ 𝑃
0
+ 𝑟𝑃
𝑛−1

)

)𝑛×𝑛

.

(52)

Using Lemma 3, the determinant of C is

detC =

𝑛

∏

𝑘=1

(𝑃
0
+ 𝑃
1
𝜀
𝑘
+ ⋅ ⋅ ⋅ + 𝑃

𝑛−1
𝜀
𝑛−1

𝑘
)

=

𝑛

∏

𝑘=1

(

𝛼
1
− 𝛽
1

𝛼
1
− 𝛽
1

𝜀
𝑘
+ ⋅ ⋅ ⋅ +

𝛼
𝑛−1

1
− 𝛽
𝑛−1

1

𝛼
1
− 𝛽
1

𝜀
𝑛−1

𝑘
)

=

𝑛

∏

𝑘=1

−𝑟𝑃
𝑛−1

𝜀
2

𝑘
+ (1 − 𝑟𝑃

𝑛−1
− 𝑟𝑃
𝑛
) 𝜀
𝑘
− 𝑟𝑃
𝑛

1 − 2𝜀
𝑘
− 𝜀
2

𝑘

.

(53)
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According to Lemma 4, we can get

detC =

(−𝑟𝑃
𝑛
)
𝑛

1 − 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2(−1)

𝑛−1

𝑟
2

+

[𝑃
𝑛
(𝑔
𝑛−1

4
+ ℎ
𝑛−1

4
) + 𝑃
𝑛−1

(𝑔
𝑛

4
+ ℎ
𝑛

4
) − 1]

1 − 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2(−1)

𝑛−1

𝑟
2

× (−𝑟)
𝑛+1

𝑃
𝑛−1

𝑛−1
,

(54)

where

𝑔
4
=

𝑟𝑃
𝑛−1

+ 𝑟𝑃
𝑛
− 1

−2𝑟𝑃
𝑛−1

+

√𝑟
2
(𝑃
𝑛
− 𝑃
𝑛−1

)
2

− 2𝑟 (𝑃
𝑛
+ 𝑃
𝑛−1

) + 1

−2𝑟𝑃
𝑛−1

,

ℎ
4
=

𝑟𝑃
𝑛−1

+ 𝑟𝑃
𝑛
− 1

−2𝑟𝑃
𝑛−1

−

√𝑟
2
(𝑃
𝑛
− 𝑃
𝑛−1

)
2

− 2𝑟 (𝑃
𝑛
+ 𝑃
𝑛−1

) + 1

−2𝑟𝑃
𝑛−1

.

(55)

Using the method in Theorem 11 similarly, we also have
the following.

Theorem 12. If C󸀠 = RFP𝑟LRcirc
𝑟
fr(𝑃
𝑛−1

, 𝑃
𝑛−2

, . . . , 𝑃
0
), then

detC󸀠 =
(𝑟 − 𝑃

𝑛−1
)
𝑛

− (𝑃
𝑛
− 𝑟)
𝑛−1

(𝑟𝑃
𝑛
− 𝑟𝑃
𝑛−1

)

(−1)
𝑛

+ 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2𝑟
2

. (56)

Theorem 13. If P = RLP𝑟FLcirc
𝑟
fr(𝑃
0
, 𝑃
1
, . . . , 𝑃

𝑛−1
), then one

has

detP =

(𝑟 − 𝑃
𝑛−1

)
𝑛

− (𝑃
𝑛
− 𝑟)
𝑛−1

(𝑟𝑃
𝑛
− 𝑟𝑃
𝑛−1

)

(−1)
𝑛

+ 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2𝑟
2

× (−1)
𝑛(𝑛−1)/2

.

(57)

Proof. Thematrix P can be written as

P =
(

(

𝑃
0

⋅ ⋅ ⋅ 𝑃
𝑛−2

𝑃
𝑛−1

𝑃
1

c 𝑃
𝑛−1

+ 𝑟𝑃
0

𝑟𝑃
0

... c 𝑟𝑃
0
+ 𝑟𝑃
1

...

𝑃
𝑛−2

c
... 𝑟𝑃

𝑛−3

𝑃
𝑛−1

+ 𝑟𝑃
0
⋅ ⋅ ⋅ 𝑟𝑃

𝑛−3
+ 𝑟𝑃
𝑛−2

𝑟𝑃
𝑛−2

)

)

= (

𝑃
𝑛−1

𝑃
𝑛−2

⋅ ⋅ ⋅ 𝑃
0

𝑟𝑃
0

𝑃
𝑛−1

+ 𝑟𝑃
0

⋅ ⋅ ⋅ 𝑃
1

...
... d

...
𝑟𝑃
𝑛−2

𝑟𝑃
𝑛−3

+ 𝑟𝑃
𝑛−2

⋅ ⋅ ⋅ 𝑃
𝑛−1

+ 𝑟𝑃
0

)

×(

0 0 ⋅ ⋅ ⋅ 0 1

0 ⋅ ⋅ ⋅ 0 1 0

... c c c
...

0 1 0 ⋅ ⋅ ⋅ 0

1 0 0 ⋅ ⋅ ⋅ 0

).

(58)

Then we can get

detP = detC󸀠 det Γ, (59)

where C󸀠 = RFPLRcircfr(𝑃
𝑛−1

, 𝑃
𝑛−2

, . . . , 𝑃
0
) and its determi-

nant could be obtained throughTheorem 12; namely,

detC󸀠 =
(𝑟 − 𝑃

𝑛−1
)
𝑛

− (𝑃
𝑛
− 𝑟)
𝑛−1

(𝑟𝑃
𝑛
− 𝑟𝑃
𝑛−1

)

(−1)
𝑛

+ 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2𝑟
2

, (60)

det Γ = (−1)𝑛(𝑛−1)/2. (61)

So

detP = detC󸀠 det Γ

=

(𝑟 − 𝑃
𝑛−1

)
𝑛

− (𝑃
𝑛
− 𝑟)
𝑛−1

(𝑟𝑃
𝑛
− 𝑟𝑃
𝑛−1

)

(−1)
𝑛

+ 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2𝑟
2

× (−1)
𝑛(𝑛−1)/2

.

(62)

6. Determinants of the RFP𝑟L𝑟R and
RLP𝑟F𝑟L Circulant Matrix with the
Pell-Lucas Numbers

Theorem 14. If D = RFP𝑟LRcirc
𝑟
fr(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑛−1
), then

one has

detD =

(2 − 𝑟𝑄
𝑛
)
𝑛

1 − 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2(−1)

𝑛−1

𝑟
2

+

(2 − 𝑟𝑄
𝑛
) (𝑔
𝑛−1

5
+ ℎ
𝑛−1

5
) − 𝑟𝑄

𝑛−1
(𝑔
𝑛

5
+ ℎ
𝑛

5
) − 4𝑟

1 − 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2(−1)

𝑛−1

𝑟
2

× (−𝑟)
𝑛

𝑄
𝑛−1

𝑛−1
,

(63)

where

𝑔
5
=

2 + 𝑟𝑄
𝑛−1

+ 𝑟𝑄
𝑛

−2𝑟𝑄
𝑛−1

+

√𝑟
2
(𝑄
𝑛
− 𝑄
𝑛−1

)
2

+ 12𝑟𝑄
𝑛−1

+ 4𝑟𝑄
𝑛
+ 4

−2𝑟𝑄
𝑛−1

,

ℎ
5
=

2 + 𝑟𝑄
𝑛−1

+ 𝑟𝑄
𝑛

−2𝑟𝑄
𝑛−1

−

√𝑟
2
(𝑄
𝑛
− 𝑄
𝑛−1

)
2

+ 12𝑟𝑄
𝑛−1

+ 4𝑟𝑄
𝑛
+ 4

−2𝑟𝑄
𝑛−1

.

(64)

Proof. Themethod is similar to Theorem 11.

Certainly, we can get the following theorem.
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Theorem 15. If D󸀠 = RFP𝑟LRcirc
𝑟
fr(𝑄
𝑛−1

, . . . , 𝑄
1
, 𝑄
0
), then

one gets

detD󸀠 =
(−2𝑟 − 𝑟𝑄

𝑛−1
)
𝑛

− 2
𝑛−1

𝑟
𝑛

𝐾

(−1)
𝑛

+ 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2𝑟
2
, (65)

where

𝐾 = (−2𝑟 − 𝑄
𝑛−1

) (𝑔
𝑛−1

6
+ ℎ
𝑛−1

6
) + 2𝑟 (𝑔

𝑛

6
+ ℎ
𝑛

6
)

− 𝑟 (𝑄
𝑛
− 𝑄
𝑛−1

) ,

𝑔
6
=

𝑄
𝑛
+ √𝑄

2

𝑛
+ 8𝑟𝑄

𝑛−1
+ 16𝑟
2

4𝑟

,

ℎ
6
=

𝑄
𝑛
− √𝑄

2

𝑛
+ 8𝑟𝑄

𝑛−1
+ 16𝑟
2

4𝑟

.

(66)

Theorem 16. IfQ = RLP𝑟LFcirc
𝑟
fr(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑛−1
), then

detQ =

(−2𝑟 − 𝑟𝑄
𝑛−1

)
𝑛

− 2
𝑛−1

𝑟
𝑛

𝐾

(−1)
𝑛

+ 𝑟𝑄
𝑛−1

− 𝑟𝑄
𝑛
+ 2𝑟
2
(−1)
𝑛(𝑛−1)/2

, (67)

where

𝐾 = (−2𝑟 − 𝑄
𝑛−1

) (𝑔
𝑛−1

6
+ ℎ
𝑛−1

6
) + 2𝑟 (𝑔

𝑛

6
+ ℎ
𝑛

6
)

− 𝑟 (𝑄
𝑛
− 𝑄
𝑛−1

) ,

𝑔
6
=

𝑄
𝑛
+ √𝑄

2

𝑛
+ 8𝑟𝑄

𝑛−1
+ 16𝑟
2

4𝑟

,

ℎ
6
=

𝑄
𝑛
− √𝑄

2

𝑛
+ 8𝑟𝑄

𝑛−1
+ 16𝑟
2

4𝑟

.

(68)

7. Conclusion

Thedeterminant problems of the RFP𝑟L𝑟R circulantmatrices
and RLP𝑟F𝑟L circulant matrices involving the Fibonacci,
Lucas, Pell, and Pell-Lucas number are considered in this
paper.The explicit determinants are presented by using some
terms of these numbers.
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