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We consider the numerical solutions of a class of nonlinear (nonstandard) Volterra integral equation. We prove the existence and
uniqueness of the one point collocation solutions and the solution by the repeated trapezoidal rule for the nonlinearVolterra integral
equation. We analyze the convergence of the collocation methods and the repeated trapezoidal rule. Numerical experiments are
used to illustrate theoretical results.

1. Introduction

In this paper we consider the nonlinear (nonstandard) Vol-
terra integral equation:

𝑢 (𝑡) =

2

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠)

𝑗

, 𝑡 ∈ [0, 𝑇] , (1)

where 𝑏
𝑗

∈ R and 𝑔
𝑗
, 𝑘
𝑗
are continuous functions. Some

examples of the nonlinear VIE (1) arise from nonlinear
ordinary differential equations used to represent conservative
systems. In [1] we provided sufficient conditions for the
existence and uniqueness of the solution to (1). We also
approximated the solutions for (1) using collocationmethods,
the repeated trapezoidal rule, and repeated Simpson’s rule.

Collocation solutions for Volterra integral equations have
been the subject of several work over the years. Brunner
[2] studied the existence and uniqueness of the collocation
solution for linear Volterra integral equations of the second
kind and showed that the methods yield global convergence
of order 𝑚. In [3] nonlinear Volterra integral equations with
multiple proportional delays were studied; they provided
sufficient conditions for the existence and uniqueness of the
analytic and collocation solution. Moreover, [3] proved that
the collocation methods yield global convergence of order𝑚.
Other authors such as [4–6] also analysed the convergence
of collocation methods for Volterra integral equations with

different types of kernels. In thisworkwe study the conditions
for the existence and uniqueness of the numerical solutions
of (1) and perform convergence analysis for the collocation
methods and repeated trapezoidal rule.

2. Existence and Uniqueness of
the Numerical Solution

Consider the nonlinear VIE

V (𝑡) = 𝑏 (𝑔(𝑡) + ∫

𝑡

0

𝑘(𝑡, 𝑠)V(𝑠)𝑑𝑠)
2

, (2)

where 𝑘 ∈ 𝐶(𝐷), (𝐷 := (𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇), and 𝑔 ∈ 𝐶(𝐼).
We prove a theorem analogous to the one in [3], establishing
the existence and uniqueness of the collocation solution for
(2). The collocation solution to (2) is given as

𝑉
𝑛,1

= 𝑏(𝑔 (𝑡
𝑛,1
) + 𝐹
𝑛
(𝑡
𝑛,1
)

+ ℎ(∫

𝑐
1

0

𝑘(𝑡
𝑛,1
, 𝑡
𝑛
+ 𝑠ℎ)𝑑𝑠)𝑉

𝑛,1
)

2

,

(3)

where

𝐹
𝑛
(𝑡
𝑛,1
) = ℎ

𝑛−1

∑

𝑖=0

(∫

1

0

𝑘 (𝑡
𝑛,1
, 𝑡
𝑖
+ 𝑠ℎ) 𝑑𝑠)𝑉

𝑖,1
. (4)
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Let

𝐵
𝑛
= ∫

𝑐
1

0

𝑘 (𝑡
𝑛,1
, 𝑡
𝑛
+ 𝑠ℎ) 𝑑𝑠, (5)

𝑔 = 𝑔(𝑡
𝑛,1
), and 𝐹 = 𝐹

𝑛
(𝑡
𝑛,1
); then

𝑉
𝑛,1

= 𝑏 (𝑔
2
+ 2𝑔𝐹 + 𝐹

2
+ 2𝑔ℎ𝐵

𝑛
𝑉
𝑛,1

+ 2ℎ𝐹𝐵
𝑛
𝑉
𝑛,1

+ ℎ
2
𝐵
2

𝑛
𝑉
2

𝑛,1
) ,

(6)

[1 − ℎ (2𝑏𝑔𝐵
𝑛
+ 2𝑏𝐹𝐵

𝑛
+ ℎ𝐵
2

𝑛
𝑉
𝑛,1
)]𝑉
𝑛,1

= 𝑏 (𝑔 + 𝐹)
2

. (7)

To solve (7) we use an iterative procedure; thus we rewrite
(7) in the form

[1 − ℎ (2𝑏𝑔𝐵
𝑛
+ 2𝑏𝐹𝐵

𝑛
+ ℎ𝐵
2

𝑛
𝑉
(𝑠)

𝑛,1
)]𝑉
(𝑠+1)

𝑛,1
= 𝑏 (𝑔 + 𝐹)

2

,

(8)

where 𝑠 = 1, 2, . . .. Let

℘
(𝑠)

= (2𝑏𝑔𝐵
𝑛
+ 2𝑏𝐹𝐵

𝑛
+ ℎ𝐵
2

𝑛
𝑉
(𝑠)

𝑛,1
) . (9)

Then (8) can be rewritten as

[1 − ℎ℘
(𝑠)
]𝑉
(𝑠+1)

𝑛,1
= 𝑏 (𝑔 + 𝐹)

2

. (10)

Theorem 1. Assume that the given functions 𝑔 and 𝑘 in the
nonlinear VIE (2) are continuous in their respective domains
𝐼 and 𝐷. Then there exists a constant ℎ > 0, for any uniform
mesh 𝐼

ℎ
with ℎ < ℎ, such that (3) defines a unique collocation

solution V
ℎ
that belongs to the piecewise constant polynomial

𝑆
(−1)

0
(𝐼
ℎ
), for (2).

Proof. Since the kernel 𝑘 in (2) is continuous on𝐷, then ℘
(1)

in (10) is bounded.Wheneverℎ|℘(1)| < 1, 1−ℎ℘(1) ̸= 0. Hence,
for 𝑠 = 1 in (10), 𝑉(2)

𝑛,1
exists and is bounded.

For some 𝑠 > 1 assume that 𝑉(𝑠)
𝑛,1

is bounded. Then,
arguing as above, 𝑉(𝑠+1)

𝑛,1
exists and is bounded if ℎ|℘(𝑠)| < 1.

The above holds if there is an ℎ > 0 such that for a uniform
mesh 𝐼

ℎ
with ℎ < ℎ, the condition ℎ|℘

(𝑠)
| < 1 holds for all

𝑠 ≥ 1. Hence there exists a unique solution 𝑉
(𝑠+1)

𝑛,1
for (3).

Corollary 2. Under the same conditions as in Theorem 1,

V (𝑡
𝑛
) = 𝑏(𝑔 (𝑡

𝑛
) +

ℎ

2

𝑘 (𝑡
𝑛
, 𝑡
0
) V (𝑡
0
)

+ ℎ

𝑛−1

∑

𝑖=1

𝑘(𝑡
𝑛
, 𝑡
𝑖
)V(𝑡
𝑖
) +

ℎ

2

𝑘(𝑡
𝑛
, 𝑡
𝑛
)V(𝑡
𝑛
))

2
(11)

defines a unique solution to (2) by the repeated trapezoidal rule.

Proof. Expanding (11) we get

V
𝑛
− ℎ(𝑏𝑔

𝑛
𝑘
𝑛,𝑛

+ 𝑏

ℎ

2

𝑘
𝑛,0
V
0
𝑘
𝑛,𝑛

+ 𝑏ℎ

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
𝑘
𝑛,𝑛

+ 𝑏

ℎ

2

(𝑘
𝑛,𝑛
)
2 V
𝑛
) V
𝑛

= 𝑏[𝑔
2

𝑛
+ 𝑔
𝑛
ℎ𝑘
𝑛,0
V
0
+ (

ℎ

2

𝑘
𝑛,0
V
0
)

2

+ (

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
)

2

+ 2𝑔
𝑛
ℎ

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖

+ ℎ
2
𝑘
𝑛,0
V
0

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
] ,

(12)

where V
𝑛
= V(𝑡
𝑛
), 𝑔
𝑛
= 𝑔(𝑡
𝑛
), and 𝑘

𝑛,𝑖
= 𝑘(𝑡
𝑛
, 𝑡
𝑖
) for 𝑖 = 0, . . .,

𝑛. Let

℘
(𝑠)

= (𝑏𝑔
𝑛
𝑘
𝑛,𝑛

+ 𝑏

ℎ

2

𝑘
𝑛,0
V
0
𝑘
𝑛,𝑛

+ 𝑏ℎ

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
𝑘
𝑛,𝑛

+𝑏

ℎ

2

(𝑘
𝑛,𝑛
)
2 V(𝑠)
𝑛
) ;

(13)

then we have

[1 − ℎ℘
(𝑠)
] V(𝑠+1)
𝑛

= 𝑏
[

[

𝑔
2

𝑛
+ 𝑔
𝑛
ℎ𝑘
𝑛,0
V
0
+ (

ℎ

2

𝑘
𝑛,0
V
0
)

2

+ (

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
)

2

+ 2𝑔
𝑛
ℎ

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
+ ℎ
2
𝑘
𝑛,0
V
0

𝑛−1

∑

𝑖=1

𝑘
𝑛,𝑖
V
𝑖
]

]

.

(14)

The result follows fromTheorem 1 by taking

V(𝑠+1)
𝑛

= 𝑉
(𝑠+1)

𝑛,1
. (15)

Corollary 3. Applying collocation methods or the repeated
trapezoidal rule results in a unique solution for (1).

Proof. Existence and uniqueness for the case 𝑏
1

= 0,
𝑏
2

̸= 0 follows from Theorem 1 and Corollary 2. For the
case 𝑏

1
̸= 0, 𝑏

2
= 0 existence and uniqueness for the

collocation solution is established in [2]. For the case 𝑏
1

̸= 0,
𝑏
2
= 0 the existence and uniqueness of the solution by the

repeated trapezoidal rule follows from continuity of 𝑔 and
𝑘. Combining these two cases establishes the existence and
uniqueness of the collocation solution and the solution by the
repeated trapezoidal rule for (1).
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3. Convergence for the Numerical Methods

3.1. Global Convergence for the Collocation Methods. The
global convergence for the case where 𝑏

2
= 0 in (1) has

been analysed (see [2]); thus we will study the case where
𝑏
1

= 0 and where both 𝑏
1
and 𝑏

2
are nonzero. We use a

procedure analogous to the one used in [3] to analyse the
global convergence of the collocation solution V

ℎ
∈ 𝑆
−1

0
(𝑍
𝑁
),

with 𝑍
𝑁
:= {𝑡
0
, . . . , 𝑡

𝑁
}.

Theorem 4. Assume that 𝑘 ∈ 𝐶(𝐷), 𝑔 ∈ 𝐶(𝐼), and V
ℎ

∈

𝑆
−1

0
(𝑍
𝑁
), defined by (3), are the collocation solution for (2).

Then for all sufficiently small ℎ > 0, we have
󵄩
󵄩
󵄩
󵄩
V
ℎ
− V󵄩󵄩󵄩

󵄩∞
≤ 𝐶 (

󵄩
󵄩
󵄩
󵄩
󵄩
(1 −P

ℎ
) 𝑏𝑔
2󵄩󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
(𝜅 − 𝛼P

ℎ
) 𝛽V󵄩󵄩󵄩

󵄩∞
) ,

󵄩
󵄩
󵄩
󵄩
V
ℎ
− V󵄩󵄩󵄩

󵄩∞
:= sup
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
V
ℎ
(𝑡) − V (𝑡)󵄨󵄨󵄨

󵄨
≤ 𝐶ℎ ‖V‖

∞
,

(16)

whereP
ℎ
is the Lagrange interpolation operator corresponding

to the collocation parameter 𝑐
1
and the constant 𝐶 does not

depend on ℎ.

Proof. Define 𝛽V as follows:

𝛽V = ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠; (17)

then the operator formulations for the VIE (2) and its
collocation equation are given by

V = 𝑏 (𝑔 + 𝛽V)2 ,

V
ℎ
= 𝑏P

ℎ
(𝑔 + 𝛽V

ℎ
)
2

.

(18)

Based on the solvability of the VIE and its collocation
equation we implement an iterative procedure and obtain

V(𝑠+1) = (1 − 𝜅𝛽)
−1

𝑏𝑔
2
,

V(𝑠+1)
ℎ

= (1 − 𝛼𝛽P
ℎ
)
−1

P
ℎ
𝑏𝑔
2
,

(19)

where 𝜅 = 2𝑏𝑔𝛽 + 𝑏𝛽
2V(𝑠) and 𝛼 = 2𝑏𝑔𝛽P

ℎ
+ 𝑏𝛽
2P
ℎ
V(𝑠)
ℎ
.

Then the error between V
ℎ
and V can be written as

𝑒
ℎ
:= V
ℎ
− V

= (1 − 𝛼P
ℎ
𝛽)
−1

P
ℎ
𝑏𝑔
2
− (1 − 𝜅𝛽)

−1

𝑏𝑔
2

= (1 − 𝜅𝛽)
−1

P
ℎ
𝑏𝑔
2
+ (1 − 𝛼P

ℎ
𝛽)
−1

P
ℎ
𝑏𝑔
2

− (1 − 𝜅𝛽)
−1

(𝑏𝑔
2
−P
ℎ
𝑏𝑔
2
)

= (1 − 𝛼P
ℎ
𝛽)
−1

(𝜅𝛽 − 𝛼P
ℎ
𝛽) (1 − 𝜅𝛽)

−1

P
ℎ
𝑏𝑔
2

+ (1 − 𝜅𝛽)
−1

(𝑏𝑔
2
−P
ℎ
𝑏𝑔
2
)

= (1 − 𝛼P
ℎ
𝛽)
−1

(𝜅𝛽 − 𝛼P
ℎ
𝛽) (1 − 𝜅𝛽)

−1

(P
ℎ
𝑏𝑔
2
− 𝑏𝑔
2
)

+ (1 − 𝛼P
ℎ
𝛽)
−1

(𝜅𝛽 − 𝛼P
ℎ
𝛽) (1 − 𝜅𝛽)

−1

𝑏𝑔
2

+ (1 − 𝜅𝛽)
−1

(1 −P
ℎ
) 𝑏𝑔
2

= (1 − 𝛼P
ℎ
𝛽)
−1

(𝜅𝛽 − 𝛼P
ℎ
𝛽) (1 − 𝜅𝛽)

−1

(P
ℎ
− 1) 𝑏𝑔

2

+ (1 − 𝛼P
ℎ
𝛽)
−1

(𝜅 − 𝛼P
ℎ
) 𝛽V

+ (1 − 𝜅𝛽)
−1

(1 −P
ℎ
) 𝑏𝑔
2
,

(20)

which implies that

󵄩
󵄩
󵄩
󵄩
V
ℎ
− V󵄩󵄩󵄩

󵄩∞
≤ 𝐶 (

󵄩
󵄩
󵄩
󵄩
󵄩
(1 −P

ℎ
)𝑏𝑔
2󵄩󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
(𝜅 − 𝛼P

ℎ
)𝛽V󵄩󵄩󵄩

󵄩∞
) .

(21)

From the error estimates of the interpolationP
ℎ
, we have

󵄩
󵄩
󵄩
󵄩
󵄩
(1 −P

ℎ
)𝑏𝑔
2󵄩󵄩
󵄩
󵄩
󵄩∞

≤ 𝐶ℎ

󵄩
󵄩
󵄩
󵄩
󵄩
𝑏𝑔
2󵄩󵄩
󵄩
󵄩
󵄩∞

≤ 𝐶ℎ ‖V‖∞ , (22)

and with appropriate assumptions on 𝛼 and 𝜅,
󵄩
󵄩
󵄩
󵄩
(𝜅 − 𝛼P

ℎ
)𝛽V󵄩󵄩󵄩

󵄩∞
≤ 𝐶ℎ

󵄩
󵄩
󵄩
󵄩
𝛽V󵄩󵄩󵄩

󵄩∞
≤ 𝐶ℎ ‖V‖∞ , (23)

which leads to
󵄩
󵄩
󵄩
󵄩
V
ℎ
− V󵄩󵄩󵄩

󵄩
≤ 𝐶ℎ ‖V‖

∞
. (24)

On the other hand, recall that the collocation solution to
(1) is given by

𝑢
ℎ
(𝑡) =

2

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠)

𝑗

, 𝑡 ∈ 𝑋
𝑁
. (25)

Corollary 5. If the solution𝑢
ℎ
∈ 𝑆
−1

0
(𝑍
𝑁
) defined by (25) is the

collocation solution to (1), then, for a sufficiently small ℎ > 0,
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ
− 𝑢

󵄩
󵄩
󵄩
󵄩∞

:= sup
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
𝑢
ℎ
(𝑡) − 𝑢 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶ℎ ‖𝑢‖∞ (26)

holds for any set 𝑋
𝑁
of collocation point with 0 ≤ 𝑐

1
≤ 1. The

constant 𝐶 depends on the 𝑐
1
but not on ℎ.

Proof. From [2] we know that the collocation solution for the
VIE,

𝑦 (𝑡) = 𝑔 (𝑡) + ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (27)

satisfies
󵄩
󵄩
󵄩
󵄩
𝑦
ℎ
− 𝑦

󵄩
󵄩
󵄩
󵄩∞

:= sup
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
𝑦
ℎ
(𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶ℎ

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩∞

. (28)

Using the triangle inequality we have
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ
− 𝑢

󵄩
󵄩
󵄩
󵄩∞

=
󵄩
󵄩
󵄩
󵄩
(𝑦
ℎ
− 𝑦) + (V

ℎ
− V)󵄩󵄩󵄩

󵄩∞

≤
󵄩
󵄩
󵄩
󵄩
(𝑦
ℎ
− 𝑦)

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
(V
ℎ
− V)󵄩󵄩󵄩

󵄩∞

≤ 𝐶ℎ
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩∞

+ 𝐶ℎ ‖V‖∞

≤ 𝐶ℎ (
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩∞

+ ‖V‖∞) .

(29)
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3.2. Repeated Trapezoidal Rule. Consider the solution to (2)
by repeated trapezoidal rule

V (𝑡
𝑛
) = 𝑏(𝑔 (𝑡

𝑛
) + ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
))

2

. (30)

Theorem 6. The approximate method given by (30) is conver-
gent and its order of convergence is at least one.

Proof. Putting 𝑡 = 𝑡
𝑛
in (2), we have

󵄨
󵄨
󵄨
󵄨
𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
V
ℎ
(𝑡
𝑛
) − V (𝑡

𝑛
)
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑏 [(ℎ

𝑛

∑

𝑖=0

2𝑔 (𝑡
𝑛
) 𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
))

− (2𝑔 (𝑡
𝑛
) ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)

+ (ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
))

2

− (∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)

2

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑏 [(ℎ

𝑛

∑

𝑖=0

2𝑔 (𝑡
𝑛
) 𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
))

− (2𝑔 (𝑡
𝑛
) ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)

+ (ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
) − ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)

⋅ (ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
)

+ ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑏 [(ℎ

𝑛

∑

𝑖=0

2𝑔 (𝑡
𝑛
) 𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
))

− (2𝑔 (𝑡
𝑛
) ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)

+ (ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
) − ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)

⋅ (ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
)

− ∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠

+ 2∫

𝑡
𝑛

0

𝑘 (𝑡
𝑛
, 𝑠) V (𝑠) 𝑑𝑠)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(31)

Using the Lipschitz condition, (31) can be written as

󵄨
󵄨
󵄨
󵄨
𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
≤ ℎ𝐴
1

𝑛

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑅
𝑖,1

󵄨
󵄨
󵄨
󵄨

+ (ℎ𝐴
2

𝑛

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑅
𝑖,1

󵄨
󵄨
󵄨
󵄨
)(ℎ𝐴

2

𝑛

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑅
𝑖,2

󵄨
󵄨
󵄨
󵄨
) ,

(32)

where 𝑅
𝑖,1
and 𝑅

𝑖,2
are the errors of the integration rule.

Then, let 𝑅 = max
𝑖
[𝑅
𝑖,1
, 𝑅
𝑖,2
]; hence

󵄨
󵄨
󵄨
󵄨
𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
≤

ℎ𝐴
1

1 − ℎ𝐴
1

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
+

𝑅

1 − ℎ𝐴
1

+ (

ℎ𝐴
2

1 − ℎ𝐴
2

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
+

𝑅

1 − ℎ𝐴
2

)

⋅ (

ℎ𝐴
2

1 − ℎ𝐴
2

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
+

𝑅

1 − ℎ𝐴
2

) .

(33)

Then we have

󵄨
󵄨
󵄨
󵄨
𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
≤

1

1 − ℎ𝐴
1

{𝑅 + ℎ𝐴
1

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
} 𝑒
(𝐴
1
𝑡
𝑛
/(1−𝐴

1
))

+ (

1

1 − ℎ𝐴
2

{𝑅 + ℎ𝐴
2

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
} 𝑒
(𝐴
2
𝑡
𝑛
/(1−𝐴

2
))
)

⋅ (

1

1 − ℎ𝐴
2

{𝑅 + ℎ𝐴
2

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
𝜀
𝑖

󵄨
󵄨
󵄨
󵄨
} 𝑒
(𝐴
2
𝑡
𝑛
/(1−𝐴

2
))
) .

(34)

For the functions 𝑘 and 𝑔 with at least first-order derivatives,
we have 𝑅 = 𝑂(ℎ). Hence we have

󵄨
󵄨
󵄨
󵄨
𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
= 𝑂 (ℎ) + 𝑂 (ℎ)𝑂 (ℎ)

= 𝑂 (ℎ) + 𝑂 (ℎ
2
)

= 𝑂 (ℎ) .

(35)

Corollary 7. The repeated trapezoidal solution for (1), defined
by

𝑢 (𝑡
𝑛
) =

2

∑

𝑗=1

𝑏(𝑔 (𝑡
𝑛
) + ℎ

𝑛

∑

𝑖=0

𝑤
𝑖
𝑘 (𝑡
𝑛
, 𝑡
𝑖
) V (𝑡
𝑖
))

2

, (36)

is convergent and its order of convergence is at least one.

Proof. Since |𝜀
𝑛
| = 𝑂(ℎ) for the repeated trapezoidal rule

when used to solve (2) and (27), it follows that for (1) we have
󵄨
󵄨
󵄨
󵄨
𝜀
𝑛

󵄨
󵄨
󵄨
󵄨
= 𝑂 (ℎ) + 𝑂 (ℎ)

= 𝑂 (ℎ) .

(37)
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Figure 1: The convergence rates for (39).

4. Numerical Results

In this section we present numerical results obtained from
the collocation methods and the repeated trapezoidal rule.
To obtain the estimates for the convergence rates we used the
following quantity:

𝑝 =

log ((𝑢ℎ/2 − 𝑢
ℎ
) / (𝑢
ℎ/4

− 𝑢
ℎ/2

))

log 2
, (38)

where 𝑢ℎ, 𝑢ℎ/2, and 𝑢
ℎ/4 denote approximations to 𝑢(𝑡) using

the step sizes ℎ, ℎ/2, and ℎ/4.The results are shown in Figures
1 and 2, which indicates first-order convergence and this is
in agreement with the results of the theorems in Section 3.

The approximations for the convergence rates are done using
results from the following examples.

Example 1. Consider

𝑢 (𝑡) = 2 (1 + ∫

𝑡

0

(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠)

2

0 ≤ 𝑡 ≤ 1. (39)

Example 2. Consider

𝑢 (𝑡) = (1 + ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠) +

1

2

(1 + ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠)

2

0 ≤ 𝑡 ≤ 1.

(40)
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Figure 2: The convergence rates for (40).

5. Discussion

In this work we provided sufficient conditions for the exis-
tence and uniqueness of the collocation solution and the solu-
tion by the repeated trapezoidal rule for (2). We performed a
numerical analysis of the nonlinear (nonstandard) Volterra
integral equation (1). In Theorem 4 and Corollary 5 we
proved that the collocationmethods yield global convergence
order of one. We also proved in Section 3.2 that the repeated
trapezoidal rule has convergence order of one. Numerical
approximations of the convergence orders of the implicit
Euler, implicit midpoint, and repeated trapezoidal rule were
made and are shown in Section 4. The computed orders of
convergence are in agreement with the theoretical results in
Section 3.
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