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A numerical interpolating algorithmof collocation is formulated, based on 8-point binary interpolating subdivision schemes for the
generation of curves, to solve the two-point third order boundary value problems. It is observed that the algorithmproduces smooth
continuous solutions of the problems. Numerical examples are given to illustrate the algorithm and its convergence. Moreover, the
approximation properties of the collocation algorithm have also been discussed.

1. Introduction

Subdivision plays an important role in computer aided
geometric design. Particularly, subdivision schemes for curve
design consist of repeated refinement of control polygons. In
particular, the linear schemes are well studied with rules for
defining the control points at the finer level as finite linear
combinations of the control points in the coarser level.

The concept of subdivision has been initiated by de Rham
[1]. Later on, in [2], Dyn et al. studied a family of schemes
withmask of size four, indexed by a tension parameter. In [3],
Dubuc and Deslauriers studied a family of schemes indexed
by the size of the mask 2𝑚 and the arity (or base) 𝑏; that is,
at each subdivision step, the scheme (𝑚, 𝑏) uses masks of 2𝑚
points to compute 𝑏 new points corresponding to each old
edge. Mustafa and Rehman [4] unified all existing even-point
interpolating and approximating schemes by offering general
formula for the mask of (2𝑚 + 4)-point even-ary subdivision
scheme. Aslam et al. [5] presented an explicit formula which
unified the mask of (2𝑚 − 1)-point interpolating as well
as approximating schemes. Mustafa et al. [6] presented an
explicit formula for the mask of odd-points 𝑏-ary (for any
odd 𝑚 ≥ 3) interpolating subdivision schemes. Higher
arity schemes have been introduced in [7, 8]. Mustafa and
Ivrissimitzis [9] have showed that when subdivision is used
as a data modelling tool large support, or large arity schemes,

which generally produce smoother curves, it may outperform
simpler schemes.

An interpolating subdivision scheme approach to the
construction of approximate solutions of two-point second
order boundary value problems was first time introduced in
[10]. In this approach amethod of collocation was formulated
for linear two-point second order boundary value problems.
It is proved that the algorithms produce smooth continuous
solutions provided the algorithms are chosen appropriately.
Later on, in [11], they reformulated the collocationmethod by
subdivision scheme in order to compute numerical solutions
for two-point boundary-value problems of differential equa-
tions with deviating arguments.They demonstrated that their
approach has further development to their previousworks for
solving various types of two-point second order boundary-
value problems.

They approximated the derivative boundary conditions
by forward difference operator so it is difficult (with no flex-
ibility to improve the solution) to generalize their approach
to solve third or higher order boundary value problems. We
express derivative boundary conditions at end points by using
interpolatory subdivision algorithm; therefore it is easy to
generalize our approach to deal with higher order boundary
value problems.

In this paper, we have reformulated the collocation
algorithm by using 8-point interpolating subdivision scheme
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to compute the approximate solution of two-point third order
boundary value problems. Particularly, collocation algorithm
with septic precision treatments at the endpoints has the
power of approximation𝑂(ℎ2). Our reformulated collocation
algorithm treats the following type of two-point third order
boundary value problem:

𝑦
󸀠󸀠󸀠
(𝑥) = 𝑎 (𝑥) 𝑦 (𝑥) + 𝑏 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 𝑦
𝑟
, 𝑦

󸀠
(0) = 0, 𝑦 (1) = 𝑦

𝑙
,

(1)

where 𝑎(𝑥) and 𝑏(𝑥) are continuous and 𝑎(𝑥) ≥ 0 on [0, 1].
The outline of the paper is as follows. In Section 2, we

rewrite general form of interpolating subdivision scheme for
curve design [12] and some related results.The 8-point binary
interpolating scheme and derivatives of its basis function
have also been discussed in this section. In Section 3, a
numerical interpolating algorithm of collocation to solve (1)
is formulated and its boundary treatments are discussed.
In Section 4, approximation properties of this algorithm
are given. In Section 5, numerical examples are presented.
Section 6 is devoted for conclusion and the possible future
research directions.

2. Interpolating Schemes for Curve Design

A general compact form of symmetric univariate binary
interpolating subdivision scheme [12] which maps polygon
𝑝
𝑘
= {𝑝
𝑘

𝑖
}
𝑖∈Z to a refined polygon 𝑝𝑘+1 = {𝑝𝑘+1

𝑖
}
𝑖∈Z is defined

by

𝑝
𝑘+1

2𝑖
= 𝑝
𝑘

𝑖
,

𝑝
𝑘+1

2𝑖+1
=

𝑛

∑

𝑗=0

𝐿
𝑛,𝑗
(𝑝
𝑘

𝑖−𝑗
+ 𝑝
𝑘

𝑖+𝑗+1
) ,

(2)

where 𝑛 is called the degree of the scheme and the constants
are given by

𝐿
𝑛,𝑗
=

((2𝑛 + 1)!!)
2

2 (4
𝑛
) (2𝑛 + 1)!

(−1)
𝑗

(2𝑗 + 1)
(
2𝑛 + 1

𝑛 − 𝑗
) ,

𝑗 = 0, 1, 2, . . . , 𝑛,

(3)

where ( 2𝑛+1𝑛−𝑗 ) denotes the binomial coefficient.
The boundary treatments are necessary to produce

smooth curve segments by scheme (2). Normally higher
order approximation formulae should be used near the ends
of the segments and thus Lagrange formulae of order 2𝑛 + 1
are recommended.

Remark 1. Let 𝜙(𝑥) be the limit curve generated from the
cardinal data {𝑝

𝑖
= (𝑖, 𝛿

0
)
𝑇
}; that is, 𝜙(𝑥) is the fundamental

solution of the subdivision scheme (2); then

𝜙 (𝑖) = {
1, 𝑖 = 0,

0, 𝑖 ̸= 0.
(4)

Furthermore, 𝜙(𝑥) satisfies the following two-scale equation:

𝜙 (𝑥) = 𝜙
𝑛
(𝑥)

= 𝜙 (2𝑥) +

𝑛

∑

𝑗=−𝑛

𝐿
𝑛,|𝑗|

𝜙 (2𝑥 − 2𝑗 + 1) , 𝑥 ∈ R.
(5)

Lemma 2 (see [12, 13]). The support of the fundamental
solution 𝜙

𝑛
(𝑥) to scheme (2) is finite. Explicitly, supp𝜙

𝑛
(𝑥) =

(−2𝑛 − 1, 2𝑛 + 1).

Lemma 3 (see [10]). Given a square matrix 𝐴 of order 𝑛, let
the normalized left and right (generalized) eigenvectors of𝐴 be
denoted by {𝜂

𝑖
, 𝜉
𝑖
}. Then for any vector 𝑓 ∈ R𝑛, there exists

following Fourier expansion:

𝑓 =

𝑛

∑

𝑖=1

(𝑓
𝑇
𝜂
𝑖
) 𝜉
𝑖
. (6)

Lemma4 (see [10]). Suppose𝐹(𝑡), 𝑡 ∈ R is a regular and𝐶2𝑛+2
curve inR𝑚,𝑚 ≥ 2. Let𝑃(𝑡), 𝑡 ∈ R be the limit curve generated
by (2) from the initial data 𝑃

𝑖
= 𝐹(𝑖ℎ), 𝑖 ∈ Z, 0 < ℎ < 1. Then,

on any finite interval [𝑎, 𝑏], the following estimates hold:

󵄩󵄩󵄩󵄩𝐹 (ℎ𝑡) − 𝑝 (𝑡)
󵄩󵄩󵄩󵄩∞

≤
𝑀
2𝑛+2

(𝐹)

(2𝑛 + 2)!
ℎ
2𝑛+2

= 𝑂 (ℎ
2𝑛+2

) ,

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗
𝐹
𝑗
(ℎ𝑡) − 𝑝

𝑗
(𝑡)
󵄩󵄩󵄩󵄩󵄩∞

= 𝑂 (ℎ
2𝑛+2−𝑗

) ,

𝑗 = 0, 1, 2, . . . ,
𝑛 + 2

2
,

(7)

where the number𝑀
2𝑛+2

(𝐹) depends only on the derivatives of
𝐹(𝑡) and 𝑛.

2.1. 8-Point Interpolating Scheme. For 𝑛 = 3 by (2) and (3), we
have the following 8-point binary interpolating subdivision
scheme for curve design:

𝑝
𝑘+1

2𝑖
= 𝑝
𝑘

𝑖

𝑝
𝑘+1

2𝑖+1
=
1225

2048
(𝑝
𝑘

𝑖
− 𝑝
𝑘

𝑖+1
) −

245

2048
(𝑝
𝑘

𝑖−1
− 𝑝
𝑘

𝑖+2
)

+
49

2048
(𝑝
𝑘

𝑖−2
− 𝑝
𝑘

𝑖+3
) −

5

2048
(𝑝
𝑘

𝑖−3
− 𝑝
𝑘

𝑖+4
) .

(8)

This scheme is 𝐶3-continuous in [14] and reproduces poly-
nomial curve of degree seven in [15]. The local subdivision
matrix of (8) is denoted and defined by
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𝑆 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 0 1 0 0 0 0 0 0 0 0 0

𝐿
3,3

𝐿
3,2

𝐿
3,1

𝐿
3,0

𝐿
3,0

𝐿
3,1

𝐿
3,2

𝐿
3,3

0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 𝐿
3,3

𝐿
3,2

𝐿
3,1

𝐿
3,0

𝐿
3,0

𝐿
3,1

𝐿
3,2

𝐿
3,3

0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 𝐿
3,3

𝐿
3,2

𝐿
3,1

𝐿
3,0

𝐿
3,0

𝐿
3,1

𝐿
3,2

𝐿
3,3

0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 𝐿
3,3

𝐿
3,2

𝐿
3,1

𝐿
3,0

𝐿
3,0

𝐿
3,1

𝐿
3,2

𝐿
3,3

0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 𝐿
3,3

𝐿
3,2

𝐿
3,1

𝐿
3,0

𝐿
3,0

𝐿
3,1

𝐿
3,2

𝐿
3,3

0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 𝐿
3,3

𝐿
3,2

𝐿
3,1

𝐿
3,0

𝐿
3,0

𝐿
3,1

𝐿
3,2

𝐿
3,3

0 0 0 0 0 0 0 0 0 1 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (9)

where 𝐿
3,0

= 1225/2048, 𝐿
3,1

= −245/2048, 𝐿
3,2

= 49/2048,
and 𝐿

3,3
= −5/2048. The some of its eigenvalues is

𝜆 = 1,
1

2
,
1

4
,
1

8
,
1

16
,
1

32
,
1

64
,
1

128
. (10)

For an eigenvalue 𝜆, the eigenvectors 𝜉 and 𝜂 that satisfy 𝑆𝜉 =
𝜆𝜉 and 𝜂𝑆𝑇 = 𝜂𝜆 are called right and left eigenvectors of the
matrix 𝑆, respectively. Some of the normalized left and right
eigenvectors corresponding to eigenvalues are

𝜉
0
= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

𝑇
,

𝜂
0
= (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

𝑇
,

𝜉
1
= (−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6)

𝑇
,

𝜂
1
= (

1

5946360
) (−5, 1024, 13225, −199680, 1141695,

− 4715520, 0, 4715520, −1141695,

199680, −13225, −1024, 5)
𝑇
,

𝜉
2
= (36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36)

𝑇
,

𝜂
2
= (

1

34546860
) (275, −28160, −182613, 2607616,

− 12053651, 45634048, −71955030,

45634048, −12053651, 2607616,

−182613, −28160, 275)
𝑇
,

𝜉
3
= (−216, −125, −64, −27, −8, −1, 0, 1, 8, 27, 64, 125, 216)

𝑇
,

𝜂
3
= (

1

15039360
) (225, −11520, 10952, 476928,

− 3047987, 4677632, 0, −4677632,

3047987, −476928, −10952,

11520, −225)
𝑇
.

(11)

Since 𝜉𝑇
𝑖
𝜂
𝑗
= 1 for 𝑖 = 𝑗 and 0 otherwise then by using

Lemmas 2 and 3, we get the following result.

Lemma 5. The fundamental solution (Cardinal basis) 𝜙(𝑥) is
thrice continuously differentiable and supported on (−7, 7) and
its derivatives at integers are given by

𝜙
󸀠
(𝑖) = 2 sign (𝑖) 𝑒𝑇

|𝑖|
𝜂
1
,

𝜙
󸀠󸀠
(𝑖) = 2

2
𝑒
𝑇

|𝑖|
𝜂
2
,

𝜙
󸀠󸀠󸀠
(𝑖) = 2

3 sign (𝑖) 𝑒𝑇
|𝑖|
𝜂
3
,

− 6 ≤ 𝑖 ≤ 6,

(12)

where

𝑒
0
= (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

𝑇
,

𝑒
1
= (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

𝑇
,

𝑒
2
= (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

𝑇
,

𝑒
3
= (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑇
,

𝑒
4
= (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑇
,

𝑒
5
= (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑇
,

𝑒
6
= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑇
,

𝜙
󸀠
(0) = 0, 𝜙

󸀠
(±1) = ∓

78592

49553
,

𝜙
󸀠
(±2) = ±

76113

198212
, 𝜙

󸀠
(±3) = ∓

3328

49553
,

𝜙
󸀠
(±4) = ±

2645

594636
, 𝜙

󸀠
(±5) = ±

256

743295
,

𝜙
󸀠
(±6) =

1

594636
,
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𝜙
󸀠󸀠
(0) = −

342643

41124
, 𝜙

󸀠󸀠
(±1) =

5704256

1079505
,

𝜙
󸀠󸀠
(±2) = −

12053651

8636040
, 𝜙

󸀠󸀠
(±3) =

325952

1079505
,

𝜙
󸀠󸀠
(±4) = −

60871

2878680
, 𝜙

󸀠󸀠
(±5) = −

704

215901
,

𝜙
󸀠󸀠
(±6) =

55

1727208
,

𝜙
󸀠󸀠󸀠
(0) = 0, 𝜙

󸀠󸀠󸀠
(±1) = ∓

292352

117495
,

𝜙
󸀠󸀠󸀠
(±2) = ±

3047987

1879920
, 𝜙

󸀠󸀠󸀠
(±3) = ∓

3312

13055
,

𝜙
󸀠󸀠󸀠
(±4) = ∓

1369

234990
, 𝜙

󸀠󸀠󸀠
(±5) = ±

16

2611
,

𝜙
󸀠󸀠󸀠
(±6) = ∓

5

41776
.

(13)

The graphical representations of the basis limit function
defined on cardinal data and its derivatives up to order three
for 𝑛 = 3 are shown in Figure 1. Figure 1(a) represents the
basis limit function defined in (4). Graphical representations
of first, second and third derivatives of basis limit functions
obtained from (5) for 𝑛 = 3 are shown in Figures 1(b), 1(c)
and 1(d) at 𝑖 = 0, 1, −1, respectively. The numeric values of
first, second and third derivative are given in (13).

3. Numerical Interpolating
Collocation Algorithm

In this section, first we formulate a numerical interpolat-
ing collocation algorithm for linear third order two-point
boundary value problems.Thenwe settle down the boundary
conditions to get unique solution.

3.1. The Collocation Algorithm. Let 𝑁 be a positive integer
(𝑁 ≥ 6), ℎ = 1/𝑁, and 𝑥

𝑖
= 𝑖/𝑁 = 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑁,

and set 𝑎
𝑖
= 𝑎(𝑥

𝑖
), 𝑏
𝑖
= 𝑏(𝑥
𝑖
). Let

𝑍 (𝑥) =

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙(

𝑥 − 𝑥
𝑖

ℎ
) , 0 ≤ 𝑥 ≤ 1 (14)

be the approximate solution to (1), where {𝑧
𝑖
} are the

unknown to be determined by (1).The collocation algorithm,
together with the boundary conditions to be discussed, is
given by setting

𝑍
󸀠󸀠󸀠
(𝑥
𝑗
) = 𝑎 (𝑥

𝑗
)𝑍 (𝑥

𝑗
) + 𝑏 (𝑥

𝑗
) , 𝑗 = 0, 1, 2, . . . , 𝑁,

(15)

where

𝑍
󸀠
(𝑥
𝑗
) =

1

ℎ

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠
(

𝑥
𝑗
− 𝑥
𝑖

ℎ
) ,

𝑍
󸀠󸀠
(𝑥
𝑗
) =

1

ℎ
2

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠󸀠
(

𝑥
𝑗
− 𝑥
𝑖

ℎ
) ,

𝑍
󸀠󸀠󸀠
(𝑥
𝑗
) =

1

ℎ
3

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠󸀠󸀠
(

𝑥
𝑗
− 𝑥
𝑖

ℎ
) .

(16)

Using (14) and (16) in (15), we get following𝑁 + 1 system of
equations:

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠󸀠󸀠
(

𝑥
𝑗
− 𝑥
𝑖

ℎ
) − ℎ
3
𝑎
𝑗

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙(

𝑥
𝑗
− 𝑥
𝑖

ℎ
) = ℎ

3
𝑏
𝑗
,

𝑗 = 0, 1, 2, . . . , 𝑁.

(17)

Now we simplify the above system in the following
theorems.

Theorem 6. For 𝑗 = 0 by (17), one gets

𝑧
−6
𝜙
󸀠󸀠󸀠

6
+ 𝑧
−5
𝜙
󸀠󸀠󸀠

5
+ 𝑧
−4
𝜙
󸀠󸀠󸀠

4
+ 𝑧
−3
𝜙
󸀠󸀠󸀠

3
+ 𝑧
−2
𝜙
󸀠󸀠󸀠

2

+ 𝑧
−1
𝜙
󸀠󸀠󸀠

1
+ 𝑧
0
𝑞
0
+ 𝑧
1
𝜙
󸀠󸀠󸀠

−1
+ 𝑧
2
𝜙
󸀠󸀠󸀠

−2
+ 𝑧
3
𝜙
󸀠󸀠󸀠

−3

+ 𝑧
4
𝜙
󸀠󸀠󸀠

−4
+ 𝑧
5
𝜙
󸀠󸀠󸀠

−5
+ 𝑧
6
𝜙
󸀠󸀠󸀠

−6
= ℎ
3
𝑏
0
,

(18)

where 𝜙󸀠󸀠󸀠
𝑗
= 𝜙
󸀠󸀠󸀠
(𝑗) and 𝑞

0
= 𝜙
󸀠󸀠󸀠

0
− 𝑎
0
ℎ
3.

Proof. Substituting 𝑗 = 0 in (17), we get

{𝑧
−6
𝜙
󸀠󸀠󸀠
(
𝑥
0
− 𝑥
−6

ℎ
) + 𝑧
−5
𝜙
󸀠󸀠󸀠
(
𝑥
0
− 𝑥
−5

ℎ
) + ⋅ ⋅ ⋅

+𝑧
𝑁+5

𝜙
󸀠󸀠󸀠
(
𝑥
0
− 𝑥
𝑁+5

ℎ
) + 𝑧
𝑁+6

𝜙
󸀠󸀠󸀠
(
𝑥
0
− 𝑥
𝑁+6

ℎ
)}

− 𝑎
0
ℎ
3
{𝑧
−6
𝜙(

𝑥
0
− 𝑥
−6

ℎ
) + 𝑧
−5
𝜙(

𝑥
0
− 𝑥
−5

ℎ
) + ⋅ ⋅ ⋅

+𝑧
𝑁+5

𝜙(
𝑥
0
− 𝑥
𝑁+5

ℎ
) + 𝑧
𝑁+6

𝜙(
𝑥
0
− 𝑥
𝑁+6

ℎ
)}

= ℎ
3
𝑏
0
.

(19)

For 𝑥
𝑗
= 𝑗ℎ, 𝑗 = 0, 1, 2 . . . , 𝑁, this implies

𝑧
−6
𝜙
󸀠󸀠󸀠
(6) + 𝑧

−5
𝜙
󸀠󸀠󸀠
(5) + ⋅ ⋅ ⋅ + 𝑧

𝑁+5
𝜙
󸀠󸀠󸀠
(−𝑁 − 5)

+ 𝑧
𝑁+6

𝜙
󸀠󸀠󸀠
(−𝑁 − 6)

− 𝑎
0
ℎ
3
{𝑧
−6
𝜙 (6) + 𝑧

−5
𝜙 (5) + ⋅ ⋅ ⋅

+𝑧
𝑁+5

𝜙 (−𝑁 − 5) + 𝑧
𝑁+6

𝜙 (−𝑁 − 6)} = ℎ
3
𝑏
0
.

(20)
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Figure 1: Interpolatory basis function 𝜙
3
(𝑖) is shown in (a), first derivative of 𝜙

3
(𝑖) i-e. 𝜙󸀠

3
(𝑖) shown in (b), second derivative of 𝜙

3
(𝑖) i-e. 𝜙󸀠󸀠

3
(𝑖)

shown in (c), and third derivative of 𝜙
3
(𝑖) i-e. 𝜙󸀠󸀠󸀠

3
(𝑖) shown in (d), respectively.

Since the support of basis function 𝜙(𝑥) is (−7, 7), 𝜙󸀠(𝑥),
𝜙
󸀠󸀠
(𝑥), and 𝜙󸀠󸀠󸀠(𝑥) are zero outside the interval (−7, 7); also

by (4) and (13), we get

𝑧
−6
𝜙
󸀠󸀠󸀠
(6) + 𝑧

−5
𝜙
󸀠󸀠󸀠
(5) + 𝑧

−4
𝜙
󸀠󸀠󸀠
(4) + 𝑧

−3
𝜙
󸀠󸀠󸀠
(3)

+ 𝑧
−2
𝜙
󸀠󸀠󸀠
(2) + 𝑧

−1
𝜙
󸀠󸀠󸀠
(1) + 𝑧

0
𝜙
󸀠󸀠󸀠
(0)

+ 𝑧
1
𝜙
󸀠󸀠󸀠
(−1) + 𝑧

2
𝜙
󸀠󸀠󸀠
(−2) + 𝑧

3
𝜙
󸀠󸀠󸀠
(−3)

+ 𝑧
4
𝜙
󸀠󸀠󸀠
(−4) + 𝑧

5
𝜙
󸀠󸀠󸀠
(−5) + 𝑧

6
𝜙
󸀠󸀠󸀠
(−6)

− 𝑎
0
ℎ
3
𝑧
0
𝜙 (0) = ℎ

3
𝑏
0
.

(21)

If 𝜙󸀠󸀠󸀠
𝑗
= 𝜙
󸀠󸀠󸀠
(𝑗), then

𝑧
−6
𝜙
󸀠󸀠󸀠

6
+ 𝑧
−5
𝜙
󸀠󸀠󸀠

5
+ 𝑧
−4
𝜙
󸀠󸀠󸀠

4
+ 𝑧
−3
𝜙
󸀠󸀠󸀠

3
+ 𝑧
−2
𝜙
󸀠󸀠󸀠

2

+ 𝑧
−1
𝜙
󸀠󸀠󸀠

1
+ 𝑧
0
(𝜙
󸀠󸀠󸀠

0
− 𝑎
0
ℎ
3
) + 𝑧
1
𝜙
󸀠󸀠󸀠

−1
+ 𝑧
2
𝜙
󸀠󸀠󸀠

−2

+ 𝑧
3
𝜙
󸀠󸀠󸀠

−3
+ 𝑧
4
𝜙
󸀠󸀠󸀠

−4
+ 𝑧
5
𝜙
󸀠󸀠󸀠

−5
+ 𝑧
6
𝜙
󸀠󸀠󸀠

−6
= ℎ
3
𝑏
0
.

(22)

For 𝑞
0
= 𝜙
󸀠󸀠󸀠

0
−𝑎
0
ℎ
3, we get (18).This completes the proof.

Theorem 7. For 𝑗 = 1, 2, 3, . . . , 𝑁 the system (17) is equivalent
to

𝑧
−6
𝜙
󸀠󸀠󸀠

𝑗+6
+ 𝑧
−5
𝜙
󸀠󸀠󸀠

𝑗+5
+ ⋅ ⋅ ⋅ + 𝑧

0
𝜙
󸀠󸀠󸀠

𝑗

+ 𝑧
1
(𝜙
󸀠󸀠󸀠

𝑗−1
− 𝑎
𝑗
ℎ
3
𝜙
𝑗−1
) + 𝑧
2
(𝜙
󸀠󸀠󸀠

𝑗−2
− 𝑎
𝑗
ℎ
3
𝜙
𝑗−2
) + ⋅ ⋅ ⋅

+ 𝑧
𝑁−1

(𝜙
󸀠󸀠󸀠

𝑗−𝑁+1
− 𝑎
𝑗
ℎ
3
𝜙
𝑗−𝑁+1

) + 𝑧
𝑁
(𝜙
󸀠󸀠󸀠

𝑗−𝑁
− 𝑎
𝑗
ℎ
3
𝜙
𝑗−𝑁

)

+ 𝑧
𝑁+1

𝜙
󸀠󸀠󸀠

𝑗−𝑁−1
+ ⋅ ⋅ ⋅ + 𝑧

𝑁+6
𝜙
󸀠󸀠󸀠

𝑗−𝑁−6
= ℎ
3
𝑏
𝑗
.

(23)

Proof. By expanding (17), we get

𝑧
−6
𝜙
󸀠󸀠󸀠
(

𝑥
𝑗
− 𝑥
−6

ℎ
) + 𝑧
−5
𝜙
󸀠󸀠󸀠
(

𝑥
𝑗
− 𝑥
−5

ℎ
) + ⋅ ⋅ ⋅

+ 𝑧
𝑁+5

𝜙
󸀠󸀠󸀠
(

𝑥
𝑗
− 𝑥
𝑁+5

ℎ
) + 𝑧
𝑁+6

𝜙
󸀠󸀠󸀠
(

𝑥
𝑗
− 𝑥
𝑁+6

ℎ
)

− 𝑎
𝑗
ℎ
3
{𝑧
−6
𝜙(

𝑥
𝑗
− 𝑥
−6

ℎ
) + 𝑧
−5
𝜙(

𝑥
𝑗
− 𝑥
−5

ℎ
) + ⋅ ⋅ ⋅

+𝑧
𝑁+5

𝜙(

𝑥
𝑗
− 𝑥
𝑁+5

ℎ
) + 𝑧
𝑁+6

𝜙(

𝑥
𝑗
− 𝑥
𝑁+6

ℎ
)}

= ℎ
3
𝑏
𝑗
.

(24)

For 𝑥
𝑗
= 𝑗ℎ, 𝑗 = 1, 2, . . . , 𝑁, we get

𝑧
−6
𝜙
󸀠󸀠󸀠
(𝑗 + 6) + 𝑧

−5
𝜙
󸀠󸀠󸀠
(𝑗 + 5) + ⋅ ⋅ ⋅

+ 𝑧
𝑁+5

𝜙
󸀠󸀠󸀠
(𝑗 − 𝑁 − 5) + 𝑧

𝑁+6
𝜙
󸀠󸀠󸀠
(𝑗 − 𝑁 − 6)

− 𝑎
𝑗
ℎ
3
{𝑧
−6
𝜙 (𝑗 + 6) + 𝑧

−5
𝜙 (𝑗 + 5) + ⋅ ⋅ ⋅

+𝑧
𝑁+5

𝜙 (𝑗 − 𝑁 − 5) + 𝑧
𝑁+6

𝜙 (𝑗 − 𝑁 − 6)}

= ℎ
3
𝑏
𝑗
.

(25)
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If 𝜙󸀠󸀠󸀠
𝑗
= 𝜙
󸀠󸀠󸀠
(𝑗), for 𝑗 = 1, 2, . . . , 𝑁, then

𝑧
−6
(𝜙
󸀠󸀠󸀠

𝑗+6
− 𝑎
𝑗
ℎ
3
𝜙
𝑗+6
) + 𝑧
−5
(𝜙
󸀠󸀠󸀠

𝑗+5
− 𝑎
𝑗
ℎ
3
𝜙
𝑗+5
)

+ ⋅ ⋅ ⋅ + 𝑧
𝑁+5

(𝜙
󸀠󸀠󸀠

𝑗−𝑁−5
− 𝑎
𝑗
ℎ
3
𝜙
𝑗−𝑁−5

)

+ 𝑧
𝑁+6

(𝜙
󸀠󸀠󸀠

𝑗−𝑁−6
− 𝑎
𝑗
ℎ
3
𝜙
𝑗−𝑁−6

) = ℎ
3
𝑏
𝑗
.

(26)

Since 𝜙󸀠(𝑥), 𝜙󸀠󸀠(𝑥), and 𝜙󸀠󸀠󸀠(𝑥) are zero outside the interval
(−7, 7) then, by (4) and (13), we get (23).

From (18) and (23), we get following undetermined
system of (𝑁 + 1) equations with (𝑁 + 13) unknowns {𝑧

𝑖
}:

𝐴𝑍 = 𝐷, (27)

where the matrices 𝐴, 𝑍, and𝐷 of orders (𝑁 + 1) × (𝑁 + 13),
𝑁 + 13, and𝑁 + 1, respectively, are given by

𝐴 =

(
(
(

(

𝜙
󸀠󸀠󸀠

6
𝜙
󸀠󸀠󸀠

5
𝜙
󸀠󸀠󸀠

4
𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝑞
0

𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
𝜙
󸀠󸀠󸀠

−4
𝜙
󸀠󸀠󸀠

−5
𝜙
󸀠󸀠󸀠

−6
⋅ ⋅ ⋅ 0 0 0

0 𝜙
󸀠󸀠󸀠

6
𝜙
󸀠󸀠󸀠

5
𝜙
󸀠󸀠󸀠

4
𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝑞
1

𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
𝜙
󸀠󸀠󸀠

−4
𝜙
󸀠󸀠󸀠

−5
⋅ ⋅ ⋅ 0 0 0

0 0 𝜙
󸀠󸀠󸀠

6
𝜙
󸀠󸀠󸀠

5
𝜙
󸀠󸀠󸀠

4
𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝑞
2

𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
𝜙
󸀠󸀠󸀠

−4
⋅ ⋅ ⋅ 0 0 0

0 0 0 𝜙
󸀠󸀠󸀠

6
𝜙
󸀠󸀠󸀠

5
𝜙
󸀠󸀠󸀠

4
𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝑞
3

𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 𝜙
󸀠󸀠󸀠

−5
𝜙
󸀠󸀠󸀠

−6
0

0 0 0 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 𝜙
󸀠󸀠󸀠

−4
𝜙
󸀠󸀠󸀠

−5
𝜙
󸀠󸀠󸀠

−6

)
)
)

)

, (28)

𝑍 = (𝑧
−6
, 𝑧
−5
, 𝑧
−4
, 𝑧
−3
, 𝑧
−2
, . . . , 𝑧

𝑁+6
)
𝑇, and 𝐷 = (𝑏

0
ℎ
3
, 𝑏
1
ℎ
3
,

𝑏
2
ℎ
3
, 𝑏
3
ℎ
3
, . . . , 𝑏

𝑁
ℎ
3
)
𝑇, where𝜙󸀠󸀠󸀠

𝑗
= 𝜙
󸀠󸀠󸀠
(𝑗) and 𝑞

𝑗
= 𝜙
󸀠󸀠󸀠

0
−𝑎
𝑗
ℎ
3.

3.2. Adjustment of Boundary Conditions. The order of the
coefficient matrix (28) is (𝑁 + 1) × (𝑁 + 13). In order
to get unique solution of the system, we need twelve more
conditions. Here we consider only two different cases. In
coming section we will show that the approximate solution
can be improved by adjusting different boundary conditions.

Case 1. If we assume 𝑧󸀠
0
= 0 (equivalently 𝑧

0
= 𝑦
𝑟
= finite)

then two conditions can be achieved by using following given
boundary conditions i-e:

𝑧
0
= 𝑦
𝑟
, 𝑧

󸀠

0
= 0, 𝑧

𝑁
= 𝑦
𝑙
. (29)

Still we need ten more conditions to get stable system. Since
subdivision scheme reproduces seven degree polynomials, we
define boundary conditions of order eight for solution of (27).
For simplicity only the left end points are discussed and the
values of right end points 𝑧

𝑁+1
, 𝑧
𝑁+2

, 𝑧
𝑁+3

, 𝑧
𝑁+4

, 𝑧
𝑁+5

can be
treated similarly.

The values 𝑧
−5
, 𝑧
−4
, 𝑧
−3
, 𝑧
−2
, 𝑧
−1

can be determined by
the septic polynomial 𝑞(𝑥) interpolating at (𝑥

𝑖
, 𝑧
𝑖
), 0 ≤ 𝑖 ≤ 7.

Precisely, we have

𝑧
−𝑖
= 𝑞 (−𝑥

𝑖
) , 𝑖 = 1, 2, 3, 4, 5, (30)

where

𝑞 (𝑥
𝑖
) =

8

∑

𝑗=1

(
8

𝑗
) (−1)

𝑗+1
𝑍(𝑥
𝑖−𝑗
) . (31)

Since by (14) 𝑍(𝑥
𝑖
) = 𝑧
𝑖
for 𝑖 = 1, 2, 3, 4, 5 then, by replacing

𝑥
𝑖
by −𝑥

𝑖
, we have

𝑞 (−𝑥
𝑖
) =

8

∑

𝑗=1

(
8

𝑗
) (−1)

𝑗+1
𝑧
−𝑖+𝑗

. (32)

Hence the following boundary conditions can be employed at
the left end:

8

∑

𝑗=0

(
8

𝑗
) (−1)

𝑗
𝑧
−𝑖+𝑗

= 0, 𝑖 = 5, 4, 3, 2, 1. (33)

Similarly, for the right end, we can define 𝑧
𝑖
= 𝑞(−𝑥

𝑖
), 𝑖 =

𝑁 + 1,𝑁 + 2,𝑁 + 3,𝑁 + 4,𝑁 + 5, and

𝑞 (𝑥
𝑖
) =

8

∑

𝑗=1

(
8

𝑗
) (−1)

𝑗+1
𝑧
𝑖−𝑗
. (34)

So we have the following boundary conditions at the right
end:

8

∑

𝑗=0

(
8

𝑗
) (−1)

𝑗
𝑧
𝑖−𝑗

= 0,

𝑖 = 𝑁 + 1,𝑁 + 2,𝑁 + 3,𝑁 + 4,𝑁 + 5.

(35)

Finally, we get the following new system of (𝑁 + 13) linear
equations with (𝑁 + 13) unknowns {𝑧

𝑖
}, in which 𝑁 + 1

equations are obtained from (18) and (23), two equations
from boundary conditions (29) and ten from boundary
conditions (33) and (35):

𝐵𝑍 = 𝑅, (36)

where the coefficients matrix 𝐵 = (𝐵𝑇
0
, 𝐴
𝑇
, 𝐵
𝑇

1
)
𝑇, 𝐴 is defined

by (28), and 𝐵
0
and 𝐵

1
are formed by (29), (33), and (35)
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𝐵
0
=

(
(
(
(
(
(
(

(

0 1 −8 28 −56 70 −56 28 −8 1 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 1 −8 28 −56 70 −56 28 −8 1 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 1 −8 28 −56 70 −56 28 −8 1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 1 −8 28 −56 70 −56 28 −8 1 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 1 −8 28 −56 70 −56 28 −8 1 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)

)

,

(37)

where the first five rows of 𝐵
0
come from (33) and the sixth

row comes from (29) at 𝑧
0
= 𝑦
𝑟
. Consider

𝐵
1
=

(
(
(
(
(
(
(

(

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 1 −8 28 −56 70 −56 28 −8 1 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 1 −8 28 −56 70 −56 28 −8 1 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 1 −8 28 −56 70 −56 28 −8 1 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 1 −8 28 −56 70 −56 28 −8 1 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 1 −8 28 −56 70 −56 28 −8 1 0

)
)
)
)
)
)
)

)

,
(38)

where first row of 𝐵
1
comes from (29) at 𝑧

𝑁
= 𝑦
𝑙
remaining

rows come from (35) and the matrices𝑍 and 𝑅 are defined as

𝑍 = (𝑧
−6
, 𝑧
−5
, . . . , 𝑧

𝑁+5
, 𝑧
𝑁+6

)
𝑇
,

𝑅 = (0, 0, 0, 0, 0, 𝑦
𝑟
, 𝐷
𝑇
, 𝑦
𝑙
, 0, 0, 0, 0, 0)

𝑇

.

(39)

Case 2. In this case we express the given boundary condition
𝑧
󸀠

0
= 0 in the following way.
By using (16) we have

𝑍
󸀠
(𝑥
𝑗
) =

1

ℎ

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠
(

𝑥
𝑗
− 𝑥
𝑖

ℎ
) . (40)

As we defined earlier 𝑥
𝑗
= 𝑗ℎ if we put 𝑗 = 0 we get 𝑥

0
= 0;

the above equation can be written as

𝑍
󸀠
(0) =

1

ℎ

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠
(−𝑖) . (41)

Since by boundary condition 𝑧󸀠
0
= 𝑍
󸀠
(0) = 0,

𝑁+6

∑

𝑖=−6

𝑧
𝑖
𝜙
󸀠
(−𝑖) = 0. (42)

By using (13) we can express above equation as

1

594636
𝑧
−6
+

256

743295
𝑧
−5
+

2645

594636
𝑧
−4
−
3328

49553
𝑧
−3

+
76113

198212
𝑧
−2
−
78592

49553
𝑧
−1
+
78592

49553
𝑧
1
−
76113

198212
𝑧
2

+
3328

49553
𝑧
3
−

2645

594636
𝑧
4
−

256

743295
𝑧
5
−

1

594636
𝑧
6
= 0.

(43)
Finally, we get a following new system of (𝑁 + 13) linear

equations with (𝑁 + 13) unknowns {𝑧
𝑖
}, in which 𝑁 + 1

equations are obtained from (18) and (23), two equations
from boundary conditions (29) and ten from boundary
conditions (33) for 𝑖 = 5, 4, 3, 2, (35), and (43):

𝐵𝑍 = 𝑅, (44)

where the coefficients matrix 𝐵 = (B𝑇
0
, 𝐴
𝑇
, 𝐵
𝑇

1
)
𝑇, 𝐴 is defined

by (28), andB
0
and 𝐵

1
formed by (29), (33), (35), and (43) are

defined as
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B
0
= (

(

0 1 −8 28 −56 70 −56 28 −8

0 0 1 −8 28 −56 70 −56 28

0 0 0 1 −8 28 −56 70 −56

0 0 0 0 1 −8 28 −56 70

1

594636

256

743295

2645

594636
−
3328

49553

76113

198212
−
78592

49553
0

78592

49553

76113

198212

0 0 0 0 0 0 1 0 0

1 0 0 0 0 ⋅ ⋅ ⋅ 0 0

−8 1 0 0 0 ⋅ ⋅ ⋅ 0 0

28 −8 1 0 0 ⋅ ⋅ ⋅ 0 0

−56 28 −8 1 0 ⋅ ⋅ ⋅ 0 0

3328

49553
−
2645

594636
−

256

743295
−

1

594636
0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

)

)

,

(45)

in B first four rows come from (33) for 𝑖 = 5, 4, 3, 2, fifth row
comes from (43), and the last row comes from (29).

The matrix 𝐵
1
is same as defined in Case 1 and the

matrices 𝑍 and 𝑅 are defined as

𝑍 = (𝑧
−6
, 𝑧
−5
, . . . , 𝑧

𝑁+5
, 𝑧
𝑁+6

)
𝑇

,

𝑅 = (0, 0, 0, 0, 𝑦
󸀠
(0) , 𝑦

𝑟
, 𝐷
𝑇
, 𝑦
𝑙
, 0, 0, 0, 0, 0)

𝑇

.

(46)

The nonsingularity of the coefficients matrix 𝐵 has been
discussed in next section.

3.3. Existence of the Solution. In this section, we discuss the
nonsingularity of the coefficients matrix 𝐵. We observe that
the coefficients matrix 𝐵 is neither symmetric nor diagonally
dominant. However it can be shown that 𝐵 is a nonsingular.
Since 𝐵 is almost a band matrix with half band width 7,
numerical complexity for solving the linear system using
Gaussian elimination is about 49(𝑁 + 9)multiplications. For
large 𝑁, the matrix is almost symmetric except the first and
last six rows and columns due to the boundary conditions.
Therefore we first consider the symmetric part of it, that is,
square symmetric matrix 𝐶 of order𝑁 + 3 defined as

𝐶 =(

(

𝜙
󸀠󸀠󸀠

1
𝜙
󸀠󸀠󸀠

0
𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
𝜙
󸀠󸀠󸀠

−4
𝜙
󸀠󸀠󸀠

−5
𝜙
󸀠󸀠󸀠

−6
⋅ ⋅ ⋅ 0 0 0

𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝜙
󸀠󸀠󸀠

0
𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
𝜙
󸀠󸀠󸀠

−4
𝜙
󸀠󸀠󸀠

−5
⋅ ⋅ ⋅ 0 0 0

𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝜙
󸀠󸀠󸀠

0
𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
𝜙
󸀠󸀠󸀠

−4
⋅ ⋅ ⋅ 0 0 0

𝜙
󸀠󸀠󸀠

4
𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1
𝜙
󸀠󸀠󸀠

0
𝜙
󸀠󸀠󸀠

−1
𝜙
󸀠󸀠󸀠

−2
𝜙
󸀠󸀠󸀠

−3
⋅ ⋅ ⋅ 0 0 0

0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 𝜙
󸀠󸀠󸀠

4
𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2

0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 𝜙
󸀠󸀠󸀠

3
𝜙
󸀠󸀠󸀠

2
𝜙
󸀠󸀠󸀠

1

)

)

. (47)

It can be shown that 𝐶 is always nonsingular for each value
of 𝑁. However, 𝐵 is nonsingular for 𝑁 ⩽ 1000. We have
checked the nonsingularity of matrix 𝐵 by different methods.
In first method we observe that the determinants of matrix 𝐵
increase as 𝑁 increases and it is not zero for 𝑁 ⩽ 1000. So
𝐵 is nonsingular. The determinants of 𝐵 at some values of𝑁
are shown in Table 1. In second method we observe that for
𝑁 ⩽ 1000, the eigenvalues of matrix 𝐵 are nonzero so by [16]
matrix𝐵 is nonsingular. However for𝑁 > 1000matrix𝐵may
or may not be nonsingular. Therefore we claim that systems
(36) and (44) are stable for𝑁 ⩽ 1000.

4. Error Estimation

In this section, we discuss the approximation properties of
the numerical interpolating collocation algorithm. Since the
scheme (8) reproduces polynomial curve of degree seven so
by Dyn [14] scheme has approximation order eight. So the
collocation algorithm (14) with septic precision treatments at

the endpoints has the power of approximation 𝑂(ℎ2). Here
we present our main result for error estimation.

Proposition 8. Suppose the exact solution 𝑦(𝑥) ∈ 𝐶
8
[0, 1]

and {𝑧
𝑖
} are obtained by solving either (36) or (44) with 8th

order boundary condition at the end points; then

‖err (𝑥)‖∞ =
󵄩󵄩󵄩󵄩󵄩
𝑍
𝑗
− 𝑦
𝑗󵄩󵄩󵄩󵄩󵄩∞

= 𝑂 (ℎ
2−𝑗
) , 𝑗 = 0, 1, 2, (48)

where 𝑗 denotes the order of derivative.

Proof. Since the order of approximation of subdivision
scheme (8) is eight so by using (13), we can write for smooth
function 𝑦(𝑥) and small ℎ as

𝑦
󸀠󸀠󸀠
(𝑥
𝑗
)

=
2
3

15039360ℎ
3

× {225𝑦 (𝑥
𝑗
− 6ℎ) − 11520𝑦 (𝑥

𝑗
− 5ℎ)

+ 10952𝑦 (𝑥
𝑗
− 4ℎ) + 476928𝑦 (𝑥

𝑗
− 3ℎ)
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− 3047987𝑦 (𝑥
𝑗
− 2ℎ) + 4677632𝑦 (𝑥

𝑗
− ℎ)

− 4677632𝑦 (𝑥
𝑗
+ ℎ) + 3047987𝑦 (𝑥

𝑗
+ 2ℎ)

− 476928𝑦 (𝑥
𝑗
+ 3ℎ) − 10952𝑦 (𝑥

𝑗
+ 4ℎ)

+ 11520𝑦 (𝑥
𝑗
+ 5ℎ) −225𝑦 (𝑥

𝑗
+ 6ℎ)} .

(49)

This can be written as

𝑦
󸀠󸀠󸀠
(𝑥
𝑗
)

=
2
3

15039360ℎ
3

× {225𝑦
𝑗−6

− 11520𝑦
𝑗−5

+ 10952𝑦
𝑗−4

+ 476928𝑦
𝑗−3

− 3047987𝑦
𝑗−2

+ 4677632𝑦
𝑗−1

− 4677632𝑦
𝑗+1

+ 3047987𝑦
𝑗+2

− 476928𝑦
𝑗+3

−10952𝑦
𝑗+4

+ 11520𝑦
𝑗+5

− 225𝑦
𝑗+6
} .

(50)

Similarly, we have

𝑍
󸀠󸀠󸀠
(𝑥
𝑗
)

=
2
3

15039360ℎ
3

× {225𝑧
𝑗−6

− 11520𝑧
𝑗−5

+ 10952𝑧
𝑗−4

+ 476928𝑧
𝑗−3

− 3047987𝑧
𝑗−2

+ 4677632𝑧
𝑗−1

− 4677632𝑧
𝑗+1

+ 3047987𝑧
𝑗+2

− 476928𝑧
𝑗+3

−10952𝑧
𝑗+4

+ 11520𝑧
𝑗+5

− 225𝑧
𝑗+6
} .

(51)

If we define error function 𝑒(𝑥) = 𝑍(𝑥) − 𝑦(𝑥) and error
vectors at the nodes by

𝑒 (𝑥
𝑗
) = 𝑍 (𝑥

𝑗
) − 𝑦 (𝑥

𝑗
+ 𝑗ℎ) , −6 ≤ 𝑗 ≤ 𝑁 + 6, (52)

or equivalently 𝑒
𝑗
= 𝑍
𝑗
− 𝑦(𝑥

𝑗
+ 𝑗ℎ), −6 ≤ 𝑗 ≤ 𝑁 + 6, then

this implies

𝑒
󸀠

𝑗
= 𝑍
󸀠

𝑗
− 𝑦
󸀠
(𝑥 + 𝑗ℎ) ,

𝑒
󸀠󸀠

𝑗
= 𝑍
󸀠󸀠

𝑗
− 𝑦
󸀠󸀠
(𝑥 + 𝑗ℎ) ,

𝑒
󸀠󸀠󸀠

𝑗
= 𝑍
󸀠󸀠󸀠

𝑗
− 𝑦
󸀠󸀠󸀠
(𝑥 + 𝑗ℎ) .

(53)

Table 1: Determinants of the matrices.

𝑁 𝐶 𝐵

10 −8667/56 1/1048870018371741

50 −177183 1/4981270309

100 −552709050 1/1964492

500 −5.033491471916955 × 10
36

4.728852755761116 × 10
21

1000 −4.477989536166907 × 10
71

42069711017699999 × 10
40

By subtracting (50) from (51), we get

𝑍
󸀠󸀠󸀠
(𝑥
𝑗
) − 𝑦
󸀠󸀠󸀠
(𝑥
𝑗
)

=
2
3

15039360ℎ
3

× {225 (𝑧
𝑗−6

− 𝑦
𝑗−6
) − 11520 (𝑧

𝑗−5
− 𝑦
𝑗−5
)

+ 10952 (𝑧
𝑗−4

− 𝑦
𝑗−4
) + 476928 (𝑧

𝑗−3
− 𝑦
𝑗−3
)

− 3047987 (𝑧
𝑗−2

− 𝑦
𝑗−2
) + 4677632 (𝑧

𝑗−1
− 𝑦
𝑗−1
)

− 4677632 (𝑧
𝑗+1

− 𝑦
𝑗+1
) + 3047987 (𝑧

𝑗+2
− 𝑦
𝑗+2
)

− 476928 (𝑧
𝑗+3

− 𝑦
𝑗+3
) − 10952 (𝑧

𝑗+4
− 𝑦
𝑗+4
)

+11520 (𝑧
𝑗+5

− 𝑦
𝑗+5
) − 225 (𝑧

𝑗+6
− 𝑦
𝑗+6
)} .

(54)

This implies

𝑒
󸀠󸀠󸀠
(𝑥
𝑗
)

=
2
3

15039360ℎ
3

× {225𝑒
𝑗−6

− 11520𝑒
𝑗−5

+ 10952𝑒
𝑗−4

+ 476928𝑒
𝑗−3

− 3047987𝑒
𝑗−2

+ 4677632𝑒
𝑗−1

− 4677632𝑒
𝑗+1

+ 3047987𝑒
𝑗+2

− 476928𝑒
𝑗+3

−10952𝑒
𝑗+4

+ 11520𝑒
𝑗+5

− 225𝑒
𝑗+6
} .

(55)

By Lemma 5, we get the following expression:

𝑒
󸀠󸀠󸀠

𝑗
=
1

ℎ
3
{𝜙
󸀠󸀠󸀠

6
𝑒
𝑗−6

+ 𝜙
󸀠󸀠󸀠

5
𝑒
𝑗−5

+ 𝜙
󸀠󸀠󸀠

4
𝑒
𝑗−4

+ 𝜙
󸀠󸀠󸀠

3
𝑒
𝑗−3

+ 𝜙
󸀠󸀠󸀠

2
𝑒
𝑗−2

+ 𝜙
󸀠󸀠󸀠

1
𝑒
𝑗−1

+ 𝜙
󸀠󸀠󸀠

0
𝑒
𝑗
+ 𝜙
󸀠󸀠󸀠

−1
𝑒
𝑗+1

+ 𝜙
󸀠󸀠󸀠

−2
𝑒
𝑗+2

+ 𝜙
󸀠󸀠󸀠

−3
𝑒
𝑗+3

+ 𝜙
󸀠󸀠󸀠

−4
𝑒
𝑗+4

+𝜙
󸀠󸀠󸀠

−5
𝑒
𝑗+5

+ 𝜙
󸀠󸀠󸀠

−6
𝑒
𝑗+6
} + 𝑂 (ℎ

8
) ,

(56)

where 𝑗 = 0, 1, 2, . . . , 𝑁.
By subtracting (1) from (15), we get

𝑍
󸀠󸀠󸀠

𝑗
− 𝑦
󸀠󸀠󸀠

𝑗
= 𝑎
𝑗
(𝑍
𝑖
− 𝑌
𝑗
) . (57)
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This implies

𝑒
󸀠󸀠󸀠

𝑗
= 𝑎
𝑗
𝑒
𝑗
, 0 ≤ 𝑖 ≤ 𝑁. (58)

Using (56), we get

𝜙
󸀠󸀠󸀠

6
𝑒
𝑗−6

+ 𝜙
󸀠󸀠󸀠

5
𝑒
𝑗−5

+ 𝜙
󸀠󸀠󸀠

4
𝑒
𝑗−4

+ 𝜙
󸀠󸀠󸀠

3
𝑒
𝑗−3

+ 𝜙
󸀠󸀠󸀠

2
𝑒
𝑗−2

+ 𝜙
󸀠󸀠󸀠

1
𝑒
𝑗−1

+ 𝑞
𝑗
𝑒
𝑗
+ 𝜙
󸀠󸀠󸀠

−1
𝑒
𝑗+1

+ 𝜙
󸀠󸀠󸀠

−2
𝑒
𝑗+2

+ 𝜙
󸀠󸀠󸀠

−3
𝑒
𝑗+3

+ 𝜙
󸀠󸀠󸀠

−4
𝑒
𝑗+4

+ 𝜙
󸀠󸀠󸀠

−5
𝑒
𝑗+5

+ 𝜙
󸀠󸀠󸀠

−6
𝑒
𝑗+6

= 0,

(59)

where 𝑞
𝑗
= 𝜙
󸀠󸀠󸀠

0
− ℎ
3
𝑎
𝑗
and 𝑗 = 0, 1, 2, . . . , 𝑁.

As 0 ≤ 𝑥 ≤ 1 and 𝑥
𝑗
= 𝑗ℎ, 𝑗 = 0, 1, 2, . . . , 𝑁

so 𝑒
0
, 𝑒
1
, . . . , 𝑒

𝑁
are nonzero while 𝑒

−6
, 𝑒
−5
, . . . , 𝑒

−1
and

𝑒
𝑁+1

, 𝑒
𝑁+2

, . . . , 𝑒
𝑁+6

are zero because they lie outside the
interval [0, 1]. Let us define these (the left and right end) error
values as

𝑒
𝑗
=

{

{

{

max
0≤𝑘≤7

{
󵄨󵄨󵄨󵄨𝑒𝑘
󵄨󵄨󵄨󵄨} 𝑂 (ℎ

8
) , −6 ≤ 𝑗 ≤ 0,

max
𝑁−7≤𝑘≤𝑁

{
󵄨󵄨󵄨󵄨𝑒𝑘
󵄨󵄨󵄨󵄨} 𝑂 (ℎ

8
) , 𝑁 ≤ 𝑗 ≤ 𝑁 + 6.

(60)

Thus system (59) is equivalent to

(𝐵 + 𝑂 (ℎ
6
)) 𝐸 = 0, (61)

where 𝐵 + 𝑂(ℎ6) is the matrix obtained by deleting the first
and last six rows and columns of the matrix 𝐵, where

𝐸 = (𝑒
−6
, 𝑒
−5
, 𝑒
−4
, . . . , 𝑒

𝑁+4
, 𝑒
𝑁+5

, 𝑒
𝑁+6

)
𝑇

. (62)

By using (7)

(𝐵 + 𝑂 (ℎ
6
)) 𝐸 = 𝑂 (ℎ

8
)
󵄩󵄩󵄩󵄩󵄩
𝑍 (𝑥
𝑗
) − 𝑦 (𝑥

𝑗
)
󵄩󵄩󵄩󵄩󵄩

= 𝑂 (ℎ
8
) ‖𝐸‖ = 𝑂 (ℎ

8
) .

(63)

Hence, for small ℎ, the coefficients matrix 𝐵 + 𝑂(ℎ
6
) will

be invertible and thus using the standard result from linear
algebra, we have

‖𝐸‖ ≤ (

󵄩󵄩󵄩󵄩󵄩
𝐵
−1󵄩󵄩󵄩󵄩󵄩

1 − 𝑂 (ℎ
6
)
𝑂 (ℎ
8
)) = 𝑂 (ℎ

2
) . (64)

This completes the proof.

The above discussion suggests that the approximations
of the solution computed by the method developed in
pervious section are second order accurate approximations.
This suggestion is supported by the numerical experiments
given in the next section

5. Numerical Examples and Discussions

In this section, the numerical collocation algorithm based
on 8-point interpolating subdivision scheme described in
Section 3, with the 8th order boundary conditions at the end
points, is tested on the two-point third order boundary value
problems. Absolute errors in the analytical solutions are also
calculated. For the sake of comparisons, we also tabulated the
results in this section.

Example 1. Consider the boundary value problem

𝑦
󸀠󸀠󸀠
(𝑥) = 𝑦 (𝑥) − 3𝑒

𝑥
, 0 < 𝑥 < 1, (65)

with boundary conditions 𝑦󸀠(0) = 0, 𝑦(1) = 0, 𝑦(0) = 1.
The analytical solution of this problem is

𝑦 (𝑥) = (1 − 𝑥) 𝑒
𝑥
. (66)

By using the collocation algorithm for 𝑁 = 10, we get
following solution of the above problem:𝑍

𝑗
= ∑
16

𝑖=−6
𝑧
𝑖
𝜙(𝑗−𝑖),

where the values of {𝑧
−6
, 𝑧
−5
, . . . , 𝑧

5
, 𝑧
16
} by using (36) are

{24.5275284967525, 0.690493373832105,

0.811531107670859,

0.901997043612006, 0.962835576958380,

0.995101658947808, 1, 0.978925359857389,

0.933503956247400, 0.865636023693632,

0.797539554103408, 0.771795250759200,

0.651392727341382, 0.519777983609805,

0.380902186129123, 0.199271785305208, 0,

− 0.131140299007903, −0.247662275449558,

− 0.342309352611581, −0.406997945734322,

−0.432827137019005, −0.413625213339484}

(67)

and by using (44) are

{0.8188703235427, 0.8701325409827, 0.9139995186898,

0.9498836119009, 0.9768946175522, 0.9940000846665,

1, 0.9934991816499, 0.9728768806892, 0.9362530908960,

0.8814510666459, 0.8059555490326, 0.7068662002854,

0.5808456281783, 0.4240613657868, 0.2321210447258, 0,

− 0.2780394553965, −0.6085378480019,

− 0.9989382153934, −1.457696393548,

1.993136716176, −2.54764506053343} .

(68)

By using two different boundary treatments presented in
Section 3, we obtained two different solutions which are
presented in Table 2 along with their absolute errors. The
graphical representations of the analytic and approximate
solutions of the above problem are shown in Figure 2.
Figure 2(a) represents the comparison of analytic and approx-
imate solutions obtained by (36) while analytic and approx-
imate solutions obtained by (44) are shown in Figure 2(b).
From this table and figure, we observe that the solution
obtained by (44) is significantly better than the solution
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Table 2: Solutions and error estimation of Example 1.

𝑥
𝑗 Analytic solution 𝑌 Approximate solution

𝑍 by (36)
Approximate solution

𝑍 by (44)
Absolute error

by (36)
Absolute error

by (44)
0.0 1 1 0.0000 0 0
0.1 0.9946538262 0.978925359857389 0.9934991878 0.0157284663 0.00115463837
0.2 0.9771222064 0.933503956247400 0.9728768936 0.0436182502 0.00424531280
0.3 0.9449011656 0.865636023693632 0.9362531105 0.0792651419 0.00864805513
0.4 0.8950948188 0.797539554103408 0.8814510903 0.0975552647 0.01364372850
0.5 0.8243606355 0.771795250759200 0.8059555784 0.0525653847 0.0184050571
0.6 0.7288475200 0.651392727341382 0.7068662336 0.0774547927 0.0219812864
0.7 0.6041258121 0.519777983609805 0.5808456679 0.0843478285 0.0232801441
0.8 0.4451081856 0.380902186129123 0.42406141196 0.06420599959 0.0210467736
0.9 0.2459603111 0.199271785305208 0.23212109670 0.0466885258 0.0138392144
1.0 0 0 0.0000 0.000 0.000

1
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Analytic solution Y

Approximate solution Z

(a)

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

Analytic solution Y

Approximate solution Z

(b)

Figure 2: Comparison between analytic and approximating solutions.

obtained by (36). So our claim; that is, the approximate
solution can be improved by adjusting boundary treatment,
is justified. The maximum absolute errors in the solutions
obtained by (36) and (44) at step size 10 are 9.755 × 10−2 and
2.328 × 10

−2, respectively.

Example 2. Consider the following third order boundary
values problem:

𝑦
󸀠󸀠󸀠
(𝑥) = 𝑥𝑦 (𝑥) + (𝑥

3
− 2𝑥
2
− 5𝑥 − 3) 𝑒

𝑥
, 0 < 𝑥 < 1,

(69)

with boundary conditions 𝑦(0) = 0 = 𝑦(1), 𝑦󸀠(0) = 1. Its
exact solution is

𝑦 (𝑥) = 𝑥 (1 − 𝑥) 𝑒
𝑥
. (70)

By the homogeneous process of the boundary condition,
let 𝑢(𝑥) = 𝑦(𝑥) − 𝑥(1 − 𝑥); then above problem can be
transformed into its equivalent form

𝑢
󸀠󸀠󸀠
(𝑥) = 𝑥𝑢 (𝑥) + 𝑥

2
(1 − 𝑥) + (𝑥

3
− 2𝑥
2
− 5𝑥 − 3) 𝑒

𝑥
,

0 < 𝑥 < 1, 𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 0.

(71)

The solutions of this problem and their absolute errors
obtained by two different boundary treatments are shown
in Table 3. The graphical representations of the analytic and
approximate solutions are shown in Figure 3. Figure 3(a)
represents the comparison of analytic and approximate
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Figure 3: Comparison between analytic and approximating solutions.

Table 3: Solutions and error estimation of Example 2.

𝑥
𝑗 Analytic solution 𝑌 Approximate solution

𝑍 by (36)
Approximate solution

𝑍 by (44)
Absolute error

by (36)
Absolute error

by (44)
0.0 0 0 0.0000 0.000 0.000
0.1 0.09946538262 0.1142745006 0.09710744670 0.01480911798 0.00235793592
0.2 0.1954244413 0.2168561360 0.1876024920 0.0214316947 0.0078219493
0.3 0.2834703497 0.3045203260 0.2767792681 0.0210499763 0.0066910816
0.4 0.3580379275 0.3732002884 0.3437107723 0.0151623609 0.0143271552
0.5 0.4121803178 0.4177996505 0.4018316295 0.0056193327 0.0103486883
0.6 0.4373085120 0.4319808639 0.4229368864 0.0053276481 0.0143716256
0.7 0.4228880685 0.4079258312 0.4199575084 0.0149622373 0.0029305601
0.8 0.3560865485 0.3360647276 0.3473442367 0.0200218209 0.0087423118
0.9 0.2213642800 0.2047684968 0.2069998108 0.0165957832 0.0143644692
1.0 0 0 0.0000 0.000 0.000

solutions obtained by (36). Figure 3(b) represents the com-
parison of analytic and approximate solutions obtained by
(44). We observe that the solution obtained by (44) has less
absolute error than that of the solution obtained by (36).
Again this supports our claim.

Comparison. The maximum absolute errors in the solutions
obtained by (36) and (44) at step size 10 are 2.143 × 10

−2

and 1.437 × 10−2, respectively. Caglar et al. [17] obtained the
same maximum absolute errors but at the step size 32 and 50,
respectively. Therefore we conclude that our method is more
efficient than that of Caglar et al.

6. Conclusion and Future Work

In this work, we present an interpolatory symmetric subdivi-
sion algorithm for the numerical solution of third order linear
problems. Septic polynomials were used for the adjustment
of boundary conditions at the end points. We established
collocation method and obtained stable system of linear
equations which can be solved by any well-known numerical
method. The numerical result showed that the adjustment
of boundary conditions at the end points influence the
accuracy of approximate solution. That is, the accuracy of
the solution can be improved by the proper adjustment
of boundary conditions. So our algorithm has flexibility
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to improve the results by adjusting boundary conditions.
The automatic selection and adjustment of the boundary
conditions which improve the approximation order of the
solution is possible future research direction.
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Pures et Appliquées, vol. 35, pp. 25–42, 1956.

[2] N. Dyn, D. Levin, and J. A. Gregory, “A 4-point interpolatory
subdivision scheme for curve design,”Computer Aided Geomet-
ric Design, vol. 4, no. 4, pp. 257–268, 1987.

[3] G. Deslauriers and S. Dubuc, “Symmetric iterative interpolation
processes,” Constructive Approximation, vol. 5, no. 1, pp. 49–68,
1989.

[4] G. Mustafa and N. A. Rehman, “The mask of (2𝑏 + 4)-point
n-ary subdivision scheme,” Computing: Archives for Scientific
Computing, vol. 90, no. 1-2, pp. 1–14, 2010.

[5] M. Aslam, G. Mustafa, and A. Ghaffar, “(2𝑛 − 1)-point ternary
approximating and interpolating subdivision schemes,” Journal
of Applied Mathematics, vol. 2011, Article ID 832630, 12 pages,
2011.

[6] G. Mustafa, J. Deng, P. Ashraf, and N. A. Rehman, “The mask
of odd points 𝑛-ary interpolating subdivision scheme,” Journal
of Applied Mathematics, vol. 2012, Article ID 205863, 20 pages,
2012.

[7] G.Mustafa and F. Khan, “A new 4-point C3 quaternary approxi-
mating subdivision scheme,” Abstract and Applied Analysis, vol.
2009, Article ID 301967, 14 pages, 2009.

[8] G. Mustafa, P. Ashraf, and J. Deng, “Generalized and unified
families of inter-polating schemes,” Numerical Mathematics-
Theory Methods and Applications, vol. 7, no. 2014, pp. 193–213,
2014.

[9] G. Mustafa and I. P. Ivrissimitzis, “Model selection for the
Dubuc-Deslauriers family of subdivision schemes,” in Proceed-
ings of the 14th IMA Conference on Mathematics of Surfaces,
University of Birmingham, Birmingham, UK, September 2013.

[10] R. Qu and R. P. Agarwal, “Solving two point boundary value
problems by interpolatory subdivision algorithms,” Interna-
tional Journal of Computer Mathematics, vol. 60, no. 3-4, pp.
279–294, 1996.

[11] R. Qu and R. P. Agarwal, “A subdivision approach to the
construction of approximate solutions of boundary-value prob-
lems with deviating arguments,” Journal of Computers &
Mathematics with Applications, vol. 35, no. 11, pp. 121–135, 1998.

[12] R. Qu, “Curve and surface interpolation by subdivision algo-
rithms,” Computer Aided Drafting Design and Manufacturing,
vol. 4, no. 2, pp. 28–39, 1994.

[13] R. B. Qu and R. P. Agarwal, “A cross difference approach to the
analysis of subdivision algorithms,” Neural, Parallel & Scientific
Computations, vol. 3, no. 3, pp. 393–416, 1995.

[14] N. Dyn, “Tutorial on multiresolution in geometric modelling
summer school lecture notes series,” in Mathematics & Visual-
ization, I. Armin, A. Ewald, and S. F. Michael, Eds., Springer,
2002.

[15] C. Conti and K. Hormann, “Polynomial reproduction for
univariate subdivision schemes of any arity,” Journal of Approx-
imation Theory, vol. 163, no. 4, pp. 413–437, 2011.

[16] G. Strang, Linear Algebra and Its Applications, Cengage Learn-
ing India Private Limited, 4th edition, 2011.

[17] H. N. Caglar, S. H. Caglar, and E. H. Twizell, “The numerical
solution of third-order boundary-value problems with fourth-
degree 𝐵-spline functions,” International Journal of Computer
Mathematics, vol. 71, no. 3, pp. 373–381, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


