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By using minimax methods in critical point theory, we obtain the existence of periodic solutions for second-order ordinary
differential equations with linear nonlinearity.

1. Introduction and Main Results

Consider the second-order ordinary differential systems

�̈� (𝑡) + 𝑚

2
𝜔

2
𝑢 (𝑡) + ∇𝐹 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) − 𝑢 (𝑇) = �̇� (0) − �̇� (𝑇) = 0,

(1)

where 𝑇 > 0, 𝜔 = 2𝜋/𝑇, 𝑚 is a nonnegative integer; and
𝐹 : [0, 𝑇] × 𝑅

𝑁
→ 𝑅 satisfies the following assumption:

(𝐴) 𝐹(𝑡, 𝑥) is measurable in 𝑡 for every 𝑥 ∈ 𝑅

𝑁 and
continuously differentiable in𝑥 for a.e. 𝑡 ∈ [0, 𝑇], and
there exist 𝑎 ∈ 𝐶(𝑅

+
, 𝑅

+
) and 𝑏 ∈ 𝐿

1
([0, 𝑇], 𝑅

+
) such

that

|𝐹 (𝑡, 𝑥)| ≤ 𝑎 (|𝑥|) 𝑏 (𝑡) , |∇𝐹 (𝑡, 𝑥)| ≤ 𝑎 (|𝑥|) 𝑏 (𝑡) , (2)

for all 𝑥 ∈ 𝑅

𝑁 and a.e. 𝑡 ∈ [0, 𝑇], where 𝑅

+ is the set
of all nonnegative real numbers.

In the case of𝑚 = 0, the existence of periodic solutions for
problem (1) is obtained in articles [1–17] withmany solvability
conditions, such as the coercive type potential condition (see
[1]), the convex type potential condition (see [2]), the periodic
type potential conditions (see [3]), the even type potential
condition (see [4]), the subquadratic potential condition
in Rabinowitz’s sense (see [5]), the bounded nonlinearity
condition (see [6]), the subadditive condition (see [7]),

the sublinear nonlinearity condition (see [9, 15]), and the
linear nonlinearity condition (see [13, 14, 16, 17]).

In the case of 𝑚 ̸= 0, Mawhin and Willem [6] prove that
problem (1) has at least one solution under the bounded
nonlinearity condition; that is, |∇𝐹(𝑡, 𝑥)| ≤ 𝑔(𝑡) for some
𝑔 ∈ 𝐿

1
(0, 𝑇), each 𝑥 ∈ 𝑅

𝑁, and a.e. 𝑡 ∈ [0, 𝑇] when

∫

𝑇

0

𝐹 (𝑡, 𝑎 cos𝑚𝜔𝑡 + 𝑏 sin𝑚𝜔𝑡) 𝑑𝑡

→ +∞ as |(𝑎, 𝑏)| → ∞ in 𝑅

2𝑁

(3)

or

∫

𝑇

0

𝐹 (𝑡, 𝑎 cos𝑚𝜔𝑡 + 𝑏 sin𝑚𝜔𝑡) 𝑑𝑡

→ −∞ as |(𝑎, 𝑏)| → ∞ in 𝑅

2𝑁
.

(4)

Under the sublinear nonlinearity condition, that is, there
exist 𝑓, 𝑔 ∈ 𝐿

2
[0, 𝑇] and 𝛼 ∈ [0, 1), such that

|∇𝐹 (𝑡, 𝑥)| ≤ 𝑓 (𝑡) |𝑥|

𝛼
+ 𝑔 (𝑡) , (5)

for 𝑥 ∈ 𝑅

𝑁 and a.e. 𝑡 ∈ [0, 𝑇], Han [18] proves that problem
(1) has at least one solution when

|(𝑎, 𝑏)|

−2𝛼
∫

𝑇

0

𝐹 (𝑡, 𝑎 cos𝑚𝜔𝑡 + 𝑏 sin𝑚𝜔𝑡) 𝑑𝑡

→ +∞ as |(𝑎, 𝑏)| → ∞ in 𝑅

2𝑁

(6)
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or

|(𝑎, 𝑏)|

−2𝛼
∫

𝑇

0

𝐹 (𝑡, 𝑎 cos𝑚𝜔𝑡 + 𝑏 sin𝑚𝜔𝑡) 𝑑𝑡

→ −∞ as |(𝑎, 𝑏)| → ∞ in 𝑅

2𝑁
.

(7)

Recently, when 𝑚 = 0, Zhao and Wu [13, 14] and Meng
and Tang [16, 17] also prove the existence of solutions for
problem (1) under linear nonlinearity condition; that is, there
exist 𝑓, 𝑔 ∈ 𝐿

1
([0, 𝑇], 𝑅

+
) such that

|∇𝐹 (𝑡, 𝑥)| ≤ 𝑓 (𝑡) |𝑥| + 𝑔 (𝑡) . (8)

In this paper, motivated by the results mentioned above,
we investigate the existence of periodic solutions of problem
(1) in the case of𝑚 ≥ 1.

Let𝐻1
𝑇
be a Hilbert space defined by

𝐻

1

𝑇
= {𝑢 : [0, 𝑇] → 𝑅

𝑁
| 𝑢 is absolutely continuous,

𝑢 (0) = 𝑢 (𝑇) and �̇� ∈ 𝐿

2
(0, 𝑇)} ,

(9)

with the norm

‖𝑢‖ = (∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡 + ∫

𝑇

0

|�̇� (𝑡)|

2
𝑑𝑡)

1/2

,

(10)

for 𝑢 ∈ 𝐻

1

𝑇
.

Let

𝐻

0
= {𝑎 cos𝑚𝜔𝑡 + 𝑏 sin𝑚𝜔𝑡 : 𝑎 ∈ 𝑅

𝑁
, 𝑏 ∈ 𝑅

𝑁
} ,

𝐻 = {

𝑚−1

∑

𝑘=1

𝑎

𝑘
cos 𝑘𝜔𝑡 + 𝑏

𝑘
sin 𝑘𝜔𝑡 : 𝑎

𝑘
∈ 𝑅

𝑁
, 𝑏

𝑘
∈ 𝑅

𝑁
,

1 ≤ 𝑘 ≤ 𝑚 − 1} ,

̃

𝐻 = {𝑢 ∈ 𝐻

1

𝑇
: ∫

𝑇

0

𝑢 (𝑡) cos 𝑘𝜔𝑡 𝑑𝑡

= ∫

𝑇

0

𝑢 (𝑡) sin 𝑘𝜔𝑡 𝑑𝑡 = 0, 1 ≤ 𝑘 ≤ 𝑚} ;

(11)

then 𝐻

1

𝑇
= 𝐻

0
⊕ 𝐻 ⊕

̃

𝐻 ([6]). For all 𝑢 ∈ 𝐻

1

𝑇
, we have 𝑢 =

𝑢

0
+ 𝑢 + �̃�, where 𝑢

0
∈ 𝐻

0, 𝑢 ∈ 𝐻, and �̃� ∈

̃

𝐻. It is easy to
obtain











̇

𝑢











2

2
≤ (𝑚 − 1)

2
𝜔

2
‖𝑢‖

2

2
, ∀𝑢 ∈ 𝐻,

(12)











̇

�̃�











2

2
≥ (𝑚 + 1)

2
𝜔

2
‖�̃�‖

2

2
, ∀�̃� ∈

̃

𝐻.
(13)

Furthermore, we have ‖𝑢‖

∞
≤ 𝐶

0
‖𝑢‖ for some 𝐶

0
> 0

and all 𝑢(𝑡) ∈ 𝐻

1

𝑇
(see, [6, Proposition 1.3]).

Our main results are the following theorems.

Theorem 1. Suppose that (A) and (8) hold and
(i)

(2 + 𝑎) 𝐶

2

0
∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡

< min{

(2𝑚 + 1) 𝜔

2

1 + (𝑚 + 1)

2
𝜔

2
,

(2𝑚 − 1) 𝜔

2

1 + (𝑚 − 1)

2
𝜔

2
} ,

(14)

where 𝑎 is a parameter and satisfies 𝑎 > 1/2;
(ii)

lim
𝑢∈𝐻
0
,‖𝑢‖→∞

inf ‖𝑢‖−2 ∫
𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

> 𝐶

2

0
∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡 +

5𝐶

2

0

2𝑎 − 1

∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡 +

1

2𝑎 − 1

.

(15)

Then problem (1) has at least one solution.

Theorem 2. Suppose that (A), (8) and (i) hold and
(iii)

lim
𝑢∈𝐻
0
,‖𝑢‖→∞

sup ‖𝑢‖

−2
∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

< − [

5𝐶

2

0

2𝑎 − 1

∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡 + 𝐶

2

0
∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡 +

𝑚

2
𝜔

2

2𝑎 − 1

] .

(16)

Then problem (1) has at least one solution.

Remark 3. (i) It is worth noting that, in the case of 𝑚 = 0,
one solution was obtained by Tang [9] and Han [15] under
the sublinear nonlinearity condition.

(ii) It is also worth noting that the sublinear nonlinearity
condition in [15, 18] is different from that of [9].

2. Proof of Main Results

Let

𝐽 (𝑢) =

1

2

∫

𝑇

0

|�̇� (𝑡)|

2
𝑑𝑡 −

𝑚

2
𝜔

2

2

× ∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,

(17)

for any 𝑢 ∈ 𝐻

1

𝑇
. It follows from assumption (𝐴) that the func-

tional 𝐽 on 𝐻

1

𝑇
is continuously differentiable; moreover we

obtain

⟨𝐽


(𝑢) , V⟩ = ∫

𝑇

0

(�̇� (𝑡) , V̇ (𝑡)) 𝑑𝑡 − 𝑚

2
𝜔

2

× ∫

𝑇

0

(𝑢 (𝑡) , V (𝑡)) 𝑑𝑡

− ∫

𝑇

0

(∇𝐹 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡

(18)
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for any 𝑢, V ∈ 𝐻

1

𝑇
. It is well known that the solutions of

problem (1) correspond to the critical points of 𝐽 (see [6]).
For the sake of convenience, we denote

𝑀

1
= ∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡, 𝑀

2
= ∫

𝑇

0

𝑔 (𝑡) 𝑑𝑡.
(19)

Proof of Theorem 1. Firstly, we assert that the functional 𝐽

satisfies (PS) condition. Let {𝑢
𝑛
} be a sequence in 𝐻

1

𝑇
such

that {𝐽(𝑢
𝑛
)} is bounded and 𝐽


(𝑢

𝑛
) → 0 as 𝑛 → ∞. By the

proof of [6] Proposition 4.1, we only need to prove that {𝑢
𝑛
}

is bounded. On one hand, we have








𝑢

𝑛









≥ ⟨𝐽


(�̇�

𝑛
) , −

̇

𝑢

𝑛
⟩ = −∫

𝑇

0

[(�̇�

𝑛
,

̇

𝑢

𝑛
) − 𝑚

2
𝜔

2
(𝑢

𝑛
, 𝑢

𝑛
)

− (∇𝐹 (𝑡, 𝑢

𝑛
) , 𝑢

𝑛
) ] 𝑑𝑡

= −∫

𝑇

0











̇

𝑢

𝑛











2

𝑑𝑡 + 𝑚

2
𝜔

2

× ∫

𝑇

0









𝑢

𝑛









2

𝑑𝑡 + ∫

𝑇

0

(∇𝐹 (𝑡, 𝑢

𝑛
) , 𝑢

𝑛
) 𝑑𝑡

≥ [𝑚

2
− (𝑚 − 1)

2
] 𝜔

2

× ∫

𝑇

0









𝑢

𝑛









2

𝑑𝑡 − ∫

𝑇

0

𝑓 (𝑡)











𝑢

0

𝑛
+ 𝑢

𝑛
+ �̃�

𝑛



















𝑢

𝑛









𝑑𝑡

− ∫

𝑇

0

𝑔 (𝑡)









𝑢

𝑛









𝑑𝑡

≥

(2𝑚 − 1) 𝜔

2

1 + (𝑚 − 1)

2
𝜔

2









𝑢

𝑛









2

− 𝐶

2

0
𝑀

1









𝑢

𝑛









2

− 𝐶

2

0
𝑀

1









𝑢

𝑛

















�̃�

𝑛









− 𝐶

2

0
𝑀

1









𝑢

𝑛



















𝑢

0

𝑛











− 𝐶

0
𝑀

2









𝑢

𝑛









≥ (

(2𝑚 − 1) 𝜔

2

1 + (𝑚 − 1)

2
𝜔

2
− 2𝐶

2

0
𝑀

1
)

×









𝑢

𝑛









2

−

𝐶

2

0
𝑀

1

2









�̃�

𝑛









2

−

𝐶

2

0
𝑀

1

2











𝑢

0

𝑛











2

− 𝐶

0
𝑀

2









𝑢

𝑛









.

(20)

So

𝐶

2

0
𝑀

1

2

(









�̃�

𝑛









2

+











𝑢

0

𝑛











2

)

≥ (

(2𝑚 − 1) 𝜔

2

1 + (𝑚 − 1)

2
𝜔

2
− (2 + 𝑎) 𝐶

2

0
𝑀

1
)

×









𝑢

𝑛









2

− (𝐶

0
𝑀

2
+ 1)









𝑢

𝑛









+ 𝑎𝐶

2

0
𝑀

1









𝑢

𝑛









2

≥ 𝑎𝐶

2

0
𝑀

1









𝑢

𝑛









2

+ 𝐶

1
,

(21)

where 𝐶
1
= min

𝑠∈[0,∞)
{(((2𝑚− 1)𝜔

2
/(1 + (𝑚− 1)

2
𝜔

2
)) − (2 +

𝑎)𝐶

2

0
𝑀

1
)𝑠

2
− (𝐶

0
𝑀

2
+ 1)𝑠}.

Since (14), so −∞ < 𝐶

1
< 0. Then









𝑢

𝑛









2

≤









�̃�

𝑛









2

2𝑎

+











𝑢

0

𝑛











2

2𝑎

+ 𝐶

2
,

(22)

where 𝐶
2
= −𝐶

1
/𝑎𝐶

2

0
𝑀

1
> 0.

On the other hand, we have









�̃�

𝑛









≥ ⟨𝐽


(𝑢

𝑛
) , �̃�

𝑛
⟩

≥ (

(2𝑚 + 1) 𝜔

2

1 + (𝑚 + 1)

2
𝜔

2
− 2𝐶

2

0
𝑀

1
)

×









�̃�

𝑛









2

−

𝐶

2

0
𝑀

1

2









𝑢

𝑛









2

−

𝐶

2

0
𝑀

1

2











𝑢

0

𝑛











2

− 𝐶

0
𝑀

2









�̃�

𝑛









.

(23)

So

𝐶

2

0
𝑀

1

2

(









𝑢

𝑛









2

+











𝑢

0

𝑛











2

)

≥ (

(2𝑚 + 1) 𝜔

2

1 + (𝑚 + 1)

2
𝜔

2
− (2 + 𝑎) 𝐶

2

0
𝑀

1
)

×









�̃�

𝑛









2

− (𝐶

0
𝑀

2
+ 1)









�̃�

𝑛









+ 𝑎𝐶

2

0
𝑀

1









�̃�

𝑛









2

≥ 𝑎𝐶

2

0
𝑀

1









�̃�

𝑛









2

+ 𝐶

3
,

(24)

where 0 > 𝐶

3
= min

𝑠∈[0,∞)
{(((2𝑚 + 1)𝜔

2
/(1 + (𝑚 + 1)

2
𝜔

2
)) −

(2 + 𝑎)𝐶

2

0
𝑀

1
)𝑠

2
− (𝐶

0
𝑀

2
+ 1)𝑠}.

Then









�̃�

𝑛









2

≤









𝑢

𝑛









2

2𝑎

+











𝑢

0

𝑛











2

2𝑎

+ 𝐶

4
,

(25)

where 𝐶
4
= −𝐶

3
/𝑎𝐶

2

0
𝑀

1
> 0.

From (22) and (25), we have









𝑢

𝑛









2

≤

1

2𝑎 − 1











𝑢

0

𝑛











2

+ 𝐶

5
,









�̃�

𝑛









2

≤

1

2𝑎 − 1











𝑢

0

𝑛











2

+ 𝐶

5
,

(26)

where 𝐶
5
= max{(4𝑎2𝐶

2
+ 2𝑎𝐶

4
)/(4𝑎

2
− 1), (4𝑎

2
𝐶

4
+ 2𝑎𝐶

2
)/

(4𝑎

2
− 1)}.
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By (8), (26) we get


















∫

𝑇

0

𝐹 (𝑡, 𝑢

𝑛
) − 𝐹 (𝑡, 𝑢

0

𝑛
) 𝑑𝑡



















=



















∫

𝑇

0

∫

1

0

∇𝐹 (𝑡, 𝑢

0

𝑛
+ 𝑠 (𝑢

𝑛
+ �̃�

𝑛
) , 𝑢

𝑛
− 𝑢

0

𝑛
) 𝑑𝑠 𝑑𝑡



















≤ ∫

𝑇

0

∫

1

0

𝑓 (𝑡)











𝑢

0

𝑛
+ 𝑠 (𝑢

𝑛
+ �̃�

𝑛
)





















𝑢

𝑛
− 𝑢

0

𝑛











𝑑𝑡

+ ∫

𝑇

0

∫

1

0

𝑔 (𝑡)











𝑢

𝑛
− 𝑢

0

𝑛











𝑑𝑡

≤ 𝐶

2

0
𝑀

1











𝑢

0

𝑛











2

+

5

2

𝐶

2

0
𝑀

1









𝑢

𝑛









2

+

5

2

𝐶

2

0
𝑀

1









�̃�

𝑛









2

+ 𝐶

0
𝑀

2
(









𝑢

𝑛









+









�̃�

𝑛









)

≤ (𝐶

2

0
𝑀

1
+

5𝐶

2

0
𝑀

1

2𝑎 − 1

)











𝑢

0

𝑛











2

+ 2𝐶

0
𝑀

2
√

1

2𝑎 − 1











𝑢

0

𝑛











+ 5𝐶

5
𝐶

2

0
𝑀

1
+ 2

√
𝐶

5
𝐶

0
𝑀

2
.

(27)

It follows from (26), (27), and the boundedness of 𝐽(𝑢
𝑛
) that

𝐽 (𝑢

𝑛
) =

1

2

∫

𝑇

0









�̇�

𝑛









2

𝑑𝑡 −

𝑚

2
𝜔

2

2

∫

𝑇

0









𝑢

𝑛









2

𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢

𝑛
) 𝑑𝑡

≤

1

2

(









𝑢

𝑛









2

+









�̃�

𝑛









2

)

− ∫

𝑇

0

𝐹 (𝑡, 𝑢

𝑛
) − 𝐹 (𝑡, 𝑢

0

𝑛
) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢

0

𝑛
) 𝑑𝑡

≤ (𝐶

2

0
𝑀

1
+

5𝐶

2

0
𝑀

1

2𝑎 − 1

+

1

2𝑎 − 1

)

×











𝑢

0

𝑛











2

+ 2𝐶

0
𝑀

2
√

1

2𝑎 − 1











𝑢

0

𝑛











− ∫

𝑇

0

𝐹 (𝑡, 𝑢

0

𝑛
) 𝑑𝑡 + 5𝐶

5
𝐶

2

0
𝑀

1
+ 2

√
𝐶

5
𝐶

0
𝑀

2

=











𝑢

0

𝑛











2

[𝐶

2

0
𝑀

1
+

5𝐶

2

0
𝑀

1

2𝑎 − 1

+

1

2𝑎 − 1

+ 2𝐶

0
𝑀

2
√

1

2𝑎 − 1











𝑢

0

𝑛











−1

−











𝑢

0

𝑛











−2

∫

𝑇

0

𝐹 (𝑡, 𝑢

0

𝑛
) 𝑑𝑡]

+ 5𝐶

5
𝐶

2

0
𝑀

1
+ 2

√
𝐶

5
𝐶

0
𝑀

2
.

(28)

The above inequality and (15) imply that {𝑢0
𝑛
} is bounded.

Hence {𝑢
𝑛
} is bounded by (26).

Secondly, we assert that

(𝐽

1
) 𝐽(𝑢) → +∞ as ‖𝑢‖ → ∞ in ̃

𝐻, which implies that
inf
𝑢∈�̃�

𝐽(𝑢) > −∞;

(𝐽

2
) 𝐽(𝑢) → −∞ as ‖𝑢‖ → ∞ in𝐻

0
⊕ 𝐻,

for all 𝑢 ∈ 𝐻

0
⊕𝐻; that is, 𝑢 = 𝑢

0
+ 𝑢; then by (8) and (12) we

have

𝐽 (𝑢) =

1

2

∫

𝑇

0

|�̇� (𝑡)|

2
𝑑𝑡 −

𝑚

2
𝜔

2

2

∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡

− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

=

1

2

(∫

𝑇

0











̇

𝑢 (𝑡)











2

𝑑𝑡 − 𝑚

2
𝜔

2
∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡)

− ∫

𝑇

0

[𝐹 (𝑡, 𝑢

0
+ 𝑢) − 𝐹 (𝑡, 𝑢

0
)] 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡

≤

1

2

(1 − 2𝑚)𝜔

2
‖𝑢‖

2

2

− ∫

𝑇

0

∫

1

0

(∇𝐹 (𝑡, 𝑢

0
+ 𝑠𝑢) , 𝑢) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡

≤

1

2

(1 − 2𝑚)𝜔

2
‖𝑢‖

2

2
+ ∫

𝑇

0

𝑓 (𝑡) |𝑢 (𝑡)|

2
𝑑𝑡

+ ∫

𝑇

0

𝑓 (𝑡) |𝑢 (𝑡)|











𝑢

0








𝑑𝑡

+ ∫

𝑇

0

𝑔 (𝑡) |𝑢 (𝑡)| 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡

≤

1

2

(1 − 2𝑚)𝜔

2
‖𝑢‖

2

2
+ 𝐶

2

0
𝑀

1‖
𝑢‖

2

+ 𝐶

2

0
𝑀

1











𝑢

0








‖𝑢‖ + 𝐶

0
𝑀

2 ‖
𝑢‖ − ∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡

≤

1

2

(1 − 2𝑚)𝜔

2
‖𝑢‖

2

2
+ 𝐶

2

0
𝑀

1‖
𝑢‖

2

+

𝐶

2

0
𝑀

1

2𝑎











𝑢

0








2

+

𝑎𝐶

2

0
𝑀

1

2

‖𝑢‖

2

+ 𝐶

0
𝑀

2 ‖
𝑢‖ − ∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡

<

1

2

(1 − 2𝑚)𝜔

2
‖𝑢‖

2

2

+

(2 + 𝑎) 𝐶

2

0
𝑀

1

2

[1 + (𝑚 − 1)

2
𝜔

2
] ‖𝑢‖

2

2

+ 𝐶

0
𝑀

2 [
(𝑚 − 1) 𝜔 + 1] ‖𝑢‖2

+ 𝐶

2

0
𝑀

1











𝑢

0








2

− ∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡
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= {

1

2

(1 − 2𝑚)𝜔

2
+

(2 + 𝑎) 𝐶

2

0
𝑀

1

2

[1 + (𝑚 − 1)

2
𝜔

2
]}

× ‖𝑢‖

2

2
+ 𝐶

0
𝑀

2 [
(𝑚 − 1) 𝜔 + 1] ‖𝑢‖2

+











𝑢

0








2

[𝐶

2

0
𝑀

1
−











𝑢

0








−2

∫

𝑇

0

𝐹 (𝑡, 𝑢

0
) 𝑑𝑡] ,

(29)

for ‖𝑢‖ → ∞ in 𝑋 if and only if ‖𝑢‖
2
→ ∞ or ‖𝑢0‖ →

∞. So, by 𝑚 ≥ 1, (14), and (15), we obtain 𝐽(𝑢) → −∞ as
‖𝑢‖ → ∞ in𝑋.

Let 𝑢 ∈

̃

𝐻; then by (8) and (13), we have

𝐽 (𝑢) =

1

2

∫

𝑇

0

|�̇� (𝑡)|

2
𝑑𝑡 −

𝑚

2
𝜔

2

2

∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡

− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

(1 −

𝑚

2
𝜔

2

(𝑚 + 1)

2
𝜔

2
)∫

𝑇

0











̇

�̃� (𝑡)











2

𝑑𝑡

− ∫

𝑇

0

[𝐹 (𝑡, �̃�) − 𝐹 (𝑡, 0)] 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 0) 𝑑𝑡

≥

1

2

2𝑚 + 1

(𝑚 + 1)

2
×

(𝑚 + 1)

2
𝜔

2

1 + (𝑚 + 1)

2
𝜔

2
‖�̃�‖

2

− ∫

𝑇

0

∫

1

0

(∇𝐹 (𝑡, 𝑠�̃�) , �̃�) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 0) 𝑑𝑡

≥

1

2

(2𝑚 + 1) 𝜔

2

1 + (𝑚 + 1)

2
𝜔

2
‖�̃�‖

2

− ∫

𝑇

0

𝑓 (𝑡) |�̃�|

2
𝑑𝑡 − ∫

𝑇

0

𝑔 (𝑡) |�̃�| 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 0) 𝑑𝑡

≥ (

1

2

(2𝑚 + 1) 𝜔

2

1 + (𝑚 + 1)

2
𝜔

2
− 𝐶

2

0
𝑀

1
)

× ‖�̃�‖

2
− 𝐶

0
𝑀

2 ‖
�̃�‖ − ∫

𝑇

0

𝐹 (𝑡, 0) 𝑑𝑡.

(30)

So, by (14), 𝐽 is bounded from below on ̃

𝐻.
Hence, by Rabinowitz’s Saddle point Theorem (see [19,

Theorem 4.6]), we obtain that the problem (1) has at least one
solution.

Proof of Theorem 2. The proof of Theorem 2 is similar to the
proof of Theorem 1, so we omit it here.
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