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We put side by side themethodology of two comparatively new analytical techniques to get to the bottom of the system of nonlinear
fractionalmodifiedKawahara equation.The technique is described and exemplifiedwith a numerical example.The dependability of
bothmethods and the lessening in computations give these methods a wider applicability. In addition, the computations implicated
are very simple and undemanding.

1. Introduction

Within the scope of fractional calculus in the recent decade
several scholars have modeled physical and engineering
problems. Respective scholar while dealing with real world
problems found out that it is worth describing these phe-
nomena with the idea of derivatives with fractional order.
While searching the literature, we found out that, this
concept of noninteger order derivative not only has been
intensively used but also has played an essential role in
assorted branches of sciences including but not limited
to hydrology, chemistry, image processing, electronics and
mechanics; the applicability of this philosophy can be found
in [1–10]. In the foregone respective decennial, the research of
travelling-wave solutions for nonlinear equations has played
a crucial character in the examination of nonlinear physical
phenomena.

Nonlinear wave phenomena of dispersion, dissipation,
diffusion, reaction, and convection are very important in
nonlinear wave equations. Concepts like solitons, peakons,
kinks, breathers, cusps, and compactons have now been
thoroughly investigated in the scientific literature [11–13].

Various powerful mathematical methods such as the inverse
scattering method, bilinear transformation [14], the tanh-
sech method [15, 16], extended tanh method [16], Exp-
function method [17–19], sine-cosine method [20] Adomian
decomposition method [21], Exp-function method [22],
homotopy perturbation method [23] have been proposed for
obtaining exact and approximate analytical solutions.

The purpose of this paper is to examine the approximated
solution of the nonlinear fractional modified Kawahara
equation, using the relatively new analytical method, the
Homotopy decomposition method (HDM), and the Sumudu
transform method. The fractional partial differential equa-
tions under investigation here are given below as

𝜕
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝑢

2

(𝑥, 𝑡) 𝑢
𝑥
(𝑥, 𝑡) + 𝑝𝑢

𝑥𝑥
(𝑥, 𝑡)

+ 𝑞𝑢
𝑥𝑥𝑥

(𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1,

(1)

subject to the initial condition

𝑢 (𝑥, 0) =
3𝑝

√−10𝑞
sech[𝐾𝑥]2, 𝐾 =

1

2
√
−𝑝

5𝑞
. (2)
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The outstanding of this paper is prearranged as follows.
In Section 2 we present a succinct history of the fractional
derivative order and their properties. We present the basic
ideal of theHDMand the STM for solving high order nonlin-
ear fractional partial differential equations. We present their
application to fractional nonlinear differential equations (1)
and (2) and numerical results in Section 4. The conclusions
are then given in Section 5.

2. Fractional Derivative Order

2.1. Brief History. There exists a vast literature on differ-
ent definitions of fractional derivatives [24–27]. The most
popular ones are the Riemann-Liouville and the Caputo
derivatives. For Caputo we have

𝑐

0
𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑑
𝑛

𝑓 (𝑡)

𝑑𝑡𝑛
𝑑𝑡. (3)

For the case of Riemann-Liouville we have the following
definition:

𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡. (4)

Each fractional derivative presents some advantages and dis-
advantages [24–27], Jumarie (see [28, 29]) proposed a simple
alternative definition to the Riemann-Liouville derivative.

Consider

𝐷
𝛼

𝑥
(𝑓 (𝑥))

=
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

{𝑓 (𝑡) − 𝑓 (0)} 𝑑𝑡.

(5)

2.2. Properties and Definitions

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝑐

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑥) = 𝑥
𝑝

ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0,∞), and0020it is said to
be in space 𝐶𝑚

𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
,𝑚 ∈ N.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0, of a function𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽
𝛼

𝑓 (𝑥)=
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓(𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(6)

Properties of the operator can be found in [26, 27], we
mention only the following.

For 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > −1:

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛼+𝛽

𝑓 (𝑥) , 𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛽

𝐽
𝛼

𝑓 (𝑥) ,

𝐽
𝛼

𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(7)

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N and 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 ≥ −1,

then
𝐷
𝛼

𝐽
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼

𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)
𝑥
𝑘

𝑘!
,

𝑥 > 0.

(8)

Definition 4 (partial derivatives of fractional order). Assume
now that 𝑓(x) is a function of 𝑛 variables, 𝑥

𝑖
, 𝑖 = 1, . . . , 𝑛,

also of class 𝐶 on𝐷 ∈ R
𝑛
. As an extension of Definition 3 we

define partial derivative of order 𝛼 for 𝑓(𝑥)with respect to 𝑥
𝑖

using the function.

𝑎𝜕
𝛼

x𝑓 =
1

Γ (𝑚 − 𝛼)
∫

𝑥𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥𝑖

𝑓 (𝑥
𝑗
) |
𝑥𝑗=𝑡

𝑑𝑡. (9)

If it exists, where 𝜕𝑚
𝑥𝑖

is the usual partial derivative of integer
order𝑚.

3. Basic Information Regarding the
Methodology of the HDM [32–35]

To illustrate the basic idea of this method we consider a
general nonlinear nonhomogeneous fractional 𝑝 differential
equation with initial conditions of the following form [30]

𝜕
𝛼

𝑉 (𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐿 (𝑉 (𝑥, 𝑡)) + 𝑁 (𝑉 (𝑥, 𝑡)) + 𝑔 (𝑡) , 𝛼 > 0

(10)

subject to the initial condition

𝐷
𝛼−𝑘

0
𝑈 (𝑥, 0) = 𝑓

𝑘
, (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷
𝛼−𝑛

0
𝑉 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

𝐷
𝑘

0
𝑈 (𝑥, 0) = ℎ

𝑘
, (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷
𝑛

0
𝑉 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

(11)

where, 𝜕𝛼/𝜕𝑡𝛼 denotes the Caputo or Riemann-Liouville
fraction derivative operator, 𝑔 is a known function, 𝑁 is
the general nonlinear fractional differential operator and 𝐿

represents a linear fractional differential operator [30]. The
method first step here is to transform the fractional partial
differential equation to the fractional partial integral equation
by applying the inverse operator 𝜕𝛼/𝜕𝑡𝛼 on both sides of (10)
to obtain the following: In the case of Riemann-Liouville
fractional derivative,

𝑉 (𝑥, 𝑡) =

𝑛−1

∑

𝑗=1

𝑔
𝑗
(𝑥)

Γ (𝛼 − 𝑗 + 1)
𝑡
𝛼−𝑗

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐿 (𝑉 (𝑥, 𝜏)) + 𝑁 (𝑉 (𝑥, 𝜏))

+ 𝑔 (𝑥, 𝜏) ] 𝑑𝜏.

(12)
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In the case of Caputo fractional derivative,

𝑈 (𝑥, 𝑡) =

𝑛−1

∑

𝑗=1

ℎ
𝑗
(𝑥)

Γ (𝛼 − 𝑗 + 1)
𝑡
𝑗

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐿 (𝑉 (𝑥, 𝜏)) + 𝑁 (𝑉 (𝑥, 𝜏))

+ 𝑔 (𝑥, 𝜏) ] 𝑑𝜏.

(13)

Or in general by putting

𝑛−1

∑

𝑗=1

𝑓
𝑗
(𝑥)

Γ (𝛼 − 𝑗 + 1)
𝑡
𝛼−𝑗

= 𝑓 (𝑥, 𝑡) (14)

or

𝑓 (𝑥, 𝑡) =

𝑛−1

∑

𝑗=1

𝑔
𝑗
(𝑥)

Γ (𝛼 − 𝑗 + 1)
𝑡
𝑗

. (15)

We obtain

𝑉 (𝑥, 𝑡) = 𝑇 (𝑥, 𝑡)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐿 (𝑉 (𝑥, 𝜏)) + 𝑁 (𝑉 (𝑥, 𝜏))

+ 𝑔 (𝑥, 𝜏) ] 𝑑𝜏.

(16)

In the homotopy decomposition method, the basic assump-
tion is that the solutions can be written as a power series in
𝑝 [30]

𝑉 (𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) , (17)

𝑉 (𝑥, 𝑡) = lim
𝑝→1

𝑉 (𝑥, 𝑡, 𝑝) , (18)

and the nonlinear term can be decomposed as

𝑁𝑉(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑉) , (19)

where 𝑝 ∈ (0, 1] is an embedding parameter. H
𝑛
(𝑈) is the

He’s polynomials that can be generated by

H
𝑛
(𝑉
0
, . . . , 𝑉

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

∞

∑

𝑗=0

𝑝
𝑗

𝑉
𝑗
(𝑥, 𝑡))]

]

,

𝑛 = 0, 1, 2, . . .

(20)

The homotopy decomposition method is obtained by the
combination of homotopy technique with Abel integral and
is given by [30]
∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝑥, 𝑡) − 𝐹 (𝑥, 𝑡)

=
𝑝

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑔 (𝑥, 𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝑥, 𝜏))

+ 𝑁(

∞

∑

𝑛=0

𝑝
𝑛

𝑉
𝑛
(𝑥, 𝜏))] 𝑑𝜏.

(21)

Comparing the terms of same powers of 𝑝 gives solutions of
various orders with the first term:

𝑉
0
(𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) . (22)

Theorem 5 (see [31]). Assuming that 𝑋 × 𝑇 ⊂ R × R+ is
a Banach space with a well-defined norm ‖ ‖, over which the
series sequence of the approximate solution of (10) is defined,
and the operator 𝐺(𝑈

𝑛
(𝑥, 𝑡)) = 𝑈

𝑛+1
(𝑥, 𝑡) defining the series

solution of (14) satisfies the Lipschitzian conditions, that is,
‖𝐺(𝑈
𝑘

∗

) − 𝐺(𝑈
𝑘
)‖ ≤ 𝜀‖𝑈

∗

𝑘
(𝑥, 𝑡) − 𝑈

𝑘
(𝑥, 𝑡)‖ for all (𝑥, 𝑡, 𝑘) ∈

𝑋 × 𝑇 × N, then series solution obtained (17) is unique.

Proof (see [31]). Assume that 𝑈(𝑥, 𝑡)and 𝑈
∗

(𝑥, 𝑡) are the
series solution satisfying (10); then

𝑈
∗

(𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
∗

𝑛
(𝑥, 𝑡) , (23)

with initial guess 𝑇(𝑥, 𝑡)

𝑈 (𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) (24)

also with initial guess 𝑇(𝑥, 𝑡) therefore
𝑈
∗

𝑛
(𝑥, 𝑡) − 𝑈

𝑛
(𝑥, 𝑡)

 = 0, 𝑛 = 0, 1, 2, . . . . (25)

By the recurrence for 𝑛 = 0, 𝑈
∗

𝑛
(𝑥, 𝑡) = 𝑈

𝑛
(𝑥, 𝑡) =

𝑇(𝑥, 𝑡), assume that for 𝑛 > 𝑘 ≥ 0, ‖𝑈∗
𝑘
(𝑥, 𝑡) − 𝑈

𝑘
(𝑥, 𝑡)‖ = 0.

Then
𝑈
∗

𝑘+1
(𝑥, 𝑡) − 𝑈

𝑘+1
(𝑥, 𝑡)

 =
𝐺 (𝑈𝑘

∗

) − 𝐺 (𝑈
𝑘
)


≤ 𝜀
𝑈
∗

𝑘
(𝑥, 𝑡) − 𝑈

𝑘
(𝑥, 𝑡)

 = 0,

(26)

which completes the proof.

4. Background of Sumudu Transform

Definition 6 (see [34]). The Sumudu transform of a function
𝑓(𝑡), defined for all real numbers 𝑡 ≥ 0, is the function 𝐹

𝑠
(𝑢),

defined by

𝑆 (𝑓 (𝑡)) = 𝐹
𝑠
(𝑢) = ∫

∞

0

1

𝑢
exp [− 𝑡

𝑢
]𝑓 (𝑡) 𝑑𝑡. (27)
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Theorem 7 (see [35]). Let 𝐺(𝑢) be the Sumudu transform of
𝑓(𝑡) such that

(i) 𝐺(1/𝑠)/𝑠 is a meromorphic function, with singularities
having Re[𝑠] ≤ 𝛾,

(ii) there exists a circular region Γ with radius 𝑅 and
positive constants𝑀 and 𝐾 with |𝐺(1/𝑠)/𝑠| < 𝑀𝑅

−𝐾;
then the function 𝑓(𝑡) is given by

𝑆
−1

(𝐺 (𝑠)) =
1

2𝜋𝑖
∫

𝛾+𝑖∞

𝛾−𝑖∞

exp [st] 𝐺 (1
𝑠
)
𝑑𝑠

𝑠

= ∑ residual [exp [st] 𝐺 (1/𝑠)
𝑠

] .

(28)

For the proof see [36].

4.1. Basics of the Sumudu Transform Method. We illustrate
the basic idea of thismethod [34–41], by considering a general
fractional nonlinear nonhomogeneous partial differential
equation with the initial condition of the form

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = 𝐿 (𝑈 (𝑥, 𝑡))+𝑁 (𝑈 (𝑥, 𝑡))+𝑓 (𝑥, 𝑡) , 𝛼 > 0,

(29)

subject to the initial condition

𝐷
𝑘

0
𝑈 (𝑥, 0) = 𝑔

𝑘
, (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷
𝑛

0
𝑈 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

(30)

where 𝐷
𝛼

𝑡
denotes without loss of generality the Caputo

fraction derivative operator, 𝑓 is a known function, 𝑁 is
the general nonlinear fractional differential operator and 𝐿

represents a linear fractional differential operator.
Applying the Sumudu transform on both sides of (29), we

obtain

𝑆 [𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡)] = 𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]

+ 𝑆 [𝑓 (𝑥, 𝑡)] .

(31)

Using the property of the Sumudu transform, we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑢
𝛼

𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑢
𝛼

𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]

+ 𝑢
𝛼

𝑆 [𝑓 (𝑥, 𝑡)] + 𝑔 (𝑥, 𝑡) .

(32)

Now applying the Sumudu inverse on both sides of (19) we
obtain

𝑈 (𝑥, 𝑡) = 𝑆
−1

[𝑢
𝛼

𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑢
𝛼

𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]]

+ 𝐺 (𝑥, 𝑡)

(33)

𝐺(𝑥, 𝑡) represents the term arising from the known function
𝑓(𝑥, 𝑡) and the initial conditions.

Now we apply the HPM:

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) . (34)

The nonlinear term can be decomposed as follows:

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑈) (35)

using the He’s polynomialH
𝑛
(𝑈) given as

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

∞

∑

𝑗=0

𝑝
𝑗

𝑈
𝑗
(𝑥, 𝑡))]

]

, 𝑛 = 0, 1, 2, . . .

(36)

Substituting (35) and (36),

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡)

+ 𝑝 [𝑆
−1

[𝑢
𝛼

𝑆 [𝐿(

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡))]

+ 𝑢
𝛼

𝑆 [𝑁(

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡))] ]] ,

(37)

which is the coupling of the Sumudu transform and the HPM
using He’s polynomials. Comparing the coefficients of like
powers of 𝑝, the following approximations are obtained:

𝑝
0

: 𝑈
0
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) , (38)

𝑝
1

: 𝑈
1
(𝑥, 𝑡) = 𝑆

−1

[𝑢
𝛼

𝑆 [𝐿 (𝑈
0
(𝑥, 𝑡)) + 𝐻

0
(𝑈)]] ,

𝑝
2

: 𝑈
2
(𝑥, 𝑡) = 𝑆

−1

[𝑢
𝛼

𝑆 [𝐿 (𝑈
1
(𝑥, 𝑡)) + 𝐻

1
(𝑈)]] ,

𝑝
3

: 𝑈
3
(𝑥, 𝑡) = 𝑆

−1

[𝑢
𝛼

𝑆 [𝐿 (𝑈
2
(𝑥, 𝑡)) + 𝐻

2
(𝑈)]] ,

𝑝
𝑛

: 𝑈
𝑛
(𝑥, 𝑡) = 𝑆

−1

[𝑢
𝛼

𝑆 [𝐿 (𝑈
𝑛−1

(𝑥, 𝑡)) + 𝐻
𝑛−1

(𝑈)]] .

(39)

Finally, we approximate the analytical solution 𝑈(𝑥, 𝑡) by
truncated series

𝑈 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑

𝑛=0

𝑈
𝑛
(𝑥, 𝑡) . (40)

The above series solutions generally converge very rapidly.
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Figure 1: Approximated solutions for 𝛼 = 0.45.
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Figure 2: Approximated solution for 𝛼 = 0.98.

5. Application

5.1. Application with HDM. In this section we apply this
method for solving nonlinear of fractional differential equa-
tion (1). Following the steps involve in the HDM, we arrive at
the following equation:

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑢 (𝑥, 0)

−
𝑝

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× ((

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡))

2

(

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡))

𝑥

+ 𝑃(

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡))

𝑥𝑥

+𝑞(

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡))

𝑥𝑥𝑥𝑥

) .

(41)
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0.00009484

0.00009486

u

Figure 3: Exact solution for 𝛼 = 1.

Now comparing the terms of the same power of 𝑝 we arrive
at the following integral equations:

𝑝
0

, 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) , 𝑢

0
(𝑥, 0) = 𝑢 (𝑥, 0) ,

𝑝
1

: 𝑢
1
(𝑥, 𝑡)

= −
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× (𝑢
2

0
(𝑢
0
)
𝑥
+ 𝑃(𝑢

0
)
𝑥𝑥

+𝑞(𝑢
0
)
𝑥𝑥𝑥𝑥

) 𝑑𝜏, 𝑢
1
(𝑥, 0) = 0,

𝑝
𝑛

: 𝑢
𝑛
(𝑥, 𝑡)

= −
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× (

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝑢
𝑗
𝑢
𝑗−𝑘
(𝑢
𝑛−𝑗−1

)
𝑥

+𝑃(𝑢
𝑛−1

)
𝑥𝑥
+ 𝑞(𝑢
𝑛−1

)
𝑥𝑥𝑥𝑥

)𝑑𝜏,

𝑢
𝑛
(𝑥, 0) = 0, 𝑛 ≥ 2.

(42)

The following solutions are straightforward obtained:

𝑢
0
(𝑥, 𝑡) =

3𝑃

√−10𝑞
(sech (𝐾𝑥))2. (43)
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For simplicity we put 𝑎 = 3𝑃/√−10𝑞

𝑢
1
(𝑥, 𝑡)

=
3𝑃𝐾𝑡
𝛼

(sech(𝐾𝑥))2

4Γ (1 + 𝛼)√−10𝑞

× (8𝐾 (𝑃 − 20𝐾
2

𝑞) cosh (𝐾𝑥)

+ 𝐾 (𝑃 + 100𝐾
2

𝑞) cosh (3𝐾𝑥)

−𝐾 (𝑃 + 4𝐾
2

𝑞) cosh (5𝑘𝑥) + 8𝑎2 sinh (𝐾𝑥)) ,

𝑢
2
(𝑥, 𝑡)

=
1

Γ2 (𝛼 + 1) Γ (0.5 + 𝛼) Γ (1 + 3𝛼)

× (2
−5−2𝛼

𝑎𝐾𝑡
𝛼

(sech (𝐾𝑥))12

× (Γ (1 + 𝛼) Γ (1 + 3𝛼)

× (4
3+𝛼

𝑎
2

(cosh (𝐾𝑥))5Γ (0.5 + 𝛼) sinh (𝐾𝑥)

+ 𝐾√𝜋𝑡
𝛼

(−64𝑎
4

+ 276(𝐾𝑃)
2

− 20832𝐾
4

𝑃𝑞 +1087296𝐾
6

𝑞
2

+ 2 (32𝑎
4

+ 165(𝐾𝑃)
2

−7224𝐾
4

𝑃𝑞

− 45360𝐾
6

𝑞
2

) cosh (2𝐾𝑥))

− 768𝐾
4

𝑞 (−17𝑃 + 1240𝐾
2

𝑞) cosh (4𝐾𝑥)

− 75𝐾
2

𝑃
2 cosh (6𝐾𝑥)

+ 5736𝐾
4

𝑃𝑞 cosh (6𝐾𝑥)

+ 217680𝐾
6

𝑞
2 cosh (6𝐾𝑥)

− 20𝐾
2

𝑃
2 cosh (8𝐾𝑥)

− 928𝐾
4

𝑃𝑞 cosh (8𝐾𝑥)

− 8000𝐾
6

𝑞
2 cosh (8𝐾𝑥)

+ 𝐾
2

𝑃
2 cosh (10𝐾𝑥)

+ 8𝐾
4

𝑃𝑞 cosh (10𝐾𝑥)

+ 16𝐾
6

𝑞
2 cosh (6𝐾𝑥)

+ 592𝑎
2

𝐾𝑃 sinh (2𝐾𝑥)

− 86720𝑎
2

𝐾
3

𝑞 sinh (2𝐾𝑥)

+ 176𝑎
2

𝐾𝑃 sinh (4𝐾𝑥)

+ 35264𝑎
2

𝐾
3

𝑞 sinh (4𝐾𝑥)

− 80𝑎
2

𝐾𝑃 sinh (6𝐾𝑥)

−2624𝑎
2

𝐾
3

𝑞 sinh (6𝐾𝑥))

− 2𝑎
2

𝐾
2

𝑡
2𝛼

Γ (0.5 + 𝛼)

× Γ (1 + 2𝛼) (sech (𝐾𝑥))4

× (4
3+𝛼

𝑎
4

− 33 × 2
1+2𝛼

(𝐾𝑃)
2

+ 147

×4
2+𝛼

𝐾
4

𝑃𝑞 − 1113 × 2
5+2𝛼

𝐾
6

𝑞
2

)

− 2
1+2𝛼

((32𝑎
4

+ 39(𝐾𝑃)
2

− 744𝐾
4

𝑃𝑞

−36000𝐾
6

𝑞
2

)

× cosh (2𝐾𝑥)+3

× 2
9+2𝛼

𝐾
4

𝑞

× (−𝑃+20𝐾
2

𝑞) cosh (4𝐾𝑥)

+ 15 × 4
𝛼

𝐾
2

𝑃
2 cosh (6𝐾𝑥)−57

×2
3+2𝛼

𝐾
4

𝑃𝑞 cosh (6𝐾𝑥)−705

×4
2+𝛼

𝐾
6

𝑞
2 cosh (6𝐾𝑥)+21+3𝛼

× 𝐾
2

𝑃
2 cosh (8𝐾𝑥)+13 × 42+𝛼

× 𝐾
4

𝑃𝑞 cosh (8𝐾𝑥)+25 × 25+2𝛼

× 𝐾
6

𝑞
2 cosh (8𝐾𝑥)

− 4
𝛼

𝐾
2

𝑃
2 cosh (10𝐾𝑥)

− 2
3+2𝛼

𝐾
4

𝑃𝑞 cosh (10𝐾𝑥)

− 4
2+𝛼

𝐾
6

𝑞
2 cosh (10𝐾𝑥)+7

× 4
2+𝛼

𝑎
2

𝐾𝑃 sinh (2𝐾𝑥)+65

× 4
3+𝛼

𝑎
2

𝐾
3

𝑞 sinh (2𝐾𝑥)−25+2𝛼𝑎2

× 𝐾𝑃 sinh (4𝐾𝑥)−13 × 27+2𝛼𝑎2𝐾3

× 𝑞 sinh (4𝐾𝑥)+42+𝛼𝑎2𝐾𝑞 sinh (6𝐾𝑥)

+ 4
3+𝛼

𝑎
2

𝐾
3

𝑞 sinh (6𝐾𝑥))tanh (𝐾𝑥))) ,
(44)

and so on; using the package Mathematica, in the same
manner one can obtain the rest of the components. But, here,
few terms were computed and the asymptotic solution is
given by

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡)

+ 𝑢
3
(𝑥, 𝑡) + ⋅ ⋅ ⋅

(45)

The figures show the graphical representation of the approxi-
mated solution of the system of nonlinearmodified fractional
Kawahara equation for𝑃 = 0.0001, 𝑞 = −1.The approximate
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solutions of main problem have been depicted in Figures 1,
2, and 3 which were plotted in Mathematica according to
different 𝛼 values.

5.2. Applications with STM. In this subdivision, we take
advantage of the line of attack of the Sumudu transform tech-
nique to obtain approximated solution of the adapted frac-
tional Karawana equation. According to the steps involved in
the Sumudu transfrom method, we arrive at the next series
solution.

Consider

𝑢
0
(𝑥, 𝑡) =

3𝑃

√−10𝑞
(sech(𝐾𝑥))2

𝑢
1
(𝑥, 𝑡)

=
3𝑃𝐾𝑡
𝛼

(sech(𝐾𝑥))2

4Γ (1 + 𝛼)√−10𝑞

× (8𝐾 (𝑃 − 20𝐾
2

𝑞) cosh (𝐾𝑥)

+ 𝐾 (𝑃 + 100𝐾
2

𝑞) cosh (3𝐾𝑥)

−𝐾 (𝑃 + 4𝐾
2

𝑞) cosh (5𝑘𝑥) + 8𝑎2 sinh (𝐾𝑥)) ,

(46)

𝑢
2
(𝑥, 𝑡)

=
1

Γ2 (𝛼 + 1) Γ (0.5 + 𝛼) Γ (1 + 3𝛼)

× (2
−5−2𝛼

𝑎𝐾𝑡
𝛼

(sech(𝐾𝑥))12

× (Γ (1 + 𝛼) Γ (1 + 3𝛼)

× (4
3+𝛼

𝑎
2

(cosh (𝐾𝑥))5Γ (0.5 + 𝛼) sinh (𝐾𝑥)

+ 𝐾√𝜋𝑡
𝛼

(−64𝑎
4

+ 276(𝐾𝑃)
2

− 20832𝐾
4

𝑃𝑞 + 1087296𝐾
6

𝑞
2

+ 2 (32𝑎
4

+165(𝐾𝑃)
2

−7224𝐾
4

𝑃𝑞

− 45360𝐾
6

𝑞
2

) cosh (2𝐾𝑥))

− 768𝐾
4

𝑞 (−17𝑃 + 1240𝐾
2

𝑞) cosh (4𝐾𝑥)

− 75𝐾
2

𝑃
2 cosh (6𝐾𝑥)

+ 5736𝐾
4

𝑃𝑞 cosh (6𝐾𝑥)

+ 217680𝐾
6

𝑞
2 cosh (6𝐾𝑥)

− 20𝐾
2

𝑃
2 cosh (8𝐾𝑥)

− 928𝐾
4

𝑃𝑞 cosh (8𝐾𝑥)

− 8000𝐾
6

𝑞
2 cosh (8𝐾𝑥)

+ 𝐾
2

𝑃
2 cosh (10𝐾𝑥)

+ 8𝐾
4

𝑃𝑞 cosh (10𝐾𝑥)

+ 16𝐾
6

𝑞
2 cosh (6𝐾𝑥)

+ 592𝑎
2

𝐾𝑃 sinh (2𝐾𝑥)

− 86720𝑎
2

𝐾
3

𝑞 sinh (2𝐾𝑥)

+ 176𝑎
2

𝐾𝑃 sinh (4𝐾𝑥)

+ 35264𝑎
2

𝐾
3

𝑞 sinh (4𝐾𝑥)

− 80𝑎
2

𝐾𝑃 sinh (6𝐾𝑥)

−2624𝑎
2

𝐾
3

𝑞 sinh (6𝐾𝑥))

− 2𝑎
2

𝐾
2

𝑡
2𝛼

Γ (0.5 + 𝛼)

× Γ (1 + 2𝛼) (sech (𝐾𝑥))4

× (4
3+𝛼

𝑎
4

− 33 × 2
1+2𝛼

(𝐾𝑃)
2

+147

×4
2+𝛼

𝐾
4

𝑃𝑞−1113 ×2
5+2𝛼

𝐾
6

𝑞
2

)

− 2
1+2𝛼

((32𝑎
4

+ 39(𝐾𝑃)
2

−744𝐾
4

𝑃𝑞

−36000𝐾
6

𝑞
2

)

× cosh (2𝐾𝑥) + 3

× 2
9+2𝛼

𝐾
4

𝑞

× (−𝑃+20𝐾
2

𝑞) cosh (4𝐾𝑥)

+ 15 × 4
𝛼

𝐾
2

𝑃
2 cosh (6𝐾𝑥)−57

×2
3+2𝛼

𝐾
4

𝑃𝑞 cosh (6𝐾𝑥)−705

×4
2+𝛼

𝐾
6

𝑞
2 cosh (6𝐾𝑥)+21+3𝛼

× 𝐾
2

𝑃
2 cosh (8𝐾𝑥)+13 × 42+𝛼

×𝐾
4

𝑃𝑞 cosh (8𝐾𝑥)+25 × 25+2𝛼

× 𝐾
6

𝑞
2 cosh (8𝐾𝑥)

− 4
𝛼

𝐾
2

𝑃
2 cosh (10𝐾𝑥)

− 2
3+2𝛼

𝐾
4

𝑃𝑞 cosh (10𝐾𝑥)

− 4
2+𝛼

𝐾
6

𝑞
2 cosh (10𝐾𝑥)+7

× 4
2+𝛼

𝑎
2

𝐾𝑃 sinh (2𝐾𝑥)+65

× 4
3+𝛼

𝑎
2

𝐾
3

𝑞 sinh (2𝐾𝑥)−25+2𝛼𝑎2

× 𝐾𝑃 sinh (4𝐾𝑥)−13 × 27+2𝛼𝑎2𝐾3

× 𝑞 sinh (4𝐾𝑥)
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+ 4
2+𝛼

𝑎
2

𝐾𝑞 sinh (6𝐾𝑥)

+ 4
3+𝛼

𝑎
2

𝐾
3

𝑞 sinh (6𝐾𝑥))

× tanh (𝐾𝑥) ) ) .
(47)

Remark 8. It worth noting that, in this investigation, both
techniques have provided the same results. However, from
their methodologies one can observes that the HDM is very
easy to implement and the complexity of the HDM is of order
𝑛.

6. Conclusion

We derived approximated solutions of nonlinear fractional
Kawahara equations using comparatively innovative ana-
lytical modus operandi, the HDM and STM. We offered
the epigrammatic history and some properties of fractional
derivative concept. It is established that HDM and STM
are authoritative and well-organized instruments of FPDEs.
Additionally, the calculations concerned are very simple and
uncomplicated.
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