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We investigate convolution properties and coefficients estimates for two classes of analytic functions involving the 𝑞-derivative
operator defined in the open unit disc. Some of our results improve previously known results.

1. Introduction

Simply, ℎ-calculus or 𝑞-calculus is ordinary classical calculus
without the notion of limits. Here ℎ ostensibly stands for
Planck’s constant, while 𝑞 stands for quantum. Recently,
the area of 𝑞-calculus has attracted the serious attention of
researchers. This great interest is due to its application in
various branches ofmathematics and physics.The application
of 𝑞-calculus was initiated by Jackson [1, 2]. He was the first to
develop 𝑞-integral and 𝑞-derivative in a systematic way. Later,
geometrical interpretation of 𝑞-analysis has been recognized
through studies on quantum groups. It also suggests a
relation between integrable systems and 𝑞-analysis. Aral and
Gupta [3–5] defined and studied the 𝑞-analogue of Baskakov
Durrmeyer operator which is based on 𝑞-analogue of beta
function. Another important 𝑞-generalization of complex
operators is 𝑞-Picard and 𝑞-Gauss-Weierstrass singular inte-
gral operators discussed in [6–8]. Mohammed and Darus [9]
studied approximation and geometric properties of these 𝑞-
operators in some subclasses of analytic functions in compact
disk. These 𝑞-operators are defined by using convolution of
normalized analytic functions and 𝑞-hypergeometric func-
tions, where several interesting results are obtained (see also
[10, 11]). A comprehensive study on applications of 𝑞-calculus
in operator theory may be found in [12].

LetA denote the class of functions of the form:

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑧
𝑘 (1)

which are analytic in the open unit diskU = {𝑧 ∈ C : |𝑧| < 1}.
Let S(𝛼) andK(𝛼) (0 ≤ 𝛼 < 1) denote the subclasses ofA
that consists, respectively, of starlike of order 𝛼 and convex
of order 𝛼 in U (see [13]). If 𝑓(𝑧) and 𝑔(𝑧) are analytic in U,
we say that 𝑓(𝑧) is subordinate to 𝑔(𝑧), written 𝑓(𝑧) ≺ 𝑔(𝑧)
if there exists a Schwarz function 𝜔, which (by definition) is
analytic inUwith𝜔(0) = 0 and |𝜔(𝑧)| < 1 for all 𝑧 ∈ U, such
that 𝑓(𝑧) = 𝑔(𝜔(𝑧)), 𝑧 ∈ U. Furthermore, if the function
𝑔 is univalent in U, then we have the following equivalence
(see [14–16]):

𝑓 (𝑧) ≺ 𝑔 (𝑧) ⇐⇒ 𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) . (2)

For functions 𝑓 given by (1) and 𝑔 given by

𝑔 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑏
𝑘
𝑧
𝑘 (3)
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the Hadamard product or convolution of 𝑓 and 𝑔 is defined
by

(𝑓 ∗ 𝑔) (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑏
𝑘
𝑧
𝑘

= (𝑔 ∗ 𝑓) (𝑧) . (4)

LetS[𝐴, 𝐵] andK[𝐴, 𝐵] denote the subclasses of the classA
for −1 ≤ 𝐵 < 𝐴 ≤ 1 which are defined by (see [17–22])

S [𝐴, 𝐵] = {𝑓 ∈ A :
𝑧𝑓
󸀠

(𝑧)

𝑓 (𝑧)
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
, 𝑧 ∈ U} ,

K [𝐴, 𝐵] =
{

{

{

𝑓 ∈ A :
(𝑧𝑓
󸀠

(𝑧))
󸀠

𝑓󸀠 (𝑧)
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
, 𝑧 ∈ U

}

}

}

.

(5)

We note that

S [1 − 2𝛼, −1] = S (𝛼) , K [1 − 2𝛼, −1] =K (𝛼)

(0 ≤ 𝛼 < 1) .

(6)

For function 𝑓 ∈ A given by (1) and 0 < 𝑞 < 1, the 𝑞-
derivative of a function 𝑓 is defined by (see [1])

𝐷
𝑞
𝑓 (𝑧) =

𝑓 (𝑞𝑧) − 𝑓 (𝑧)

(𝑞 − 1) 𝑧
(𝑧 ̸= 0) , (7)

and𝐷
𝑞
𝑓(0) = 𝑓

󸀠

(0). From (7), we deduce that

𝐷
𝑞
𝑓 (𝑧) = 1 +

∞

∑

𝑘=2

[𝑘]
𝑞
𝑎
𝑘
𝑧
𝑘−1

, 𝑧 ̸= 0, (8)

where

[𝑘]
𝑞
=
1 − 𝑞
𝑘

1 − 𝑞
. (9)

As 𝑞 → 1, [𝑘]
𝑞
→ 𝑘. For a function ℎ(𝑧) = 𝑧𝑘, we observe

that

𝐷
𝑞
ℎ (𝑧) = 𝐷

𝑞
(𝑧
𝑘

) =
1 − 𝑞
𝑘

1 − 𝑞
𝑧
𝑘−1

= [𝑘]
𝑞
𝑧
𝑘−1

,

lim
𝑞→1

𝐷
𝑞
ℎ (𝑧) = lim

𝑞→1

[𝑘]
𝑞
𝑧
𝑘−1

= 𝑘𝑧
𝑘−1

= ℎ
󸀠

(𝑧) ,

(10)

where ℎ󸀠 is the ordinary derivative.
Making use of the 𝑞-derivative 𝐷

𝑞
𝑓(𝑧), we introduce the

subclasses S
𝑞
[𝐴, 𝐵] and K

𝑞
[𝐴, 𝐵] of A for 0 < 𝑞 < 1 and

−1 ≤ 𝐵 < 𝐴 ≤ 1 as follows:

S
𝑞
[𝐴, 𝐵] = {𝑓 ∈ A :

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
, 𝑧 ∈ U} ,

K
𝑞
[𝐴, 𝐵]

= {𝑓 ∈ A :
𝐷
𝑞
(𝑧𝐷
𝑞
𝑓 (𝑧))

𝐷
𝑞
𝑓 (𝑧)

≺
1 + 𝐴𝑧

1 + 𝐵𝑧
, 𝑧 ∈ U} .

(11)

We note that

(i) S
𝑞
[1 − 2𝛼, −1] = S

𝑞
(𝛼) (0 ≤ 𝛼 < 1)

S
𝑞
(𝛼) = {𝑓 ∈ A : Re

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
> 𝛼, 𝑧 ∈ U} ; (12)

(ii) K
𝑞
[1 − 2𝛼, −1] =K

𝑞
(𝛼) (0 ≤ 𝛼 < 1)

K
𝑞
(𝛼) = {𝑓 ∈ A : Re

𝐷
𝑞
(𝑧𝐷
𝑞
𝑓 (𝑧))

𝐷
𝑞
𝑓 (𝑧)

> 𝛼, 𝑧 ∈ U} ; (13)

(iii) S
𝑞
[(1−2𝛼)𝛽, −𝛽] = S

𝑞
(𝛼, 𝛽) (0 ≤ 𝛼 < 1, 0 < 𝛽 ≤ 1)

S
𝑞
(𝛼, 𝛽)

= {𝑓 ∈ A :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑧𝐷
𝑞
𝑓 (𝑧) /𝑓 (𝑧)) − 1

(𝑧𝐷
𝑞
𝑓 (𝑧) /𝑓 (𝑧)) + 1 − 2𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛽, 𝑧 ∈ U} ,

(14)

(iv) K
𝑞
[(1 − 2𝛼)𝛽, −𝛽] = K

𝑞
(𝛼, 𝛽) (0 ≤ 𝛼 < 1, 0 < 𝛽 ≤

1)

K
𝑞
(𝛼, 𝛽)

= {𝑓 ∈ A :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐷
𝑞
(𝑧𝐷
𝑞
𝑓 (𝑧)) /𝐷

𝑞
𝑓 (𝑧)) − 1

(𝐷
𝑞
(𝑧𝐷
𝑞
𝑓 (𝑧)) /𝐷

𝑞
𝑓 (𝑧)) + 1 − 2𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛽,

𝑧 ∈ U} ,

(15)

(v)

lim
𝑞→1

S
𝑞
[𝐴, 𝐵] = {𝑓 ∈ A : lim

𝑞→1

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
}

= S [𝐴, 𝐵] ,

lim
𝑞→1

K
𝑞
[𝐴, 𝐵]

= {𝑓 ∈ A : lim
𝑞→1

𝐷
𝑞
(𝑧𝐷
𝑞
𝑓 (𝑧))

𝐷
𝑞
𝑓 (𝑧)

≺
1 + 𝐴𝑧

1 + 𝐵𝑧
}

=K [𝐴, 𝐵] .

(16)

From (11), we have

𝑓 ∈K
𝑞
[𝐴, 𝐵] ⇐⇒ 𝑧𝐷

𝑞
𝑓 ∈ S

𝑞
[𝐴, 𝐵] . (17)

In this paper, we investigate convolution properties, the
necessary and sufficient condition and coefficient estimates
for the classes S

𝑞
[𝐴, 𝐵] andK

𝑞
[𝐴, 𝐵] associated with the 𝑞-

derivative𝐷
𝑞
𝑓(𝑧). Themotivation of this paper is to improve

and generalize previously known results.
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2. Convolution Properties

Unless otherwise mentioned, we assume throughout this
section that 𝜃 ∈ [0, 2𝜋), 0 < 𝑞 < 1 and −1 ≤ 𝐵 < 𝐴 ≤ 1.

Theorem 1. The function 𝑓 defined by (1) is in the class
S
𝑞
[𝐴, 𝐵] if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 − 𝐿𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧)
] ̸= 0 (𝑧 ∈ U) (18)

for all 𝐿 = 𝐿
𝜃
= (e−𝑖𝜃 + 𝐴)/(𝐴 − 𝐵) and also 𝐿 = 1.

Proof. First suppose 𝑓 defined by (1) is in the class S
𝑞
[𝐴, 𝐵];

we have
𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
. (19)

Since the function from the left-hand side of the subordina-
tion is analytic inU, it follows𝑓(𝑧) ̸= 0, 𝑧 ∈ U∗ = U\{0}; that
is, (1/𝑧)𝑓(𝑧) ̸= 0, 𝑧 ∈ U, and this is equivalent to the fact that
(18) holds for𝐿 = 1. From (19) according to the subordination
of two analytic functions we say that there exists a function
𝑤(𝑧) analytic in U with 𝑤(0) = 0, |𝑤(𝑧)| < 1 such that

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
=
1 + 𝐴𝑤 (𝑧)

1 + 𝐵𝑤 (𝑧)
(𝑧 ∈ U) (20)

which is equivalent to

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
̸=
1 + 𝐴𝑒

𝑖𝜃

1 + 𝐵𝑒𝑖𝜃
(𝑧 ∈ U; 0 ≤ 𝜃 < 2𝜋) , (21)

or
1

𝑧
[(1 + 𝐵𝑒

𝑖𝜃

) 𝑧𝐷
𝑞
𝑓 (𝑧) − (1 + 𝐴𝑒

𝑖𝜃

) 𝑓 (𝑧)] ̸= 0

(𝑧 ∈ U; 0 ≤ 𝜃 < 2𝜋) .

(22)

Since

𝑓 (𝑧) ∗
𝑧

1 − 𝑧
= 𝑓 (𝑧) ,

𝑓 (𝑧) ∗
𝑧

(1 − 𝑧) (1 − 𝑞𝑧)
= 𝑧𝐷
𝑞
𝑓 (𝑧) .

(23)

Now from (23), we may write (22) as

1

𝑧
[𝑓 (𝑧) ∗ (

(1 + 𝐵𝑒
𝑖𝜃

) 𝑧

(1 − 𝑧) (1 − 𝑞𝑧)
−
(1 + 𝐴𝑒

𝑖𝜃

) 𝑧

1 − 𝑧
)]

=
(𝐵 − 𝐴) 𝑒

𝑖𝜃

𝑧

× [𝑓 (𝑧) ∗
𝑧 − ((𝑒

−𝑖𝜃

+ 𝐴) / (𝐴 − 𝐵)) 𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧)
] ̸= 0

(𝑧 ∈ U; 0 ≤ 𝜃 < 2𝜋) ,

(24)

which leads to (18), which proves the necessary part of
Theorem 1.

Reversely, because assumption (18) holds for 𝐿 = 1, it
follows that (1/𝑧)𝑓(𝑧) ̸= 0 for all 𝑧 ∈ U; hence, the function
𝜑(𝑧) = 𝑧𝐷

𝑞
𝑓(𝑧)/𝑓(𝑧) is analytic in U (i.e., it is regular at

𝑧
0
= 0, with 𝜑(0) = 0). Since it was shown in the first part of

the proof that assumption (18) is equivalent to (21), we obtain
that

𝑧𝐷
𝑞
𝑓 (𝑧)

𝑓 (𝑧)
̸=
1 + 𝐴𝑒

𝑖𝜃

1 + 𝐵𝑒𝑖𝜃
(𝑧 ∈ U; 0 ≤ 𝜃 < 2𝜋) , (25)

and if we denote

𝜓 (𝑧) =
1 + 𝐴𝑧

1 + 𝐵𝑧
(𝑧 ∈ U) , (26)

relation (25) shows that 𝜑(U) ∩ 𝜓(U) = 0. Thus, the
simply connected domain 𝜑(U) is included in a connected
component of C \ 𝜓(𝜕U). From here, using the fact that
𝜑(0) = 𝜓(0) together with the univalence of the function
𝜓, it follows that 𝜑(𝑧) ≺ 𝜓(𝑧), which represents in fact
subordination (19); that is, 𝑓 ∈ S

𝑞
[𝐴, 𝐵]. This completes the

proof of Theorem 1.

Taking 𝑞 → 1
− in Theorem 1, we obtain the following

result which improves the convolution result of Aouf and
Seoudy [23, Theorem 1] and also the result of Silverman and
Silvia [21, Theorem 7].

Corollary 2. The function 𝑓 defined by (1) is in the class
S[𝐴, 𝐵] if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 − 𝐿𝑧
2

(1 − 𝑧)
2
] ̸= 0 (𝑧 ∈ U) (27)

for all 𝐿 = 𝐿
𝜃
= (e−𝑖𝜃 + 𝐴)/(𝐴 − 𝐵) and also 𝐿 = 1.

Putting𝐴 = 1−2𝛼 (0 ≤ 𝛼 < 1) and 𝐵 = −1 inTheorem 1,
we obtain the following corollary.

Corollary 3. The function 𝑓 defined by (1) is in the class
S
𝑞
(𝛼) (0 ≤ 𝛼 < 1) if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 −𝑀𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧)
] ̸= 0 (𝑧 ∈ U) (28)

for all𝑀 = 𝑀
𝜃
= (e−𝑖𝜃 + 1 − 2𝛼)/2(1 − 𝛼), 0 ≤ 𝛼 < 1, and

also𝑀 = 1.

Taking 𝑞 → 1
− in Corollary 3, we obtain the following

result which improves the convolution result of Silverman
et al. [22, Theorems 1].

Corollary 4. The function 𝑓 defined by (1) is in the class
S(𝛼) (0 ≤ 𝛼 < 1) if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 −𝑀𝑧
2

(1 − 𝑧)
2
] ̸= 0 (𝑧 ∈ U) (29)

for all𝑀 = 𝑀
𝜃
= (e−𝑖𝜃 + 1 − 2𝛼)/2(1 − 𝛼), 0 ≤ 𝛼 < 1, and

also𝑀 = 1.
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Theorem 5. The function 𝑓 defined by (1) is in the class
K
𝑞
[𝐴, 𝐵] if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 + [1 − (𝑞 + 1) 𝐿] 𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧) (1 − 𝑞2𝑧)
] ̸= 0 (𝑧 ∈ U) (30)

for all 𝐿 = 𝐿
𝜃
= (e−𝑖𝜃 + 𝐴)/(𝐴 − 𝐵) and also 𝐿 = 1.

Proof. Set

𝑔 (𝑧) =
𝑧 − 𝐿𝑞𝑧

2

(1 − 𝑧) (1 − 𝑞𝑧)
, (31)

and we note that

𝑧𝐷
𝑞
𝑔 (𝑧) =

𝑧 + [1 − (𝑞 + 1) 𝐿] 𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧) (1 − 𝑞2𝑧)
. (32)

From the identity 𝑧𝐷
𝑞
𝑓(𝑧) ∗ 𝑔(𝑧) = 𝑓(𝑧) ∗ 𝑧𝐷

𝑞
𝑔(𝑧) (𝑓, 𝑔 ∈

A) and the fact that

𝑓 ∈K
𝑞
[𝐴, 𝐵] ⇐⇒ 𝑧𝐷

𝑞
𝑓 (𝑧) ∈ S

𝑞
[𝐴, 𝐵] (33)

the result follows fromTheorem 1.

Taking 𝑞 → 1
− in Theorem 1, we obtain the following

result which improves the result of Aouf and Seoudy [23,
Theorem 2].

Corollary 6. The function 𝑓 defined by (1) is in the class
K[𝐴, 𝐵] if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 + [1 − 2𝐿] 𝑧
2

(1 − 𝑧)
3

] ̸= 0 (𝑧 ∈ U) (34)

for all 𝐿 = 𝐿
𝜃
= (e−𝑖𝜃 + 𝐴)/(𝐴 − 𝐵) and also 𝐿 = 1.

Putting𝐴 = 1−2𝛼 (0 ≤ 𝛼 < 1) and 𝐵 = −1 inTheorem 5,
we obtain the following corollary.

Corollary 7. The function 𝑓 defined by (1) is in the class
K
𝑞
(𝛼) (0 ≤ 𝛼 < 1) if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 + [1 − (𝑞 + 1) 𝐿] 𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧) (1 − 𝑞2𝑧)
] ̸= 0 (𝑧 ∈ U) (35)

for all𝑀 = 𝑀
𝜃
= (e−𝑖𝜃 + 1 − 2𝛼)/2(1 − 𝛼), 0 ≤ 𝛼 < 1, and

also 𝐿 = 1.

Taking 𝑞 → 1
− in Corollary 7, we obtain the following

result which improves the convolution result of Silverman
et al. [22, Theorem 2].

Corollary 8. The function 𝑓 defined by (1) is in the class
K(𝛼) (0 ≤ 𝛼 < 1) if and only if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 + [1 − 2𝐿] 𝑞𝑧
2

(1 − 𝑧)
3

] ̸= 0 (𝑧 ∈ U) (36)

for all𝑀 = 𝑀
𝜃
= (e−𝑖𝜃 + 1 − 2𝛼)/2(1 − 𝛼), 0 ≤ 𝛼 < 1, and

also 𝐿 = 1.

Theorem 9. A necessary and sufficient condition for the
function 𝑓 defined by (1) to be in the class S

𝑞
[𝐴, 𝐵] is that

1−

∞

∑

𝑘=2

[𝑘]
𝑞
(e−𝑖𝜃 + 𝐵) − 𝑒−𝑖𝜃 − 𝐴

𝐴 − 𝐵
𝑎
𝑘
𝑧
𝑘−1

̸= 0

(𝑧 ∈ U) .

(37)

Proof. FromTheorem 1, we find that𝑓 ∈ S
𝑞
[𝐴, 𝐵] if and only

if

1

𝑧
[𝑓 (𝑧) ∗

𝑧 − 𝐿𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧)
] ̸= 0 (𝑧 ∈ U) (38)

for all 𝐿 = 𝐿
𝜃
= (𝑒
−𝑖𝜃

+ 𝐴)/(𝐴 − 𝐵) and also for 𝐿 = 1. The
left-hand side of (38) can be written as

1

𝑧
[𝑓 (𝑧) ∗ (

𝑧

(1 − 𝑧) (1 − 𝑞𝑧)
−

𝐿𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧)
)]

=
1

𝑧
{𝑧𝐷
𝑞
𝑓 (𝑧) − 𝐿 [𝑧𝐷

𝑞
𝑓 (𝑧) − 𝑓 (𝑧)]}

= 1 −

∞

∑

𝑘=2

([𝑘]
𝑞
(𝐿 − 1) − 𝐿) 𝑎

𝑘
𝑧
𝑘−1

.

(39)

Thus, the proof of TheTheorem 9 is completed.

Taking 𝑞 → 1
− in Theorem 9, we obtain the following

result.

Corollary 10. A necessary and sufficient condition for the
function 𝑓 defined by (1) to be in the class S[𝐴, 𝐵] is that

1 −

∞

∑

𝑘=2

𝑘 (𝑒
−𝑖𝜃

+ 𝐵) − 𝑒
−𝑖𝜃

− 𝐴

𝐴 − 𝐵
𝑎
𝑘
𝑧
𝑘−1

̸= 0 (𝑧 ∈ U) . (40)

Putting𝐴 = 1−2𝛼 (0 ≤ 𝛼 < 1) and 𝐵 = −1 inTheorem 9,
we obtain the following corollary.

Corollary 11. A necessary and sufficient condition for the
function 𝑓 defined by (1) to be in the class S

𝑞
(𝛼) is that

1 −

∞

∑

𝑘=2

[𝑘]
𝑞
(𝑒
−𝑖𝜃

− 1) − 𝑒
−𝑖𝜃

− 1 + 2𝛼

2 (1 − 𝛼)
𝑎
𝑘
𝑧
𝑘−1

̸= 0 (𝑧 ∈ U) .

(41)

Taking 𝑞 → 1
− in Corollary 11, we obtain the following

corollary which improves the result of Ahuja [17, Corollary 1
when 𝑛 = 0].

Corollary 12. A necessary and sufficient condition for the
function 𝑓 defined by (1) to be in the class S(𝛼) is that

1 −

∞

∑

𝑘=2

𝑘 (𝑒
−i𝜃
− 1) − 𝑒

−𝑖𝜃

− 1 + 2𝛼

2 (1 − 𝛼)
𝑎
𝑘
𝑧
𝑘−1

̸= 0 (𝑧 ∈ U) .

(42)
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Theorem 13. A necessary and sufficient condition for the
function 𝑓(𝑧) defined by (1) to be in the classK

𝑞
[𝐴, 𝐵] is that

1 −

∞

∑

𝑘=2

[𝑘]
𝑞

[𝑘]
𝑞
(𝑒
−𝑖𝜃

+ 𝐵) − 𝑒
−𝑖𝜃

− 𝐴

𝐴 − 𝐵
𝑎
𝑘
𝑧
𝑘−1

̸= 0 (𝑧 ∈ U) .

(43)

Proof. From Theorem 5, we find that 𝑓 ∈ K
𝑞
[𝐴, 𝐵] if and

only if

1

𝑧
{𝑓 (𝑧) ∗

𝑧 + [1 − (𝑞 + 1) 𝐿] 𝑞𝑧
2

(1 − 𝑧) (1 − 𝑞𝑧) (1 − 𝑞2𝑧)
} ̸= 0 (𝑧 ∈ U) ,

(44)

for all 𝐿 = 𝐿
𝜃
= (𝑒
−𝑖𝜃

+ 𝐴)/(𝐴 − 𝐵) and also for 𝐿 = 1. The
left-hand side of (44) may be written as

1

𝑧
{𝑓 (𝑧) ∗ (

𝑧

(1 − 𝑧) (1 − 𝑞𝑧) (1 − 𝑞2𝑧)

+
[1 − (𝑞 + 1) 𝐿] 𝑞𝑧

2

(1 − 𝑧) (1 − 𝑞𝑧) (1 − 𝑞2𝑧)
)}

=
1

𝑧
{𝑞𝑧
2

𝐷
𝑞
(𝐷
𝑞
𝑓 (𝑧)) + 𝑧𝐷

𝑞
𝑓 (𝑧)

−𝐿 [𝑞𝑧
2

𝐷
𝑞
(𝐷
𝑞
𝑓 (𝑧))]}

= 1 −

∞

∑

𝑘=2

[𝑘]
𝑞

[𝑘 − 1]
𝑞
𝑞𝑒
−𝑖𝜃

− 𝐴 + [𝑘]
𝑞
𝐵

𝐴 − 𝐵
𝑎
𝑘
𝑧
𝑘−1

,

(45)

and this proves Theorem 13.

Taking 𝑞 → 1
− in Theorem 13, we obtain the following

result.

Corollary 14. A necessary and sufficient condition for the
function 𝑓(𝑧) defined by (1) to be in the classK[𝐴, 𝐵] is that

1 −

∞

∑

𝑘=2

𝑘
𝑘 (𝑒
−𝑖𝜃

+ 𝐵) − 𝑒
−𝑖𝜃

− 𝐴

𝐴 − 𝐵
𝑎
𝑘
𝑧
𝑘−1

̸= 0 (𝑧 ∈ U) . (46)

Putting𝐴 = 1−2𝛼 (0 ≤ 𝛼 < 1) and𝐵 = −1 inTheorem 13,
we obtain the following corollary.

Corollary 15. A necessary and sufficient condition for the
function 𝑓 defined by (1) to be in the classK

𝑞
(𝛼) (0 ≤ 𝛼 < 1)

is that

1 −

∞

∑

𝑘=2

[𝑘]
𝑞

[𝑘]
𝑞
(𝑒
−𝑖𝜃

− 1) − 𝑒
−𝑖𝜃

− 1 + 2𝛼

2 (1 − 𝛼)
𝑎
𝑘
𝑧
𝑘−1

̸= 0

(𝑧 ∈ U) .

(47)

Taking 𝑞 → 1
− in Corollary 15, we obtain the following

corollary which improves the result of Ahuja [17, Corollary 1
when 𝑛 = 1].

Corollary 16. A necessary and sufficient condition for the
function 𝑓 defined by (1) to be in the class K(𝛼) (0 ≤ 𝛼 < 1)
is that

1 −

∞

∑

𝑘=2

𝑘
𝑘 (𝑒
−𝑖𝜃

− 1) − 𝑒
−𝑖𝜃

− 1 + 2𝛼

2 (1 − 𝛼)
𝑎
𝑘
𝑧
𝑘−1

̸= 0 (𝑧 ∈ U) .

(48)

3. Coefficient Estimates

As an application of Theorems 9 and 13, we next determine
coefficient estimate and inclusion property for a function of
form (1) to be in the classes S

𝑞
[𝐴, 𝐵] andK

𝑞
[𝐴, 𝐵].

Theorem 17. If the function 𝑓 defined by (1) satisfies the
following inequality:

∞

∑

𝑘=2

{[𝑘]
𝑞
(1 − 𝐵) − 1 + 𝐴}

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 𝐴 − 𝐵, (49)

then 𝑓 ∈ S
𝑞
[𝐴, 𝐵].

Proof. Since
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −

∞

∑

𝑘=2

[𝑘]
𝑞
(𝑒
−𝑖𝜃

+ 𝐵) − 𝑒
−𝑖𝜃

− 𝐴

𝐴 − 𝐵
𝑎
𝑘
𝑧
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 1 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑘]
𝑞
(𝑒
−𝑖𝜃

+ 𝐵) − 𝑒
−𝑖𝜃

− 𝐴

𝐴 − 𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

= 1 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨󵄨
[𝑘]
𝑞
(𝑒
−𝑖𝜃

+ 𝐵) − 𝑒
−𝑖𝜃

− 𝐴
󵄨󵄨󵄨󵄨󵄨

𝐴 − 𝐵

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

> 1 −

∞

∑

𝑘=2

[𝑘]
𝑞
(1 − 𝐵) − 1 + 𝐴

𝐴 − 𝐵

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 > 0

(50)

the result follows fromTheorem 9.

Taking 𝑞 → 1
− in Theorem 17, we obtain the result of

Ahuja [17, Theorem 3 when 𝑛 = 0].

Corollary 18. If the function 𝑓 defined by (1) satisfies the
following inequality:

∞

∑

𝑘=2

[𝑘 (1 − 𝐵) − 1 + 𝐴]
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 𝐴 − 𝐵, (51)

then 𝑓 ∈ S[𝐴, 𝐵].

Putting𝐴 = 1−2𝛼 (0 ≤ 𝛼 < 1) and𝐵 = −1 inTheorem 21,
we obtain the following corollary.

Corollary 19. If the function 𝑓 defined by (1) satisfies the
following inequality:

∞

∑

𝑘=2

([𝑘]
𝑞
− 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼, (52)

then 𝑓 ∈ S
𝑞
(𝛼).



6 Abstract and Applied Analysis

Taking 𝑞 → 1
− in Corollary 19, we obtain the following

corollary obtained by Silverman [24].

Corollary 20. If the function 𝑓 defined by (1) satisfies the
following inequality:

∞

∑

𝑘=2

(𝑘 − 𝛼)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼, (53)

then 𝑓 ∈ S(𝛼).

Similarly, we can prove the following theorem.

Theorem 21. If the function 𝑓 defined by (1) satisfies the
following inequality:

∞

∑

𝑘=2

[𝑘]
𝑞
{[𝑘]
𝑞
(1 − 𝐵) − 1 + 𝐴}

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 𝐴 − 𝐵, (54)

then 𝑓 ∈K
𝑞
[𝐴, 𝐵].

Taking 𝑞 → 1
− in Theorem 21, we obtain the result of

Ahuja [17, Theorem 3 when 𝑛 = 1].

Corollary 22. If the function 𝑓 defined by (1) satisfies the
following inequality:

∞

∑

𝑘=2

𝑘 [𝑘 (1 − 𝐵) − 1 + 𝐴]
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 𝐴 − 𝐵, (55)

then 𝑓 ∈K[𝐴, 𝐵].

Putting𝐴 = 1−2𝛼 (0 ≤ 𝛼 < 1) and𝐵 = −1 inTheorem 21,
we obtain the following corollary.

Corollary 23. The function𝑓 defined by (1) belongs to the class
K
𝑞
(𝛼) (0 ≤ 𝛼 < 1) if

∞

∑

𝑘=2

[𝑘]
𝑞
([𝑘]
𝑞
− 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼. (56)

Taking 𝑞 → 1
− in Corollary 23, we obtain the following

corollary obtained by Silverman [24].

Corollary 24. The function𝑓 defined by (1) belongs to the class
K(𝛼) (0 ≤ 𝛼 < 1) if

∞

∑

𝑘=2

𝑘 (𝑘 − 𝛼)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼. (57)
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