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Neuronal activity in the human brain occurs in a complex physiologic environment, and noise from all aspects in this physiologic
environment affects all aspects of nervous-system function. An essential issue of neural information processing is whether the
environmental noise in a neural system can be estimated and quantified in a proper way. In this paper, we calculated the neural
energy to estimate the range of critical values of thermal noise intensity that markedly affect themembrane potential and the energy
waveform, in order to define such a noisy environment which neuronal activity relies on.

1. Introduction

Thermal noise in neural system is critically vital for infor-
mation processing, because it has a great influence on a
variety of aspects of the central nervous system [1–6]. How
to evaluate the intensity of such noise has long been a focus
for scientists attempting to understand network behaviors
and perception [7–11]. So far, estimations of thermal noise
intensity in neurons or neural networks in published papers
with regard to neural models are generally subjective, lacking
a definite basis that is applicable to the range of thermal noise
intensity in real systems. Sometimes, authors define thermal
noise themselves in order to obtain an ideal result; however,
scientific definition of thermal noise and its intensity range
is extremely difficult [12–18]. From the viewpoint of quan-
tification, there have been a lot of studies on information
coding and the dynamic behaviors of networks in a noisy
environment, but these studies have not attempted to answer
one of the most basic questions—what principles should
be used to choose the thermal noise values in models?
Theoretically speaking, there will be deviations between
the calculated results and experimental data, and a further
discussion on the effectiveness of calculated results is also
needed. Taking into account all the considerations above
and based on the literature [19–21], in this paper, a range of
values of the different membrane potential under the thermal

noise condition studied by using the energymethod and their
corresponding energy waveforms.

We wanted to estimate the range of critical values of
noise intensity that is capable of markedly changing the
energy waveform. The principal idea of our research was
inspired by the fact that since it is impossible to measure
the thermal noise intensity at a neuronal level which is
great enough to affect neuronal activity in an experiment,
and hence, according to the rule of the only corresponding
relationship between the membrane potential and its energy
function, the range of thermal noise intensity obtained by
our neuronal energy function can be estimated to be what
it should be in a real neural system. Any kind of membrane
potential can be obtained by adjusting the noise intensity, but
there is no intrinsic relationship between such a membrane
potential and the real neuronal energy. Therefore, we studied
the membrane potential starting from the point of view
of neuronal energy and observing the type of order of
magnitude in noise intensity that can greatly affect the energy
function of the membrane potential. As a result, we obtained
a range of thermal noise intensity that neurons might have in
an actual thermal noisy environment.

It follows that a further discussion of thermal noise
intensity range is possible for levels of networks. This part
of the research is not only significant for the application of
thermal noise intensity when modeling a neuron, but is also
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able to provide an adequate scientific basis for estimating the
range of thermal noise intensity in networks and helping to
establish neural network models.

Finally, it should be emphasized that we did not consider
signal to noise ratio (SNR) that is beyond the scope of this
paper.

2. Methods

Compared with the traditional simple single neuronalmodel,
a voltage source, a current source, and an inductor are
innovatively proposed in the biophysical model presented
in this paper, which is shown in Figure 1. The difference in
concentration between inner and external ions of neurons
creates the electric voltage source that drives the ions. The
current source is created by, on one hand, the chemical
gradient of ions and, on the other hand, the stimuli from
neighboring neurons. Moreover, in the ion channels, the flow
of charged particles, such as sodium ions, potassium ions,
and calcium ions, forms a loop current which is equivalent
to an inductor 𝐿

𝑚
, producing self-induction. 𝐶

𝑚
is used

to denote the membrane capacitance. 𝐼
𝑚
denotes the total

electrical current formed by the inputs of all the neighboring
neurons to theMth neuron.𝑈 denotes the voltage source. 𝑟

𝑚

and 𝑟
0𝑚

denote the resistance of the current source 𝐼
𝑚
and

voltage source𝑈, respectively, showing the wastage produced
by the actual sources. Due to the actions of the electric voltage
source and the electric current source at different points in the
neuron, the membrane resistance is divided into three parts
𝑟
1𝑚
, 𝑟
2𝑚
, and 𝑟

3𝑚
.

As indicated in Figure 1, the power 𝑃
𝑚
of theMth neuron

produced by the voltage source𝑈
𝑚
and the current source 𝐼

𝑚

is obtained using the formula

𝑃
𝑚
= 𝑈
𝑚
𝐼
0𝑚

+ 𝑈
𝑖𝑚
𝐼
𝑚
, (1)

where

𝑈
𝑚
= 𝑟
0𝑚
𝐼
0𝑚

+ 𝑟
1𝑚
𝐼
1𝑚

+ 𝐿
𝑚

̇𝐼
1𝑚
,

𝐼
0𝑚

= 𝐼
1𝑚

− 𝐼
𝑚
+
𝑈
𝑖𝑚

𝑟
𝑚

+ 𝐶
𝑚

̇𝐼
1𝑚
,

𝑈
𝑖𝑚
= 𝐶
𝑚
𝑟
3𝑚
�̇�
0𝑚

+ 𝑈
0𝑚
,

(2)

𝐿
𝑚

̇𝐼
1𝑚

+ 𝑟
1𝑚
𝐼
𝑚
= 𝐾
1𝑚
�̇�
0𝑚

+ 𝐾
2𝑚
𝑈
0𝑚

− 𝑟
2𝑚
𝐼
𝑚
. (3)

The current source is calculated from the formula

𝐼
𝑚
= 𝑖
1𝑚

+

𝑛

∑

𝑗=1

[𝑖
0𝑚

(𝑗 − 1) sin𝜔
𝑚
(𝑗 − 1) (𝑡

𝑗
− 𝑡
𝑗−1

)]

+ 𝑖
0𝑚

(𝑛) sin𝜔
𝑚
(𝑛) (𝑡 − 𝑡

𝑛
)

𝑡
𝑛
< 𝑡 < 𝑡

𝑛+1
, 𝑛 = 1, 2, . . . , 𝑡

0
= 0,

(4)

where 𝑖
1𝑚

is the current used tomaintain resting potential, 𝑖
0𝑚

denotes the electric current being produced after the single
neuron receives stimuli from all other neighboring neurons
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Figure 1: Physical model of theMth neuron with coupling to other
neurons.

connected at the subthreshold level, and 𝜔
𝑚

denotes the
spiking frequency of the action potential, where

𝐾
1𝑚

= 𝐶
𝑚
(𝑟
2𝑚

+ 𝑟
3𝑚

+
𝑟
2𝑚
𝑟
3𝑚

𝑟
𝑚

) , 𝐾
2𝑚

= 1 +
𝑟
2𝑚

𝑟
𝑚

.

(5)

The solution of (3) is as follows:

𝐼
1𝑚

= 𝑒
−𝑎𝑡

(𝐾 +
1

𝐿
𝑚

(𝐾
1𝑚
𝑈
0𝑚
𝑒
𝑎𝑡

+ (𝐾
2𝑚

− 𝑎𝐾
1𝑚
)

×∫

𝑡

𝑡0
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∫

𝑡
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(6)

where

𝑎 =
𝑟
1𝑚

𝐿
𝑚

, 𝐾 = 𝐼
1𝑚

(𝑡
0
) −
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(𝑡
0
) . (7)

When (6) satisfies the following conditions:

𝐾
2𝑚

− 𝑎𝐾
1𝑚

= 0,

𝐿
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=
𝐾
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(8)

we can obtain the following equation:

𝐼
1𝑚

= 𝑒
−𝑎𝑡

(𝐾 +
𝑟
𝑚
𝑟
2𝑚
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𝑑𝑡) . (9)

Inserting (9) and (2) into (1), the power of consumption
𝑃
𝑚
ofmth neuron is obtained in the following:

𝑃
𝑚
= 𝑑
1𝑚
�̇�
2

0𝑚
+ 𝑑
2𝑚
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(10)

where 𝑑
1𝑚
, 𝑑
2𝑚
, 𝑑
3𝑚
, 𝑑
4𝑚
, 𝑑
5𝑚
, and 𝑑

6𝑚
can be obtained from

[20, 21].
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Figure 2: Action potential and its corresponding energy function. 𝑟
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Figure 3: EPSP and its corresponding energy function. 𝑟
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Figure 4: IPSP and its corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
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= 0.1Ω, 𝑟
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According to the above equations, we can obtain the
solution of the action potential 𝑈

𝑜𝑚
:

𝑈
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= −
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1
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2
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𝑚
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𝑛
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𝑛
) +

𝑔
1

𝜆2
𝑚

+
𝑔
2

𝜆2
𝑚
− 𝑎2

+
𝑔
4

𝜆2
𝑚
+ 𝜔2
𝑚
(𝑛)

)) 𝑒
−𝜆𝑚(𝑡−𝑡𝑛).

(11)

To clarify our point of view, we present in a straightfor-
ward manner the action potential and its neuronal energy
function represented by the corresponding power obtained
by our proposed method, as shown in Figure 2.

As indicated in Figure 2, the peak voltage of the action
potential is around 25mV and the peak power of the
energy function is around 12 nW. The energy waveforms of
an excitatory postsynaptic potential (EPSP) and inhibitory
postsynaptic potential (IPSP) are shown in Figures 3 and 4,
respectively.

In the cerebral cortex, the excitatory neurons comprise
85%of the neurons, and the remaining neurons are inhibitory
[22]. At the subthreshold state, the sum of the power of the
EPSP and IPSP of a single neuron is negative (PP = 0.0367
+ (−0.0532) = −0.0165 nW). From the overall observation,
the total consumed energy is positive (PP = 0.0367 × 85%
−0.0532 × 15% = 0.0232 nW). As seen from the results, the
neural system consumes the energy supplied fromblood flow,
even if the neurons act at a subthreshold state; also as seen
from the calculated results, neurons consumemore energy at
suprathreshold activities than at subthreshold activities. It is
reported that a massive number of neurons in subthreshold
activities consume only 20% of the total energy, whereas
a small amount of neurons consume more than 80% due
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Figure 7: The action potential and its corresponding energy function. 𝑟
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= 0.0001Ω, 𝑟
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to action potential firing [22]. Our results conform to this
conclusion.

A single neuron acts under the condition of a neural
network. In other words, the interaction among the neu-
rons makes their functional effectiveness emerge. It is in
this sense that neuronal activity is performing the process
of metabolism in the thermal noisy physiologic environ-
ment. To obtain the size of thermal noise intensity of
the neuronal activity in the actual environment and to
further obtain the noise circumstance under the condition
of networks in the brain, we need to first understand the
neuronal membrane potential and its corresponding energy
function under the condition of no noise interference [19].
Only by obtaining the neuronal energy under an ideal
condition can the physiologic influence of thermal noise
on the membrane potential and its neuronal energy be
better understood. Once that is obtained, it is possible to
comprehend the noisy environment in a neural system and
evaluate the behaviors of the network in such an environ-
ment.

3. Results

3.1. The Suprathreshold Membrane Potential and Its Neuronal
Energy. Because the signal intensities of AP, EPSP, and IPSP
are 7.07 × 10−5 𝜇A, 7.155 × 10−6 𝜇A, and 7 × 10−7 𝜇A, so if we
superpose thermal noise on the current 𝑖

0𝑚
, when the thermal

noise intensity 𝑄 is more than 10
−4

𝜇A, the influence of
thermal noise onmembrane potential and its energy function
is far greater than that of the current 𝑖

0𝑚
, and when the

thermal noise intensity𝑄 is less than 10−7 𝜇A, the influence of
thermal noise onmembrane potential and its energy function
is far weaker than that of 𝑖

0𝑚
. Therefore, the values of thermal

noise intensity should be set as 10−4 𝜇A, 10−5 𝜇A, 10−6 𝜇A,
and 10−7 𝜇A, respectively.

After adding thermal noise, the current takes the form

𝐼
𝑚
= 𝑖
1𝑚

+

𝑛

∑

𝑗=1

[(𝑖
0𝑚

(𝑗 − 1) + 𝑄) sin𝜔
𝑚
(𝑗 − 1) (𝑡

𝑗
− 𝑡
𝑗−1

)]

+ [𝑖
0𝑚

(𝑛) + 𝑄] sin𝜔
𝑚
(𝑛) (𝑡 − 𝑡

𝑛
) ,

(12)
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0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚
= 1000Ω,

𝐶
𝑚
= 1 𝜇F, 𝐿

𝑚
= 50 𝜇H, 𝑖

0𝑚
= 70.7 𝜇A, and 𝑄 = 6 × 10

−6

𝜇A.

0
20
40

(m
V

)

Membrane potential (AV)

0 0.5 1 1.5 2 2.5 3
×10

5

Time (10−8 s)

−20

−40

−60

−80

(a)

Membrane potential (AV)

0
5

10
15

(n
W

)

0 0.5 1 1.5 2 2.5 3
×10

5

Time (10−8 s)

−5

(b)

Figure 9: The action potential and its energy function. 𝑟
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Figure 10: The action potential and its corresponding function. 𝑟
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where 𝑄 denotes the synaptic noise as Gaussian white noise
with the unit 𝜇A.

The action potential together with its corresponding
power plotted by the energy function calculated under the
condition of different noise intensity is shown as follows.

In all of Figures 5, 6, 7, 8, 9, and 10, the dotted line
represents the case of no noise and the solid line represents
the case of noise.

When the noise intensity 𝑄 reaches 10−4 𝜇A, the peak of
the neuronal membrane potential is around 140mV and far
higher than 25mV of the situation without noise, while the
peak of the energy function is around 40 nW and far higher
than the original 12 nW. Additionally, on the horizontal
axis, between 2.5ms and 3ms, the amplitude of the energy
waveform is much larger than the one in the situation
without noise.Therefore, it fundamentally changes the action
potential and its corresponding energy function under the
ideal conditions when 𝑄 reaches 10−4 𝜇A.

When the noise intensity𝑄 reaches 10−5 𝜇A, the influence
of noise on the action potential deceases, but it is still
significant. Here, the membrane potential is around 40mV,

whereas the peak of the energy function is around 15 nW. As
can be seen, such noise intensity still has a great influence
on the membrane potential and its corresponding energy
waveform.

When the noise intensity 𝑄 reaches 10−6 𝜇A, there is
hardly any influence on the action potential and its energy
function. It is in such a noisy environment that the peaks of
the membrane potential and energy waveform are exactly the
samewith those under the ideal conditionswhere the peaks of
action potential and the energy function are 25mVand 12 nW,
respectively. In the presence of noise, the waveforms of the
membrane potential and the energy function are nearly the
same as without noise.

To summarize, we cannot estimate an accurate value of
noise intensity for both the suprathresholdmembrane poten-
tial and the corresponding neuronal energy. In estimating the
range of the critical values of noise intensity, we found that
when the noise intensity 𝑄 reaches about 6 × 10

−6

𝜇A (error
± 0.5 × 10

−6

𝜇A), the noise has great influence on the action
potential and its corresponding energy function.
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Figure 11: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚

= 1000Ω,
𝐶
𝑚
= 1 𝜇F, 𝐿

𝑚
= 50 𝜇H, 𝑖

0𝑚
= 7.155 𝜇A, and 𝑄 = 1 × 10

−4

𝜇A.
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Figure 12: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚
= 1000Ω,

𝐶
𝑚
= 1 𝜇F, 𝐿

𝑚
= 50 𝜇H, 𝑖

0𝑚
= 7.155 𝜇A, and 𝑄 = 1 × 10
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𝜇A.
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Figure 13: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚
= 1000Ω,

𝐶
𝑚
= 1 𝜇F, 𝐿

𝑚
= 50 𝜇H, 𝑖

0𝑚
= 7.155 𝜇A, and 𝑄 = 1 × 10

−6

𝜇A.
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Figure 14: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚
= 1000Ω,

𝐶
𝑚
= 1 𝜇F, 𝐿

𝑚
= 50 𝜇H, 𝑖

0𝑚
= 7.155 𝜇A, and 𝑄 = 2 × 10

−6

𝜇A.

As shown in Figures 8–10, when the noise intensity 𝑄 is
6×10
−6

𝜇A, the fluctuation of themembrane potential and the
energy function turns out to be very large. The peak of the
action potential fluctuates between 10mV and 40mV, while
that of the energy function fluctuates from 10 nW to 15 nW.
Such noise intensity has great influence on the membrane
potential and the energy function, and as a result, the critical
value of the noise intensity 𝑄 can be assessed at 6 × 10

−6

𝜇A
(error ± 0.5 × 10

−6

𝜇A).

3.2. Subthreshold Membrane Potential and Its Neuronal
Energy. According to the calculated results of Wang et al.
[21], we obtained the EPSP and the corresponding energy
waveform as well as the IPSP and the corresponding energy
waveform by adding noise (Figures 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, and 25).

When the level of noise intensity𝑄 reached 1×10−4 𝜇A, it
had a great effect on the EPSP and the corresponding energy
waveform.Without the effect of noise, we found that the EPSP
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Figure 15: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
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Figure 16: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
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Figure 17: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚
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𝑚
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Figure 18: The EPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚
= 1000Ω,

𝐶
𝑚
= 1 𝜇F, 𝐿

𝑚
= 50 𝜇H, 𝑖

0𝑚
= 7.155 𝜇A, and 𝑄 = 1 × 10

−7

𝜇A.

curve increased first and then decreases with a maximum of
−68mV and a minimum of −70mV. The energy function fell
first and then rose towards stability, fluctuating in the range
of −0.1 to 0.1 nW. After adding noise, we found that the EPSP
curve fell first and then rose towards a minimum of −95mV,
while the energy function increased first and then decreased
towards stability, fluctuating in the range of −10 to −80 nW.

When the level of noise intensity 𝑄 reached 1 × 10−5 𝜇A,
it also had a great effect on the EPSP and the corresponding
energywaveform.Under an ideal conditionwithout noise, we
know that the maximum of the EPSP is about −68mV and
the peak of the energy function is about 0.1 nW. After adding
noise, the peak of the EPSPhardly changed, but the oscillatory
curve changed sharply in the period from 2.5ms to 3ms.
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Figure 19:The IPSP and the corresponding energy function. 𝑟
0𝑚
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Figure 20: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
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Figure 21:The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
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= 1000Ω, 𝑟
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Figure 22: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
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= 0.1Ω, 𝑟
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= 1000Ω,
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𝜇A.

The oscillatory amplitude of the energy function with noise
was more intense than that without noise, varying between
1.5ms and 2.5ms.

When the noise intensity 𝑄 reached 1 × 10
−6

𝜇A, it
had little effect on the EPSP and the corresponding energy
waveform.This figure showing the EPSP and energy function
with noise is almost the same with one without noise. We
could not estimate the range of the noise intensity, which

affects the EPSP’s corresponding energy function according
to the results shown in Figures 11–13. As a solution, we
addressed the problem by adjusting the coefficient of the
noise level.

When the level of noise intensity 𝑄 reached 2 × 10−6 𝜇A,
it did not have an obvious effect on the EPSP and the
corresponding energy waveform.This figure shows the EPSP
and energy function with noise is almost the same as one
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Figure 23: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
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Figure 24: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
3𝑚

= 0.1Ω, 𝑟
𝑚

= 1000Ω,
𝐶
𝑚
= 1 𝜇F, 𝐿
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= 50 𝜇H, 𝑖

0𝑚
= −0.7 𝜇A, and 𝑄 = 3 × 10

−7

𝜇A.

without noise. But the energy function with noise is slightly
different from that without noise ranging between 1.5ms and
2.5ms.

When the noise intensity 𝑄 reached 3 × 10
−6

𝜇A, it had
a great effect on the EPSP and the corresponding energy
waveform. Taking the noise into account, we found that the
EPSP fluctuated in a small interval from −67mV to −69mV,
while in the period from 1.5ms to 2.5ms, the energy function
with noise had greater fluctuations than that without noise.

When the level of noise 𝑄 reached 1 × 10
−7

𝜇A, it had
a little effect on the EPSP and the corresponding energy
waveform. The figures of the EPSP and energy function with
noise are almost the same as those without noise.

In summary, when the noise intensity 𝑄 was about 3 ×
10
−6

𝜇A (error ± 0.5 × 10
−6

𝜇A), the noise begins to have a
significant influence on EPSP and its corresponding energy
waveform. As a result, the critical value of the noise was
assessed at 3 × 10−6 𝜇A (error ± 0.5 × 10

−6

𝜇A).
When the noise intensity 𝑄 reached 1 × 10

−4

𝜇A, it had
a great effect on the IPSP and the corresponding energy
waveform.Without the effect of noise, we found that the IPSP
curve fell first and then rose and the energy function curve
was almost in the stable state of −0.04 nW. However, after
adding noise, we found that the IPSP curve rose first and then
fell, while most of the energy function curve was above 0 and
there were huge fluctuations of the energy function between
1.5ms and 2.5ms.

When the noise intensity 𝑄 reached 1 × 10
−5

𝜇A, it had
a critical effect on the IPSP and the corresponding energy
waveform. Without the effect of noise, we observed that the
IPSP curve fell initially and then rose and the energy function
curve was almost in a stable state of −0.04 nW. However, after

adding noise, the IPSP curve rose first and then fell and there
were huge fluctuations of the energy function between 2.5ms
and 3ms.

When the noise intensity𝑄 reached 1 × 10
−6

𝜇A, it had
a relatively great effect on the IPSP and the corresponding
energy waveform.Without the effect of noise, the IPSP curve
fell initially and then rose, while the energy function curve
was almost in a stable state of −0.04 nW. After adding noise,
the IPSP curve rose first and then fell and therewere also huge
fluctuations of the energy function from 2.5ms to 3ms.

When the noise intensity𝑄 reached 1 × 10
−7

𝜇A, it had
a little effect on the IPSP and the corresponding energy
waveform. The figures of the IPSP and energy function with
noise are almost the same as those without noise.

We still could not estimate the range of the noise that
affects the energy function of the IPSP according to the results
shown in Figures 19–22. So as a solution, we addressed it by
adjusting the coefficient of the level of noise intensity.

When the noise intensity𝑄 reached 2 × 10
−7

𝜇A, it had
a little effect on the IPSP and the corresponding energy
waveform. The figures of the IPSP and energy function with
noise are almost the same as those without noise.

When the level of noise intensity𝑄 reached 3 × 10
−7

𝜇A,
it had a little effect on the IPSP and the corresponding energy
waveform. The figures of the IPSP and energy function with
noise are almost the same as those without noise.

When the level of noise intensity𝑄 reached about 4 ×

10
−7

𝜇A (error ± 0.5 × 10
−7

𝜇A), the noise began to sig-
nificantly influence the IPSP and its corresponding energy
waveform.Without the effect of noise, the IPSP curve initially
fell and then rose; however, with the effect of noise, the IPSP
curve did not monotonically decrease in the time interval
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Figure 25: The IPSP and the corresponding energy function. 𝑟
0𝑚

= 0.0001Ω, 𝑟
1𝑚

= 0.1Ω, 𝑟
2𝑚

= 1000Ω, 𝑟
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= 1000Ω,
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0𝑚
= −0.7 𝜇A, and 𝑄 = 4 × 10

−7

𝜇A.

from 0ms to 1.5ms, while the energy function began to
appear to fluctuate within the interval from 2.5ms to 3ms.

In summary, when the level of noise intensity 𝑄 reached
about 4 × 10−7 𝜇A (error ± 0.5 × 10

−7

𝜇A), the noise began to
have significant influence on the IPSP and its corresponding
energy waveform. As a consequence, its critical value was
assessed at 4 × 10−7𝜇A (error ± 0.5 × 10

−7

𝜇A).

4. Discussion

In this study, we obtained the action potential, EPSP, IPSP,
and their corresponding energy waveforms with thermal
noise added to the current. By changing the thermal noise
intensity, we found the estimated range of the critical value
of thermal noise that can significantly influence the neuronal
membrane potential and the corresponding energy wave-
form. When the thermal noise intensity𝑄 reached about 6 ×
10
−6

𝜇A (error ± 0.5 × 10
−6

𝜇A), it had a great influence on
the action potential and its corresponding energy waveform.
When the thermal noise intensity𝑄 reached about 3×10−6 𝜇𝐴
(error ± 0.5 × 10

−6

𝜇A), it had a great influence on the
EPSP and its corresponding energy waveform. When the
thermal noise intensity𝑄 reached about 4 × 10

−7

𝜇A (error
± 0.5 × 10

−7

𝜇A), it had a great influence on the IPSP and its
corresponding energy waveform. Based on these results, we
conclude that noise has less effect on the action potential and
its energy waveform than on the EPSP, IPSP, and their energy
waveforms, and the thermal noise has less effect on the EPSP
and its energy waveform than the IPSP and its waveform. By
numerical calculation, we have also obtained the estimated
range of the critical value of the noise that has a great effect
on the action potential, EPSP, IPSP, and their corresponding
energy waveforms. As a result, when we again establish a
neural dynamic model in the future, such an estimation of
noise intensity will enable us to avoid being subjective in
considering the influence of noise on neural firing, so that
the calculated results and experimental data will be more
consistent. Therefore, the estimation of the thermal noise
intensity provides a scientific basis for research on neural
information coding in a noisy environment.

The physical model which we used in this paper was
proposed by Wang et al. [20, 21] from the viewpoint of
energy. Compared with other models, the biggest advantage
of this model is that it simplifies the calculation of activity
of neuronal firing. Due to the energy coding model’s ability

to describe mechanisms of brain information processing in
biophysical terms, this idea and method can be applied to
future research of information encoding in neural ensembles
as well as cognitive functioning.
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