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Abstract. 
We study the following third-order 
	
		
			

				𝑝
			

		
	
-Laplacian functional dynamic equation on time scales: 
	
		
			
				
				Φ
			

			

				𝑝
			

			
				(
				𝑢
			

			
				Δ
				∇
			

			
				
				(
				𝑡
				)
				)
			

			

				∇
			

			
				+
				𝑎
				(
				𝑡
				)
				𝑓
				(
				𝑢
				(
				𝑡
				)
				,
				𝑢
				(
				𝜇
				(
				𝑡
				)
				)
				)
				=
				0
			

		
	
, 
	
		
			
				𝑡
				∈
				(
				0
				,
				𝑇
				)
			

			

				𝐓
			

		
	
,  
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝜑
				(
				𝑡
				)
			

		
	
,  
	
		
			
				[
				]
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				𝐓
			

		
	
,  
	
		
			

				𝑢
			

			

				Δ
			

			
				(
				0
				)
				=
				𝑢
			

			
				Δ
				∇
			

			
				(
				𝑇
				)
				=
				0
			

		
	
, and 
	
		
			
				𝑢
				(
				𝑇
				)
				+
				𝐵
			

			

				0
			

			
				(
				𝑢
			

			

				Δ
			

			
				(
				𝜂
				)
				)
				=
				0
			

		
	
. By applying the Five-Functional Fixed Point Theorem, the existence criteria of three positive solutions are established.


1. Introduction
Recently, much attention has been paid to the existence of positive solutions for the boundary value problems with 
	
		
			

				𝑝
			

		
	
-Laplacian operator on time scales; for example, see [1–22] and the references therein. But, to the best of our knowledge, there is not much concerning 
	
		
			

				𝑝
			

		
	
-Laplacian functional dynamic equations on time scales [6, 12–14, 19, 21, 22], especially for the third-order 
	
		
			

				𝑝
			

		
	
-Laplacian functional dynamic equations on time scales [14, 22].
In [14], Song and Gao were concerned with the existence of positive solutions for the 
	
		
			

				𝑝
			

		
	
-Laplacian functional dynamic equation on time scales:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				Φ
			

			

				𝑝
			

			
				
				𝑢
			

			
				Δ
				∇
			

			
				(
				𝑡
				)
				
				
			

			

				∇
			

			
				+
				𝑎
				(
				𝑡
				)
				𝑓
				(
				𝑢
				(
				𝑡
				)
				,
				𝑢
				(
				𝜇
				(
				𝑡
				)
				)
				)
				=
				0
				,
				𝑡
				∈
				(
				0
				,
				𝑇
				)
			

			

				𝐓
			

			
				,
				[
				]
				𝑢
				(
				𝑡
				)
				=
				𝜑
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				𝐓
			

			
				,
				𝑢
			

			

				Δ
			

			
				(
				0
				)
				=
				𝑢
			

			
				Δ
				∇
			

			
				(
				𝑇
				)
				=
				0
				,
				𝑢
				(
				𝑇
				)
				+
				𝐵
			

			

				0
			

			
				
				𝑢
			

			

				Δ
			

			
				
				(
				𝜂
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				𝜂
				∈
				(
				0
				,
				𝜌
				(
				𝑇
				)
				)
			

			

				𝐓
			

		
	
 and 
	
		
			

				Φ
			

			

				𝑝
			

			
				(
				𝑠
				)
			

		
	
 is 
	
		
			

				𝑝
			

		
	
-Laplacian operator; that is, 
	
		
			

				Φ
			

			

				𝑝
			

			
				(
				𝑠
				)
				=
				|
				𝑠
				|
			

			
				𝑝
				−
				2
			

			

				𝑠
			

		
	
, 
	
		
			
				𝑝
				>
				1
			

		
	
, 
	
		
			
				(
				Φ
			

			

				𝑝
			

			

				)
			

			
				−
				1
			

			
				=
				Φ
			

			

				𝑞
			

		
	
, 
	
		
			
				1
				/
				𝑝
				+
				1
				/
				𝑞
				=
				1
			

		
	
, and
	
		
			

				(
			

			

				C
			

			

				1
			

			

				)
			

		
	

	
		
			
				𝑓
				∶
				(
				ℝ
			

			

				+
			

			

				)
			

			

				2
			

			
				→
				ℝ
			

			

				+
			

		
	
 is continuous;
	
		
			

				(
			

			

				C
			

			

				2
			

			

				)
			

		
	

	
		
			
				𝑎
				∶
				𝐓
				→
				ℝ
			

			

				+
			

		
	
 is left dense continuous (i.e., 
	
		
			
				𝑎
				∈
				𝐶
			

			
				𝐥
				𝐝
			

			
				(
				𝐓
				,
				ℝ
			

			

				+
			

			

				)
			

		
	
) and does not vanish identically on any closed subinterval of 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
, where 
	
		
			

				𝐶
			

			
				𝐥
				𝐝
			

			
				(
				𝐓
				,
				ℝ
			

			

				+
			

			

				)
			

		
	
 denotes the set of all left dense continuous functions from 
	
		
			

				𝐓
			

		
	
 to 
	
		
			

				ℝ
			

			

				+
			

		
	
;
	
		
			

				(
			

			

				C
			

			

				3
			

			

				)
			

		
	

	
		
			
				𝜑
				∶
				[
				−
				𝑟
				,
				0
				]
			

			

				𝐓
			

			
				→
				ℝ
			

			

				+
			

		
	
 is continuous and 
	
		
			
				𝑟
				>
				0
			

		
	
;
	
		
			

				(
			

			

				C
			

			

				4
			

			

				)
			

		
	

	
		
			
				𝜇
				∶
				[
				0
				,
				𝑇
				]
			

			

				𝐓
			

			
				→
				[
				−
				𝑟
				,
				𝑇
				]
			

			

				𝐓
			

		
	
 is continuous, 
	
		
			
				𝜇
				(
				𝑡
				)
				≤
				0
			

		
	
 for all 
	
		
			

				𝑡
			

		
	
;
	
		
			

				(
			

			

				C
			

			

				5
			

			

				)
			

		
	

	
		
			

				𝐵
			

			

				0
			

			
				∶
				ℝ
				→
				ℝ
			

		
	
 is continuous and satisfies the condition that there are 
	
		
			
				𝐴
				≥
				𝐵
				≥
				0
			

		
	
 such that
									
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐵
				𝑣
				≤
				𝐵
			

			

				0
			

			
				(
				𝑣
				)
				≤
				𝐴
				𝑣
				,
				∀
				ℝ
				.
			

		
	
The existence of two positive solutions to problem (1) was obtained by using a double fixed point theorem due to Avery et al. [23] in a cone.
In [22], Wang and Guan considered the existence of positive solutions to problem (1) by applying the well-known Leggett-Williams Fixed Point Theorem.
Motivated by [14, 22], we will show that problem (1) has at least three positive solutions by means of the Five-Functional Fixed Point Theorem [24] (which is a generalization of the Leggett-Williams Fixed Point Theorem [25]). It is worth noting that the Five-Functional Fixed Point Theorem is used extensively in yielding three solutions for BVPs of differential equations, difference equations, and/or dynamic equations on time scales; see [6, 26, 27] and references therein.
Throughout this work we assume knowledge of time scales and time-scale notation, first introduced by Hilger [28]. For more on time scales, please see the texts by Bohner and Peterson [29, 30].
In the remainder of this section, we state the following theorem, which is crucial to our proof.
Let 
	
		
			

				𝛾
			

		
	
, 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝜃
			

		
	
 be nonnegative, continuous, and convex functionals on 
	
		
			

				𝑃
			

		
	
 and let 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝜓
			

		
	
 be nonnegative, continuous, and concave functionals on 
	
		
			

				𝑃
			

		
	
. Then, for nonnegative real numbers 
	
		
			

				ℎ
			

		
	
, 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
, 
	
		
			

				𝑑
			

		
	
, and 
	
		
			

				𝑐
			

		
	
, we define the convex sets 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
				=
				{
				𝑥
				∈
				𝑃
				∶
				𝛾
				(
				𝑥
				)
				<
				𝑐
				}
				,
				𝑃
				(
				𝛾
				,
				𝛼
				,
				𝑎
				,
				𝑐
				)
				=
				{
				𝑥
				∈
				𝑃
				∶
				𝑎
				≤
				𝛼
				(
				𝑥
				)
				,
				𝛾
				(
				𝑥
				)
				≤
				𝑐
				}
				,
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝑑
				,
				𝑐
				)
				=
				{
				𝑥
				∈
				𝑃
				∶
				𝛽
				(
				𝑥
				)
				≤
				𝑑
				,
				𝛾
				(
				𝑥
				)
				≤
				𝑐
				}
				,
				𝑃
				(
				𝛾
				,
				𝜃
				,
				𝛼
				,
				𝑎
				,
				𝑏
				,
				𝑐
				)
				=
				{
				𝑥
				∈
				𝑃
				∶
				𝑎
				≤
				𝛼
				(
				𝑥
				)
				,
				𝜃
				(
				𝑥
				)
				≤
				𝑏
				,
				𝛾
				(
				𝑥
				)
				≤
				𝑐
				}
				,
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝜓
				,
				ℎ
				,
				𝑑
				,
				𝑐
				)
				=
				{
				𝑥
				∈
				𝑃
				∶
				ℎ
				≤
				𝜓
				(
				𝑥
				)
				,
				𝛽
				(
				𝑥
				)
				≤
				𝑑
				,
				𝛾
				(
				𝑥
				)
				≤
				𝑐
				}
				.
			

		
	

Theorem 1 (see [24]).  Let 
	
		
			

				𝑃
			

		
	
 be a cone in a real Banach space 
	
		
			

				𝐸
			

		
	
. Suppose there exist positive numbers 
	
		
			

				𝑐
			

		
	
 and 
	
		
			

				𝑀
			

		
	
; nonnegative, continuous, and concave functionals 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝜓
			

		
	
 on 
	
		
			

				𝑃
			

		
	
; and nonnegative, continuous, and convex functionals 
	
		
			

				𝛾
			

		
	
, 
	
		
			

				𝛽
			

		
	
, and 
	
		
			

				𝜃
			

		
	
 on 
	
		
			

				𝑃
			

		
	
, with
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝛼
				(
				𝑥
				)
				≤
				𝛽
				(
				𝑥
				)
				,
				‖
				𝑥
				‖
				≤
				𝑀
				𝛾
				(
				𝑥
				)
			

		
	

						for all 
	
		
			
				𝑥
				∈
			

			
				
			
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
			

		
	
. Suppose
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝐹
				∶
			

			
				
			
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
				⟶
			

			
				
			
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
			

		
	

						is completely continuous and there exist nonnegative numbers 
	
		
			

				ℎ
			

		
	
, 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑘
			

		
	
, 
	
		
			

				𝑏
			

		
	
, with 
	
		
			
				0
				<
				𝑎
				<
				𝑏
			

		
	
 such that (i)
	
		
			
				{
				𝑥
				∈
				𝑃
				(
				𝛾
				,
				𝜃
				,
				𝛼
				,
				𝑏
				,
				𝑘
				,
				𝑐
				)
				∶
				𝛼
				(
				𝑥
				)
				>
				𝑏
				}
				≠
			

			

				Ø
			

		
	
 and 
	
		
			
				𝛼
				(
				𝐹
				𝑥
				)
				>
				𝑏
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝑃
				(
				𝛾
				,
				𝜃
				,
				𝛼
				,
				𝑏
				,
				𝑘
				,
				𝑐
				)
			

		
	
;(ii)
	
		
			
				{
				𝑥
				∈
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝜓
				,
				ℎ
				,
				𝑎
				,
				𝑐
				)
				∶
				𝛽
				(
				𝑥
				)
				<
				𝑎
				}
				≠
			

			

				Ø
			

		
	
 and 
	
		
			
				𝛽
				(
				𝐹
				𝑥
				)
				<
				𝑎
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝜓
				,
				ℎ
				,
				𝑎
				,
				𝑐
				)
			

		
	
;(iii)
	
		
			
				𝛼
				(
				𝐹
				𝑥
				)
				>
				𝑏
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝑃
				(
				𝛾
				,
				𝛼
				,
				𝑏
				,
				𝑐
				)
			

		
	
 with 
	
		
			
				𝜃
				(
				𝐹
				𝑥
				)
				>
				𝑘
			

		
	
;(iv)
	
		
			
				𝛽
				(
				𝐹
				𝑥
				)
				<
				𝑎
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝑎
				,
				𝑐
				)
			

		
	
 with 
	
		
			
				𝜓
				(
				𝐹
				𝑥
				)
				<
				ℎ
			

		
	
. Then 
	
		
			

				𝐹
			

		
	
 has at least three fixed points 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				3
			

			

				∈
			

			
				
			
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
			

		
	
 such that
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝛽
				
				𝑥
			

			

				1
			

			
				
				
				𝑥
				<
				𝑎
				,
				𝑏
				<
				𝛼
			

			

				2
			

			
				
				,
				
				𝑥
				𝑎
				<
				𝛽
			

			

				3
			

			
				
				
				𝑥
				𝑤
				𝑖
				𝑡
				ℎ
				𝛼
			

			

				3
			

			
				
				<
				𝑏
				.
			

		
	

2. Existence of Three Positive Solutions
We note that 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a solution of BVP (1) if and only if
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑢
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				
				(
				𝑡
				)
			

			
				𝑇
				0
			

			
				(
				𝑇
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				−
				𝐵
			

			

				0
			

			
				
				
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				+
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				[
				]
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			
				,
				[
				]
				𝜑
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				𝐓
			

			

				.
			

		
	

Let 
	
		
			
				𝐸
				=
				𝐶
			

			
				𝐥
				𝐝
			

			
				(
				[
				0
				,
				𝑇
				]
			

			

				𝐓
			

			
				,
				ℝ
				)
			

		
	
 be endowed with 
	
		
			
				‖
				𝑢
				‖
				=
				s
				u
				p
			

			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

			

				𝐓
			

			
				|
				𝑢
				(
				𝑡
				)
				|
			

		
	
, so 
	
		
			

				𝐸
			

		
	
 is a Banach space. Define cone 
	
		
			
				𝑃
				⊂
				𝐸
			

		
	
 by
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				𝑃
				=
				𝑢
				∈
				𝐸
				∶
				𝑢
			

			
				i
				s
				c
				o
				n
				c
				a
				v
				e
				a
				n
				d
				n
				o
				n
				n
				e
				g
				a
				t
				i
				v
				e
				v
				a
				l
				u
				e
				d
			

			
				[
				]
				o
				n
				0
				,
				𝑇
			

			

				𝐓
			

			
				,
				𝑢
			

			

				Δ
			

			
				
				.
				(
				0
				)
				=
				0
			

		
	

For each 
	
		
			
				𝑢
				∈
				𝐸
			

		
	
, extend 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 to 
	
		
			
				[
				−
				𝑟
				,
				𝑇
				]
			

			

				𝐓
			

		
	
 with 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝜑
				(
				𝑡
				)
			

		
	
 for 
	
		
			
				𝑡
				∈
				[
				−
				𝑟
				,
				0
				]
			

			

				𝐓
			

		
	
.
Define 
	
		
			
				𝐹
				∶
				𝑃
				→
				𝐸
			

		
	
 by
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				=
				
				(
				𝐹
				𝑢
				)
				(
				𝑡
				)
			

			
				𝑇
				0
			

			
				(
				𝑇
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				×
				
				
			

			
				𝑠
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				−
				𝐵
			

			

				0
			

			
				
				
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				+
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				[
				]
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			

				.
			

		
	

					We seek a point, 
	
		
			

				𝑢
			

			

				1
			

		
	
, of 
	
		
			

				𝐹
			

		
	
 in the cone 
	
		
			

				𝑃
			

		
	
. Define
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝑢
				𝑢
				(
				𝑡
				)
				=
			

			

				1
			

			
				[
				]
				(
				𝑡
				)
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			
				,
				[
				]
				𝜑
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				𝐓
			

			

				.
			

		
	

Then 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 denotes a positive solution of BVP (1).
We have the following results.
Lemma 2.  Let 
	
		
			
				𝑢
				∈
				𝑃
			

		
	
, and then (1)
	
		
			
				𝐹
				∶
				𝑃
				→
				𝑃
			

		
	
 is completely continuous;(2)
	
		
			
				𝑢
				(
				𝑡
				)
				≥
				(
				(
				𝑇
				−
				𝑡
				)
				/
				𝑇
				)
				‖
				𝑢
				‖
			

		
	
 for 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

			

				𝐓
			

		
	
;(3)
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is decreasing 
	
		
			
				[
				0
				,
				𝑇
				]
			

			

				𝐓
			

		
	
;(4)
	
		
			
				(
				𝑇
				−
				𝜍
				)
				𝑢
				(
				𝜏
				)
				≤
				(
				𝑇
				−
				𝜏
				)
				𝑢
				(
				𝜍
				)
			

		
	
 for 
	
		
			
				0
				<
				𝜏
				<
				𝜍
				<
				𝑇
			

		
	
 and 
	
		
			
				𝜏
				,
				𝜍
				∈
				𝐓
			

		
	
.
Proof. (1)–(3) are Lemma 3.1 of [14]. It is easy to conclude that (4) is satisfied by the concavity of 
	
		
			

				𝑢
			

		
	
.Let 
	
		
			
				𝑙
				∈
				𝐓
			

		
	
 be fixed such that 
	
		
			
				0
				<
				𝑙
				<
				𝜂
				<
				𝑇
			

		
	
, and set
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑌
			

			

				1
			

			
				=
				
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			
				
				;
				𝑌
				∶
				𝜇
				(
				𝑡
				)
				<
				0
			

			

				2
			

			
				=
				
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			
				
				;
				𝑌
				∶
				𝜇
				(
				𝑡
				)
				≥
				0
			

			

				3
			

			
				=
				𝑌
			

			

				1
			

			
				∩
				[
				]
				0
				,
				𝑙
			

			

				𝐓
			

			

				.
			

		
	
Throughout this paper, we assume 
	
		
			

				𝑌
			

			

				3
			

			

				≠
			

			

				Ø
			

		
	
 and 
	
		
			

				∫
			

			

				𝑌
			

			

				3
			

			
				𝑎
				(
				𝑟
				)
				∇
				𝑟
				>
				0
			

		
	
.We define the nonnegative, continuous, and concave functionals 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝜓
			

		
	
 and the nonnegative, continuous, and convex functionals 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝜃
			

		
	
, 
	
		
			

				𝛾
			

		
	
 on the cone 
	
		
			

				𝑃
			

		
	
, respectively, as
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝛾
				(
				𝑢
				)
				=
				𝜃
				(
				𝑢
				)
				=
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				𝜂
				,
				𝑇
			

			

				𝐓
			

			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝜂
				)
				,
				𝛼
				(
				𝑢
				)
				=
				m
				i
				n
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑙
			

			

				𝐓
			

			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑙
				)
				,
				𝛽
				(
				𝑢
				)
				=
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				𝑙
				,
				𝑇
			

			

				𝐓
			

			
				𝜓
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑙
				)
				,
				(
				𝑢
				)
				=
				m
				i
				n
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜂
			

			

				𝐓
			

			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝜂
				)
				.
			

		
	
We observe that 
	
		
			
				𝛼
				(
				𝑢
				)
				=
				𝛽
				(
				𝑢
				)
			

		
	
 for each 
	
		
			
				𝑢
				∈
				𝑃
			

		
	
.In addition, by Lemma 2, we have 
	
		
			
				𝛾
				(
				𝑢
				)
				=
				𝑢
				(
				𝜂
				)
				≥
				(
				(
				𝑇
				−
				𝜂
				)
				/
				𝑇
				)
				‖
				𝑢
				‖
			

		
	
. Hence 
	
		
			
				‖
				𝑢
				‖
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝛾
				(
				𝑢
				)
			

		
	
 for all 
	
		
			
				𝑢
				∈
				𝑃
			

		
	
.For convenience, we define
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝜇
				=
				𝑇
				(
				𝑇
				+
				𝜂
				+
				𝐵
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑇
				0
			

			
				
				,
				
				𝑎
				(
				𝑟
				)
				∇
				𝑟
				𝛿
				=
				𝐴
			

			

				𝑌
			

			

				3
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				𝑎
				(
				𝑟
				)
				∇
				𝑟
				∇
				𝑠
				,
				𝜆
				=
				𝑇
				(
				𝑇
				+
				𝑙
				+
				𝐵
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑇
				0
			

			
				
				.
				𝑎
				(
				𝑟
				)
				∇
				𝑟
			

		
	

We now state growth conditions on 
	
		
			

				𝑓
			

		
	
 so that BVP (1) has at least three positive solutions.
Theorem 3.  Let 
	
		
			
				0
				<
				𝑎
				<
				(
				(
				𝑇
				−
				𝑙
				)
				/
				𝑇
				)
				𝑏
				<
				(
				(
				𝑇
				−
				𝜂
				)
				(
				𝑇
				−
				𝑙
				)
				/
				𝑇
			

			

				2
			

			
				)
				𝑐
			

		
	
, 
	
		
			
				𝜇
				𝑏
				<
				𝛿
				𝑐
			

		
	
, and suppose that 
	
		
			

				𝑓
			

		
	
 satisfies the following conditions: 
	
		
			

				(
			

			

				H
			

			

				1
			

			

				)
			

		
	

	
		
			
				𝑓
				(
				𝑢
				,
				𝜑
				(
				𝑠
				)
				)
				<
				Φ
			

			

				𝑝
			

			
				(
				𝑐
				/
				𝜇
				)
			

		
	
, if 
	
		
			
				0
				≤
				𝑢
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑐
			

		
	
, uniformly in 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			

				𝐓
			

		
	
, and 
	
		
			
				𝑓
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				)
				<
				Φ
			

			

				𝑝
			

			
				(
				𝑐
				/
				𝜇
				)
			

		
	
, if 
	
		
			
				0
				≤
				𝑢
			

			

				𝑖
			

			
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑐
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
;
	
		
			

				(
			

			

				H
			

			

				2
			

			

				)
			

		
	

	
		
			
				𝑓
				(
				𝑢
				,
				𝜑
				(
				𝑠
				)
				)
				>
				Φ
			

			

				𝑝
			

			
				(
				𝑏
				/
				𝛿
				)
			

		
	
, if 
	
		
			
				𝑏
				≤
				𝑢
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
			

			

				2
			

			

				𝑏
			

		
	
, uniformly in 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			

				𝐓
			

		
	
;
	
		
			

				(
			

			

				H
			

			

				3
			

			

				)
			

		
	

	
		
			
				𝑓
				(
				𝑢
				,
				𝜑
				(
				𝑠
				)
				)
				<
				Φ
			

			

				𝑝
			

			
				(
				𝑎
				/
				𝜆
				)
			

		
	
, if 
	
		
			
				0
				≤
				𝑢
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝑙
				)
				)
				𝑎
			

		
	
, uniformly in 
	
		
			
				𝑠
				∈
				[
				−
				𝑟
				,
				0
				]
			

			

				𝐓
			

		
	
, and 
	
		
			
				𝑓
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				)
				<
				Φ
			

			

				𝑝
			

			
				(
				𝑎
				/
				𝜆
				)
			

		
	
, if 
	
		
			
				0
				≤
				𝑢
			

			

				𝑖
			

			
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝑙
				)
				)
				𝑎
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
. Then BVP (1) has at least three positive solutions of the form
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝑢
				𝑢
				(
				𝑡
				)
				=
			

			

				𝑖
			

			
				[
				]
				(
				𝑡
				)
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			
				[
				]
				,
				𝑖
				=
				1
				,
				2
				,
				3
				,
				𝜑
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				𝐓
			

			

				,
			

		
	

						where 
	
		
			
				m
				a
				x
			

			
				𝑡
				∈
				[
				𝑙
				,
				𝑇
				]
			

			

				𝐓
			

			

				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				<
				𝑎
			

		
	
, 
	
		
			
				m
				i
				n
			

			
				𝑡
				∈
				[
				0
				,
				𝑙
				]
			

			

				𝐓
			

			

				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				>
				𝑏
			

		
	
, and 
	
		
			
				𝑎
				<
				m
				a
				x
			

			
				𝑡
				∈
				[
				𝑙
				,
				𝑇
				]
			

			

				𝐓
			

			

				𝑢
			

			

				3
			

			
				(
				𝑡
				)
			

		
	
 with 
	
		
			
				m
				i
				n
			

			
				𝑡
				∈
				[
				0
				,
				𝑙
				]
			

			

				𝐓
			

			

				𝑢
			

			

				3
			

			
				(
				𝑡
				)
				<
				𝑏
			

		
	
.
Proof. Let 
	
		
			
				𝑢
				∈
			

			
				
			
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
			

		
	
, and then 
	
		
			
				𝛾
				(
				𝑢
				)
				=
				m
				a
				x
			

			
				𝑡
				∈
				[
				𝜂
				,
				𝑇
				]
			

			

				𝐓
			

			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝜂
				)
				≤
				𝑐
			

		
	
, and consequently, 
	
		
			
				0
				≤
				𝑢
				(
				𝑡
				)
				≤
				𝑐
			

		
	
 for 
	
		
			
				𝑡
				∈
				[
				𝜂
				,
				𝑇
				]
			

			

				𝐓
			

		
	
. Since 
	
		
			
				𝑢
				(
				𝜂
				)
				≥
				(
				(
				𝑇
				−
				𝜂
				)
				/
				𝑇
				)
				𝑢
				(
				0
				)
			

		
	
, so 
	
		
			
				‖
				𝑢
				‖
				=
				𝑢
				(
				0
				)
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑢
				(
				𝜂
				)
				≤
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑐
			

		
	
, and this implies
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑇
				0
				≤
				𝑢
				(
				𝑡
				)
				≤
			

			
				
			
			
				𝑇
				−
				𝜂
				𝑐
				,
			

			
				f
				o
				r
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			

				.
			

		
	
From 
	
		
			

				(
			

			

				H
			

			

				1
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝛾
				=
				
				(
				𝐹
				𝑢
				)
				=
				(
				𝐹
				𝑢
				)
				(
				𝜂
				)
			

			
				𝑇
				0
			

			
				(
				𝑇
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				−
				𝐵
			

			

				0
			

			
				
				
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				+
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝜂
				0
			

			
				(
				𝜂
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				≤
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑇
				0
			

			
				𝑇
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				𝑎
				
				
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				+
				𝐵
			

			
				𝑇
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				+
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝜂
				0
			

			
				𝑇
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑇
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				=
				𝑇
				(
				𝑇
				+
				𝜂
				+
				𝐵
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			

				𝑌
			

			

				1
			

			
				+
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝜑
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
			

			

				𝑌
			

			

				2
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				<
				𝑇
				(
				𝑇
				+
				𝜂
				+
				𝐵
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑇
				0
			

			
				
				𝑐
				𝑎
				(
				𝑟
				)
				∇
				𝑟
			

			
				
			
			
				𝜇
				=
				𝑐
				.
			

		
	
Therefore
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝐹
				𝑢
				∈
			

			
				
			
			
				𝑃
				(
				𝛾
				,
				𝑐
				)
				.
			

		
	
We now turn to property (i) of Theorem 1. Choosing 
	
		
			
				𝑢
				≡
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑏
			

		
	
, 
	
		
			
				𝑘
				=
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑏
			

		
	
, it follows that
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑇
				𝛼
				(
				𝑢
				)
				=
				𝑢
				(
				𝑙
				)
				=
			

			
				
			
			
				𝑇
				𝑇
				−
				𝜂
				𝑏
				>
				𝑏
				,
				𝜃
				(
				𝑢
				)
				=
				𝑢
				(
				𝜂
				)
				=
			

			
				
			
			
				𝑇
				𝑇
				−
				𝜂
				𝑏
				=
				𝑘
				,
				𝛾
				(
				𝑢
				)
				=
				𝑢
				(
				𝜂
				)
				=
			

			
				
			
			
				𝑇
				−
				𝜂
				𝑏
				<
				𝑐
				,
			

		
	

						which shows that 
	
		
			
				{
				𝑢
				∈
				𝑃
				(
				𝛾
				,
				𝜃
				,
				𝛼
				,
				𝑏
				,
				𝑘
				,
				𝑐
				)
				∶
				𝛼
				(
				𝑢
				)
				>
				𝑏
				}
				≠
			

			

				Ø
			

		
	
, and, for 
	
		
			
				𝑢
				∈
				𝑃
				(
				𝛾
				,
				𝜃
				,
				𝛼
				,
				𝑏
				,
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑏
				,
				𝑐
				)
			

		
	
, we have
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				𝑇
				𝑏
				≤
				𝑢
				(
				𝑡
				)
				≤
			

			
				
			
			
				
				𝑇
				−
				𝜂
			

			

				2
			

			
				𝑏
				,
			

			
				f
				o
				r
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑙
			

			

				𝐓
			

			

				.
			

		
	
From 
	
		
			

				(
			

			

				H
			

			

				2
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝛼
				=
				
				(
				𝐹
				𝑢
				)
				=
				(
				𝐹
				𝑢
				)
				(
				𝑙
				)
			

			
				𝑇
				0
			

			
				(
				𝑇
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				−
				𝐵
			

			

				0
			

			
				
				
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				+
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑙
				0
			

			
				(
				𝑡
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				≥
				−
				𝐵
			

			

				0
			

			
				
				
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				≥
				𝐴
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				≥
				𝐴
			

			
				𝑙
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				≥
				𝐴
			

			

				𝑌
			

			

				3
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				𝑎
				
				
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝜑
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				>
				𝐴
			

			

				𝑌
			

			

				3
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				𝑎
				
				𝑏
				(
				𝑟
				)
				∇
				𝑟
				∇
				𝑠
			

			
				
			
			
				𝛿
				=
				𝑏
				.
			

		
	
We conclude that (i) of Theorem 1 is satisfied.We next address (ii) of Theorem 1. If we take 
	
		
			
				𝑢
				≡
				(
				(
				𝑇
				−
				𝜂
				)
				/
				𝑇
				)
				𝑎
			

		
	
, 
	
		
			
				ℎ
				=
				(
				(
				𝑇
				−
				𝜂
				)
				/
				𝑇
				)
				𝑎
			

		
	
, then
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝛾
				(
				𝑢
				)
				=
				𝑢
				(
				𝜂
				)
				=
				𝑇
				−
				𝜂
			

			
				
			
			
				𝑇
				𝑎
				<
				𝑐
				,
				𝜓
				(
				𝑢
				)
				=
				𝑢
				(
				𝜂
				)
				=
				𝑇
				−
				𝜂
			

			
				
			
			
				𝑇
				𝑎
				=
				ℎ
				,
				𝛽
				(
				𝑢
				)
				=
				𝑢
				(
				𝑙
				)
				=
				𝑇
				−
				𝜂
			

			
				
			
			
				𝑇
				𝑎
				<
				𝑎
				.
			

		
	
From this we know that 
	
		
			
				{
				𝑢
				∈
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝜓
				,
				ℎ
				,
				𝑎
				,
				𝑐
				)
				∶
				𝛽
				(
				𝑢
				)
				<
				𝑎
				}
				≠
			

			

				Ø
			

		
	
. If 
	
		
			
				𝑢
				∈
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝜓
				,
				(
				(
				𝑇
				−
				𝜂
				)
				/
				𝑇
				)
				𝑎
				,
				𝑎
				,
				𝑐
				)
			

		
	
, then
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑇
				0
				≤
				𝑢
				(
				𝑡
				)
				≤
			

			
				
			
			
				𝑇
				−
				𝑙
				𝑎
				,
			

			
				f
				o
				r
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			

				.
			

		
	
From 
	
		
			

				(
			

			

				H
			

			

				3
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝛽
				=
				
				(
				𝐹
				𝑢
				)
				=
				(
				𝐹
				𝑢
				)
				(
				𝑙
				)
			

			
				𝑇
				0
			

			
				(
				𝑇
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				−
				𝐵
			

			

				0
			

			
				
				
			

			
				𝜂
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				+
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑙
				0
			

			
				(
				𝑡
				−
				𝑠
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				≤
				
				−
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑇
				0
			

			
				𝑇
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				+
				𝐵
			

			
				𝑇
				0
			

			

				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑠
				0
			

			
				
				+
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
			

			
				𝑙
				0
			

			
				𝑇
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑇
				0
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				∇
				𝑠
				=
				𝑇
				(
				𝑇
				+
				𝑙
				+
				𝐵
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			

				𝑌
			

			

				1
			

			
				+
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝜑
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
			

			

				𝑌
			

			

				2
			

			
				
				𝑎
				(
				𝑟
				)
				𝑓
				(
				𝑢
				(
				𝑟
				)
				,
				𝑢
				(
				𝜇
				(
				𝑟
				)
				)
				)
				∇
				𝑟
				<
				𝑇
				(
				𝑇
				+
				𝑙
				+
				𝐵
				)
				Φ
			

			

				𝑞
			

			
				
				
			

			
				𝑇
				0
			

			
				
				𝑎
				𝑎
				(
				𝑟
				)
				∇
				𝑟
			

			
				
			
			
				𝜆
				=
				𝑎
				.
			

		
	
Now we show that (iii) of Theorem 1 is satisfied. If 
	
		
			
				𝑢
				∈
				𝑃
				(
				𝛾
				,
				𝛼
				,
				𝑏
				,
				𝑐
				)
			

		
	
 and 
	
		
			
				𝜃
				(
				𝐹
				𝑢
				)
				=
				𝐹
				𝑢
				(
				𝜂
				)
				>
				(
				𝑇
				/
				(
				𝑇
				−
				𝜂
				)
				)
				𝑏
			

		
	
, then
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝛼
				(
				𝐹
				𝑢
				)
				≥
				(
				𝐹
				𝑢
				)
				(
				𝑙
				)
				=
				𝑇
				−
				𝑙
			

			
				
			
			
				𝑇
				𝐹
				𝑢
				(
				𝑙
				)
				≥
				𝑇
				−
				𝑙
			

			
				
			
			
				𝑇
				>
				𝐹
				𝑢
				(
				𝜂
				)
				𝑇
				−
				𝑙
			

			
				
			
			
				𝑇
				−
				𝜂
				𝑏
				>
				𝑏
				.
			

		
	
Finally, if 
	
		
			
				𝑢
				∈
				𝑄
				(
				𝛾
				,
				𝛽
				,
				𝑎
				,
				𝑐
				)
			

		
	
 and 
	
		
			
				𝜓
				(
				𝐹
				𝑢
				)
				=
				𝐹
				𝑢
				(
				𝜂
				)
				<
				(
				(
				𝑇
				−
				𝜂
				)
				/
				𝑇
				)
				𝑎
			

		
	
, then from (4) of Lemma 2 we have
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝑇
				𝛽
				(
				𝐹
				𝑢
				)
				=
				𝐹
				𝑢
				(
				𝑙
				)
				≤
			

			
				
			
			
				𝑇
				𝑇
				−
				𝑙
				𝐹
				𝑢
				(
				𝑙
				)
				≤
			

			
				
			
			
				𝑇
				−
				𝜂
				𝐹
				𝑢
				(
				𝜂
				)
				<
				𝑎
				,
			

		
	

						which shows that condition (iv) of Theorem 1 is fulfilled.Thus, all the conditions of Theorem 1 are satisfied. Hence, 
	
		
			

				𝐹
			

		
	
 has at least three fixed points 
	
		
			

				𝑢
			

			

				1
			

		
	
, 
	
		
			

				𝑢
			

			

				2
			

		
	
, 
	
		
			

				𝑢
			

			

				3
			

		
	
 satisfying
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝛽
				
				𝑢
			

			

				1
			

			
				
				
				𝑢
				<
				𝑎
				,
				𝑏
				<
				𝛼
			

			

				2
			

			
				
				,
				
				𝑢
				𝑎
				<
				𝛽
			

			

				3
			

			

				
			

			
				w
				i
				t
				h
			

			
				𝛼
				
				𝑢
			

			

				3
			

			
				
				<
				𝑏
				.
			

		
	
Let
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				𝑢
				𝑢
				(
				𝑡
				)
				=
			

			

				𝑖
			

			
				[
				]
				(
				𝑡
				)
				,
				𝑡
				∈
				0
				,
				𝑇
			

			

				𝐓
			

			
				[
				]
				,
				𝑖
				=
				1
				,
				2
				,
				3
				,
				𝜑
				(
				𝑡
				)
				,
				𝑡
				∈
				−
				𝑟
				,
				0
			

			

				𝐓
			

			

				,
			

		
	

						which are three positive solutions of BVP (1).
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