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Abstract. 
In the setting of a distributional product, we consider a Riemann problem for the Hunter-Saxton equation  in a convenient space of discontinuous functions. With the help of a consistent extension of the classical solution concept, two classes of discontinuous solutions are obtained: one class of conservative solutions and another of dispersive solutions. A necessary and sufficient condition for the propagation of a distributional profile as a travelling wave is also presented, which allows identifying an interesting set of explicit distributional travelling waves. In the paper, we will show some results we have obtained by applying this framework to other equations and systems.



1. Introduction and Contents
In the present paper, we investigate the Hunter-Saxton equation
						
					where  is the space variable,  is the time variable, and  is the unknown variable. We subject  to the initial condition
						
					where , , and  stands for the Heaviside function.
This equation models the propagation of the director field
						
					in a one-dimensional nematic liquid crystal in which each molecule (long and rigid) has an orientation given by the unit vector .
Liquid crystals are a state of matter intermediate between the crystalline solid state and the liquid state (the water is not an example, since it goes directly from solid state to liquid state). One of the most common phases in which a liquid crystal exists is the so-called nematic phase, in which the liquid crystal is invariant under the transformation  (in (3) only the direction of  is important).
Usually, for a complete description of a liquid crystal, two independent vector fields are needed: one for the fluid flow and another for the orientation of the molecules [1]. In (1), introduced by Hunter and Saxton [2], the orientation of the fluid particles given by (3) is considered independently of any coupling with the fluid flow.
Equation (1) has attracted a lot of attention [3–8] and has many interesting properties. It is completely integrable, has many infinite conserved quantities, and has a Lax pair; it is also bivariational and has a bihamiltonian structure [5]. If the initial condition  is smooth and not monotone increasing, the classical solutions  break down in finite time. Thus, weaker concepts of solution are needed.
Useful and different concepts of weak global solutions were defined by Hunter and Saxton [2], Hunter and Zheng [6], and Bressan and Constantin [3], with the goal of studying certain Cauchy problems. However, we cannot apply those definitions to the study of the Riemann problem (1), (2). We will adopt a global solution concept, which is a consistent extension of the classic global solution concept and it is defined within the framework of a theory of distributional products. In the setting of this theory, the product of two distributions is a distribution, which depends on the choice of a certain function  that encodes the indeterminacy inherent to such products. We stress that not only this indeterminacy is in general unavoidable, but also in many situations it has a physical meaning. Concerning this point let us mention [9–12]. Naturally, such an indeterminacy may appear or not in the solutions of our problems (the solutions may depend or not on ). We call such solutions -solutions. The possibility of their occurrence depends on the physical system: in certain cases we cannot previously know the behavior of the system, possibly due to physical features omitted in the formulation of the model with the goal of simplifying it. Thus, the mathematical indetermination sometimes observed may have this origin. Within our framework we recall some results we have obtained.
For the conservation law
						
					where ,  are entire functions taking real values on the real axis, we have established [13] necessary and sufficient conditions for the propagation of a travelling wave with a given distributional profile and we have also computed its speed. For example, for LeVeque and Yee equation
						
					where , we have proved that there exist six travelling waves with the profile  (,  are constants), all of them with speed 1. When  and  in (4), we were able to conclude that the only continuous travelling waves are constant states. Thus, if we ask for nonconstant travelling waves for the conservative equation , with , we have to seek them among distributions that are not continuous functions; for wave profiles that are -functions with one jump discontinuity our methods easily lead to the well-known Rankine-Hugoniot conditions.
Conditions for the propagation of travelling shock-waves with profiles  and  (where  is a continuous function, , ,  stands for the Dirac measure, and  is the usual derivative operator in distributional sense) were also obtained as well as their speeds [14]. For example, for the diffusionless Burgers-Fischer equation
						
					where , , and , the profile  (where ) can arise as a travelling wave, if and only if  or  with wave speed  in both cases. For Burgers conservative equation, , the profile  can emerge as a travelling wave, if and only if  is a constant function and the wave speed is .
In the setting of soliton wave collision, we were able to prove that delta waves under collision behave just as classical soliton collisions (as in the Korteweg-de Vries equation) in models ruled by a singular perturbation of Burgers conservative equation [15].
Phenomena of gas dynamics known as “infinitely narrow soliton solutions,” discovered by Maslov and his collaborators [16–20], can be obtained directly in distributional form [21].
In a Riemann problem for the  system of conservation laws
						
					arising from the so-called generalized pressureless gas dynamics, we were able to show the formation of a delta-shock wave solution only assuming  continuous [22]. In this case, we arrived, in a more general setting, to the same result of Danilov and Mitrovic [23], who have employed the weak asymptotic method, and also to the same result of Mitrovic et al. [24], who have used a different approach, based on a linearization process.
Also in the Brio system
						
					a simplified model for the study of plasmas, we have subjected  and  to the initial conditions
						
					with . Under certain assumptions, we have obtained, as solutions, travelling delta-waves with speed  and certain singular perturbations (which are not measures) propagating with speed  [25].
In the present paper and within a convenient space of discontinuous functions, we prove that all solutions of the Riemann problem (1), (2) are of the form
						
					or of the form
						
					where  is an arbitrary -function with ,  is an arbitrary real number such that ,  is given by
						
					and  is given by
						
					Thus, we obtain two classes of discontinuous solutions; we will show that the solutions of form (10) are conservative and the solutions of form (11) are dispersive. As a particular case of (10), taking , we obtain the conservative travelling wave solution
						
					with the initial profile (2) propagating with speed . This suggests the study of the propagation of travelling waves with a given distributional profile and the evaluation of the speed of each profile. As a consequence, we will see, for instance, the arising of the travelling wave
						
					with , which corresponds to the propagation, with speed , of the profile , sometimes called rectangular pulse. We will also see that, for instance, the profile , with , propagates with speed  and the profile  propagates with speed . These examples are a consequence of the identification of an interesting class of explicit distributional travelling waves.
Let us summarize the contents of this paper. In Section 2, we present a survey of our distributional products, displaying all formulas that will be applied in the sequel. We proceed in order to keep computations self-contained. A general view of our distributional products can be seen in [12, Sections 2 and 3]. The details are given in [26] or in some papers that we will mention later. In Section 3, we define the concept of -solution for (1); we stress that this concept does not depend on approximation processes, but may depend on the -function, which codifies the indeterminacy inherent to the product of certain distributions. In Section 4, we solve the Riemann problem (1), (2) in a convenient space of solutions. The necessary and sufficient condition for the propagation of a distributional profile is afforded in Section 5, where some examples are given and physically interpreted.
2. Products of Distributions
Let  be the space of indefinitely differentiable complex-valued functions defined on , with compact support, and let  be the space of Schwartz distributions. In our theory, each function  with  affords a general -product  of .
Each -product is bilinear, and it is transformed as usual by translations; that is,
						
					where  means the usual translation operator in distributional sense. In general, associativity and commutativity do not hold.
Remark 1. Recall that, in the setting of the so-called classical products of distributions, the commutative property is a convention inherent to the definition of such products and the associative property does not hold in general: for instance,  (see the classical monograph of Schwartz [27, pp. 117, 118, 121], where these products are defined).
The general -product is not consistent with the classical Schwartz products of distributions, but we can single out certain subspaces and define certain modified -products in order to recover that consistency. This happens with the -products (18) and (24) below, which will be denoted by the unique symbol , because they are mutually compatible (see [12, Sections 2 and 3] for details); these -products are consistent with the referred Schwartz products of -distributions with -functions, if the -functions are placed on the right-hand side.
All -products satisfy the usual rules for derivatives, provided the Leibniz formula is written in the form
						
					The first -product can be evaluated by the formula
						
					for  and , where ,  is the space of distributions of order  in the sense of Schwartz ( means ),  is the space of distributions whose support has Lebesgue measure zero,  is the usual Schwartz product of a -distribution with a -function, and  is the usual product of a -function with a distribution. For instance, if  is a continuous function, we have, for each ,
						
					The second -product is computed by the formula
						
					for  and , where  stands for the space of distributions  such that , and  is such that . Thus, locally,  can be read as a function of bounded variation and  as an absolutely continuous function. In [12, p. 645], we have proved that  given by (24) is independent of the choice of the function  such that . For instance, since  and , we have
						
					taking  defined by  for  and  for . More generally, if  and , then  (see [28, p. 1002] for a proof). We want to stress that in (18) or (24) the convolution  is not to be understood as an approximation of . Those formulas are to be considered as exact ones.
In general, the support of the -products cannot be completely localized: indeed, , as for usual functions, but it may happen that : for instance, if , we have, by (18),
						
It is still possible to define many other -products consistent with the classical products (see, e.g., [28]) but in the sequel they are not needed.
3. The Concept of -Solution
Let  be an interval of  with more than one point and let  be the space of continuously differentiable maps  in the sense of the usual topology of . For  the notation  is sometimes used to emphasize that the distribution  acts on functions  which depend on .
Let  be the space of functions  such that(a)for each , ;(b), defined by , is in .
The natural injection  of  into  identifies any function of  with a certain map in . Since , we can write the inclusions
						
					Thus, identifying  with , (1) can be read as follows:
						
Definition 2. Given , the function  will be called an -solution for (28) on , if the -products that appear in this equation are well defined and this equation is satisfied for all .
We have the following results.
Theorem 3.  If  is a classical solution of (1) on , then, for any , the function  defined by  is an -solution of (28) on .
Notice that, by a classical solution of (1) on , we mean a -function  that satisfies (1) on .
Theorem 4.  If  is a -function and, for a certain , the function  defined by  is an -solution of (28) on , then  is a classical solution of (1) on .
For the proof it is enough to observe that any -function  can be read as a continuously differentiable function  defined by  and to use the consistency of the -products with the classical Schwartz products of distributions with functions.
Definition 5. Given , one calls -solution for (1) on , to any -solution  of (28) on .
As a consequence, an -solution  in this sense, read as an usual distribution , affords a consistent extension of the concept of a classical solution for (1). Thus, and for short, we also call the distribution  an -solution of (1).
4. The Riemann Problem (1), (2)
Let us consider the problem (1), (2) with  and . When we read this problem in  having in mind the identification , we must substitute (1) by (28) and condition (2) by the following one:
						
					We will give, explicitly, all -solutions for the Cauchy problem (28), (29) which belong to the set  of the maps  of the form
						
					where  are -functions.
Theorem 6.  Given , one has the following: (I)if , all -solutions  of the problem (28), (29) are given by
										
									where  is an arbitrary -function with  and  is defined by
										(II)if , the problem (28), (29) has -solutions in  if and only if  and, in this case, all -solutions  are given by
										
									where  is an arbitrary -function with  and  is defined by
										
Proof. Suppose . Then from (30) and (29) we have necessarily
							
						and taking the derivative we obtain
							
						Since , we have , , and so .
From (30) we have
							
						and, by (25),
							
						By applying (20),
							
						and (28) turns out to be
							
						This equality takes place if and only if the following two equalities are satisfied:
							
						Now suppose . Then from (41) we have  and (31) follows from (30). Thus, from (31) and (29), we conclude that . Also from (42) we have
							
						and (32) follows.
Suppose . Then doing , we have, from (41),
							
						This Cauchy problem has a -solution on  if and only if . Clearly, such a solution is unique on  and is given by
							
						Since  for all , from (42) and (45), we have
							
						and (34) follows. Also (33) follows from (30) and (45). Finally  is a consequence of (29) and (33).
As a consequence we can conclude that the -solutions of the problem (1), (2) of the form
						
					can be described as we have done in the Introduction (see (10), (11), (12), and (13)). Thus, just as the usual weak global solutions for the Cauchy problem, the -solutions of (1), (2) are not unique as well. However, the -solutions can arise as physically meaningful since the kinetic energy
						
					is finite for each : for (31) we have, since 
					and for (33) we have, since ,
						
					Hence, the -solutions (31) are conservative since the kinetic energy is conserved (does not depend on ) and the -solutions (33) are dispersive since  as .
Taking  in (31) we obtain the travelling wave
						
					with . This -solution is the unique discontinuous travelling wave solution of (1) belonging to . In the next section we will present an interesting class of distributional travelling waves for the Hunter-Saxton equation.
5. Travelling Waves
We introduce the following definition for the sake of simplicity.
Definition 7. Let  be a -function. The profile  is said to -propagate (according to (1)) with the movement  if  defined by  is an -solution of (28). Naturally one calls  an -travelling wave.
Theorem 8.  Given , let  be a -function and let  be a profile in . Then , -propagates with the movement  if and only if the following three conditions are satisfied: (I) and  are well defined -products;(II)the speed  is a constant function for all ;(III). 								
Proof. Let us suppose that , -propagates with the movement . Then, by Definition 7,  is an -solution of (28), which means that
							
						for all , which is equivalent to
							
						Then,
							
						and applying the operator  we conclude that
							
						Since the right-hand side of this equality is independent of  we conclude that  is a constant function and the statement is proved.
Supposing , and using the consistency of the -products with the Schwartz products of distributions, (III) turns out to be
						
					and we can write
						
					which is the ordinary differential equation we obtain when, for the Hunter-Saxton equation, we seek travelling waves solutions  with . Thus, Definition 7 is a consistent extension of the travelling wave classical concept.
An interesting class of -travelling waves arises from the following result.
Corollary 9.  Let  be such that  and suppose that, for a certain , the following two conditions are satisfied: (a) for a certain ;(b). 
Then, if  and , the profile , -propagates with speed .
Proof. By applying Theorem 8 and the assumptions of this corollary, we have
							
						and (III) turns out to be
							
						which is equivalent to
							
						and, since ,  follows.
Example 10. Taking , we have , ,
							
						so that we can apply the above corollary with , . Thus, for instance, taking  and , we conclude that the profile
							-propagates with speed  for any  such that ; we recover the travelling wave (51) which has just this profile and this speed. The director field of the liquid crystal given by (3),
							
						can be physically interpreted in the following way: at the instant  the initial director field
							
						has a singularity at ; this singularity travels with speed  so that, at any instant ,
							
						Thus, before the singularity the molecules are all parallel to the direction  and after the singularity all molecules are parallel to the direction .
Example 11. Taking  with , we have . Since  and  we also have
							
						and applying (26) we can write
							
						Thus, we can apply the above corollary with , . Taking, for instance,  and , we conclude that the rectangular pulse , -propagates with speed  for all  such that . It is also easy to conclude that the profile , with , that is, the profile that takes the value  on  and vanishes out of , -propagates with speed  as well. This result can be easily generalized and the interpretations are analogous to that of Example 10.
Example 12. Taking , we have ,
							
						(see (22)), so that we can apply Corollary 9 with , , and . Thus, for instance, with  and , we conclude that the profile , -propagates with speed  for all  such that  and . This profile corresponds to the travelling wave  and the director field
							
						(about this equality, see Remark 13, below) can be interpreted in the following way: at the instant , the initial director field
							
						has a singularity at ; this singularity travels with speed  so that at any instant  the director field is given by
							
						Thus, the direction of the molecules, out of the singularity, is always the same but the singularity travels along the space with speed . Clearly this is physically different from the constant director field .
Remark 13. In the framework of our distributional products, if  is an entire function and , we can define the composition  by the formula
							
						whenever this series converges in . Here,  () is defined by the recurrence relation
							
						if the -products are well defined. These definitions are consistent with the usual meaning of  and  when  (see [14, p. 372]). Thus, if , as in Example 12, we have
							
						[14, th. 4.1]. Since , whenever  is well defined [14, p. 372], we have for the travelling wave , associated with the profile ,
							
						As a consequence, taking  or , equality (69) follows as a rigorous expression!
Remark 14. It is interesting to verify (see [14, th. 4.1]) that for all  the equality
							
						is satisfied for all . A generalized concept of angle is still possible in this setting!
The speeds that we have computed in these examples are independent of . However, there exist also profiles whose speeds can depend on .
Example 15. Taking , we have , , and . Thus, with , we have , and, with  and , we conclude that the profile , -propagates with speed . Since  can take any value, the profile , -propagates with an arbitrary speed for any  such that . As in Example 12 an analogous interpretation of this situation can be made. Notice also that since , for each  such that , we can see the profile  as a -soliton; its shape  depends on the speed 
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