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This paper presents global optimization algorithms that incorporate the idea of an interval branch and bound and the stochastic
search algorithms. Two algorithms for unconstrained problems are proposed, the hybrid interval simulated annealing and the
combined interval branch and bound and genetic algorithm.The numerical experiment shows better results compared to Hansen’s
algorithm and simulated annealing in terms of the storage, speed, and number of function evaluations. The convergence proof
is described. Moreover, the idea of both algorithms suggests a structure for an integrated interval branch and bound and genetic
algorithm for constrained problems in which the algorithm is described and tested. The aim is to capture one of the solutions with
higher accuracy and lower cost.The results show better quality of the solutions with less number of function evaluations compared
with the traditional GA.

1. Introduction

Many problems in economics, business, sciences, and engi-
neering are modeled as constrained optimization problems:

min
𝑥∈Ω

𝑓 (𝑥)

subject to 𝑔
𝑖
(𝑥) ≤ 0 𝑖 = 1, . . . , 𝑛

𝑔

ℎ
𝑖
(𝑥) = 0 𝑖 = 1, . . . , 𝑛

ℎ
.

(1)

There are various approaches to the problems. Interval
algorithms use branch and bound techniques to capture all
solutions. One drawback is that they often require more
memory and CPU time [1]. Stochastic search algorithms
are usually easy to implement and no assumption about
the continuity and differentiability is required. They are
commonly used in numerous fields. Even though there is
no guarantee on the solution reported when the algorithm
is terminated in a finite time, the theoretical support is only
on the convergence in probability. We have an interest in
combining the interval branch and bound technique with
stochastic search. We first study the combined algorithms for
unconstrained problems and thenmodify them to handle the
constrained problems.

The paper is organized as follows. In the next section,
the related algorithms are introduced, namely, the interval

branch and bound, simulated annealing, and the continuous
genetic algorithms. The studies of the improvement of the
described algorithms are also discussed. Our proposed algo-
rithms are presented in Section 3. We demonstrate two algo-
rithms for unconstrained and one for constrained problems.
In Section 4, the numerical experiments and the discussion
are given, followed by the conclusions in Section 5.

2. Interval Branch and Bound and
Stochastic Algorithms

2.1. Interval Branch and Bound

2.1.1. Unconstrained Optimization. An interval algorithm is
a tool using interval arithmetics for finding all solutions
of the optimization problems. Before the discussion of the
algorithms, let us first introduce the notations that we will use
in this paper.

For an unconstrained problem, we study min
𝑥∈Ω

𝑓(𝑥).

Ω: A search domain
𝑓 : R𝑛 → R

◻𝑓(𝑌) = {𝑓(𝑥) : 𝑥 ∈ 𝑌}: The range of 𝑓 over 𝑌
I: a set of real compact interval [𝑎, 𝑏], 𝑎, 𝑏 ∈ R

In: a set of 𝑛-dimensional column vectors
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𝐹 : In → I an inclusion function of 𝑓
𝑉 ∈ In will be called “box”
𝑛
𝑏
: A number of subregions

𝑛
𝑠
: A number of sample points from a given box

listx: A list containing the boxes and their infor-
mation {(𝑋

𝑘
, lb(𝐹(𝑋

𝑘
)))}

𝑛
𝑙
: A number of boxes inlistxor the length oflistx

𝑇: Temperature
𝑇init: An initial temperature for cooling schedule of
simulated annealing
𝑚𝑎𝑥𝑖𝑡𝑒𝑟: Maximum number of iterations
𝑚𝑖𝑑(𝐴):Midpoint of an interval𝐴,𝑚𝑖𝑑(𝐴) = (𝑎+𝑏)/2
𝑤(𝐴):Thewidth of an interval𝐴 = [𝑎, 𝑏],𝑤(𝐴) = 𝑏−𝑎
If 𝑉 ∈ Im, 𝑤(𝑉) is the width of the box 𝑉 =
max𝑚
𝑖=1
{𝑤(𝑉
𝑖
)}.

𝜖
𝑥
: A tolerance for the width of the box

𝜖
𝐹
: A tolerance for the width of the interval 𝐹

𝑓𝑏𝑒𝑠𝑡: The best value of all 𝑓 the algorithm has been
encountered
𝑥𝑏𝑒𝑠𝑡: A vector corresponding to 𝑓𝑏𝑒𝑠𝑡
𝑓𝑏𝑒𝑠𝑡(𝑖): A value of 𝑓𝑏𝑒𝑠𝑡 at iteration 𝑖
lb(𝐴): A lower bound of interval 𝐴
ub(𝐴): An upper bound of interval 𝐴.

An interval branch and bound have the procedures given
in Algorithm 1.

A working box could be selected to be the one that has
been on the list the longest or the one with the least lower
bound of its inclusion function 𝐹. The bisection direction
usually is the direction with the maximum width. Box 𝑉 will
be discarded if lb(𝐹(𝑉)) > 𝑓𝑏𝑒𝑠𝑡.The termination conditions
can be set by using a prescribed maximum number of
iterations, the width of the box, or the width of the interval
𝐹. A detailed discussion can be found in [2]. When the
algorithm ended, all optima are contained in the boxes of the
list.

The algorithm shows difficulty when the dimension is
high or the function is complicated. The width of the boxes
in the list decreases very slowly so that the improvement of
the best is found.

We describe here two versions of the interval algorithms.
Thefirst is proposed by Ichida and Fujii, in which theworking
box is the box with the least lower bound of 𝐹. The second is
Hansen’s algorithm, in which the working box is the oldest
box in the list.

2.1.2. Constrained Optimization. For constrained problems, a
box𝑉will be deleted from the list with the condition𝑓𝑏𝑒𝑠𝑡 <
lb(𝐹(𝑉)) only if all points in𝑉 are feasible.The feasibility of a
box is considered by using a flag vector 𝑟 = (𝑟

1
, . . . , 𝑟

𝑚
)where

𝑚 = 𝑛
𝑔
+𝑛
ℎ
.The element 𝑟

𝑖
is assigned by the following rules.

For an inequality constraint, if ub(𝐺
𝑖
(𝑉)) ≤ 0 then 𝑟

𝑖
= 0.

If lb(𝐺
𝑖
(𝑉)) > 0,𝑟

𝑖
= 2. Otherwise, it is indeterminate, 𝑟

𝑖
= 1.

For an equality constraint, we will consider the relaxed
problem |ℎ

𝑖
(𝑥)| ≤ 𝜖

ℎ
and 𝑟
𝑖
is set according to the width of 𝜖

ℎ

and the bound of𝐻 as follows:

If (lb(𝐻(𝑉)) ≤ 0 and ub(𝐻(𝑉)) ≥ 0)

if (𝑤(𝐻) < 𝜖
ℎ
)

𝑟
𝑖
= 0

else
𝑟
𝑖
= 1

else

𝑟
𝑖
= 2.

The status of a box is taken through the flag vector 𝑟. If
at least one element of 𝑟 is 2, the status is labeled as 2 (this
box will be deleted from the list). If all elements of 𝑟 are 0, the
box is feasible and the status is set to be 0. Other than that the
status is 1. Usually, a box with status 1 will be bisected.

2.2. Simulated Annealing. Simulated annealing (SA) is a
stochastic search technique, analogy with thermodynamics.
There is a mechanism in avoiding entrapment in local optima
by allowing an occasional uphill move. It also incorporates
a temperature parameter into the procedure, explore more
at high temperature, and restrict it when the temperature is
low. The basic idea of the search is that, for a given current
state 𝑖 with an energy level 𝐸

𝑖
, generate a subsequent state 𝑗

randomly. If 𝐸
𝑗
− 𝐸
𝑖
≤ 0 then accept state 𝑗 as the current

state. Otherwise accept state 𝑗 with the probability 𝑒−(𝐸𝑗−𝐸𝑖)/𝑇
where 𝑇 is the temperature. For the minimization problem,
the solution corresponds to a state of the system and the
objective function corresponds to the energy level. Prior to
the process, the cooling schedule 𝛼(𝑇) and the neighborhood
structure must be defined. SA is described in Algorithm 4. A
thoroughly discussion can be found in [4].

2.3. Population Based Methods. Population based methods
use a population of points in each iteration. One advantage
of populations is that if it has multiple optimums it will
be captured in its final population. The examples of such
techniques are genetic algorithm (GA), ant colony, particle
swarm, and differential evolution. They are widely used in
business, sciences, and engineering. The simple GA will be
described next.

GA imitates the natural evolution involving three pro-
cesses, creation of the offsprings, selection, and mutation.
The creation of offsprings offers the diversification for the
search, but the selection process is narrowing it.Themutation
prevents the entrapping in the localminimum.GA is outlined
is Algorithm 5.

The main idea of the selection process is to choose better
individuals for the next generations by considering the fitness
of each one. We are now concentrating on minimization
problem; thus the better fit individual is the one with the
lower value of 𝑓. Good selection schemes must allow the
convergence to the optimal solution without getting caught
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(1) Put the domain into list.
(2) repeat
(3) Choose a working box, called 𝑉, and bisect it into two subboxes 𝑉

1
and 𝑉

2
and put them on the list.

(4) Delete 𝑉 from the list.
(5) Discard the box in the list if it has no solution.
(6) until (the termination criteria hold)

Algorithm 1: Interval branch and bound algorithm.

in a local minimum. There are many proposed selection
techniques and the study of their convergence.

Some of the methods are, for example, elitist selection
(the best individuals of each generation must be selected),
the proportional selection (the better fit individuals have
higher probability to be selected), the ranking selection (the
individuals are ranked according to their fitness and the selec-
tion is based on this ranking), and the tournament selection
(individuals are divided into subgroups and the members of
each group compete against each other, and then only one is
selected to be in the new generation). The mutation rate is
set up such that 𝜇(𝑡) converges to 0 when 𝑡 is increased. The
termination condition can be set to be themaximumnumber
of generations or the unchanged of the best value over a given
number of generations. The comparison of performance of
the selection schemes including the convergence can be seen
in, for example, [5–7].

The disadvantage of GA is that there is no guarantee for
finding optimal solutions within a finite amount of time and
the tuning of parameters such as population size or mutation
rate are sometimes based on trial and error. However, there
are no requirements on differentiability and continuity.

2.4. The Modifications. The previous described algorithms
can be modified for an improvement. Some of them that
related to our works are given next.

For the interval branch and bound algorithms, the
adjustment can be made to the following aspects for better
solutions:

(i) an inclusion function: the kite inclusion function [8],
(ii) the subdivision of domain: multisection [8–10],
(iii) the selection of a box for further process: the box with

the largest rejection index such as the one defined in
Casado et al. [11],

𝑝𝑓∗ (𝑌) =
𝑓∗ − lb (𝐹 (𝑌))

ub (𝐹 (𝑌)) − lb (𝐹 (𝑌))
, (2)

where 𝑝𝑓∗(𝑌) represents the rejection index of a box
𝑌.

The studies for the better accuracy of solutions and the
speed of algorithmwhen using an interval branch and bound
to solve constrained problems are, for example, as follows.

(i) Casado et al. [11] define a rejection index of a box 𝑌
as in (2) to identify a good candidate box to contain a
global minimum.

(ii) Lagouanelle and Soubry [8] use a new inclusion
function called kite enclosure.

(iii) Sun and Johnson [12] introduce local sampling strate-
gies to the working box. The convergence proof is
presented along with the numerical results.

(iv) Karmakar andBhunia [13] demonstrate how to obtain
one of the solutions by partitioning the accepted
box (start with the search domain) into 2𝑚 subboxes
where 𝑚 is a number that each edge is divided.
Calculate the function values of each subbox and then
use interval order relations to choose a new accepted
box.

There are many approaches in handling constraints for
GA. The classifications can be seen in [3, 14]. We describe
those that combine interval branch and bound and genetic
algorithm.

Alander [15] suggests two ways in combining the two
algorithms. The first is replacing, at least partly, the function
to be optimized by some of its interval extensions.Theother is
usingGA in some internal problems of the interval algorithm.

Sotiropoulos et al. [16] use an interval branch and bound
technique to create subregions and choose the midpoint of
each subregion to be individuals in an initial population for
GA.

Zhang and Liu [17] use rejection index (2) as a fitness
function for a box 𝑌 where 𝑓∗ is the best found. The
population is taken from 𝑁 > 1 highest fitness boxes.
Mutation is performed on 1/3 of the population with some
probability. The best fit box is split into𝑁 subboxes.

An attempt to combine the interval branch and bound
and simulated annealing for unconstrained problem can be
seen in Shary [18].The lower bound of𝐹 is used in calculating
the probability of accepting a new box. If this box is accepted,
it will be bisected and the half with smaller lower bound of
𝐹 is chosen to be the next leading box. Otherwise, choose a
different box. It is tested on a six-hump camel function and
Rastrigin’s function with the domain [−10, 10]2.

3. The Proposed Algorithms

We first study the performance of Ichida-Fujii (A2) and
Hansen (A3) for a design of our algorithm. A set of uncon-
strained problems in Appendix A is used. Tables 1 and 2 show
that Ichida-Fujii is more effective than Hansen in terms of
the speed (number of iterations), storage (the list length),
and cost (number of function evaluations). It appears that
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Table 1:The value of the best found, the maximum list length, the number of function evaluations, and the number of iterations from Ichida-
Fujii A2 and Hansen A3 when 𝑛 = 10.

fn 𝑓𝑏𝑒𝑠𝑡 Max length # 𝑓 eval Number of iterations
A2 A3 A2 A3 A2 A3 A2 A3

1 4.80𝐸 − 07 9 188 43754 2734 1,600,002 1522 400000
2 8.90𝐸 − 07 24.918 38 73340 618 1,600,002 311 400000
3 9.30𝐸 − 07 5.60𝐸 − 14 22 8970 642 1,482,934 355 370733
4 6.00𝐸 − 07 0.156 36 40659 962 1,600,002 527 400000
5 6.00𝐸 − 07 7.50𝐸 − 08 3 3 962 1,122 479 89588
6 9.20𝐸 − 07 1.10𝐸 − 13 23 8682 714 916,702 357 229175
7 8.00𝐸 − 07 44.761 52 318948 670 1,600,002 336 400000
8 7.70𝐸 − 07 1.063 50 174631 710 1,600,002 352 400000
9 1.00𝐸 − 06 1.061 44 174631 690 1,600,002 344 400000
10 1.00𝐸 − 06 6.731 49 181938 690 1,600,002 344 400000
11 8.50𝐸 − 07 0.532 112 189216 842 1,600,002 473 400000

Table 2: The value of the best found, the maximum list length, the number of function evaluations, and the number of iterations from
Ichida-Fujii A2 and Hansen A3 when 𝑛 = 20.

fn 𝑓𝑏𝑒𝑠𝑡 Max length # 𝑓 eval Number of iterations
A2 A3 A2 A3 A2 A3 A2 A3

1 9.80𝐸 − 07 19 408 3,536 6094 202,965 682 600000
2 3.40𝐸 − 07 220.313 113 709 1250 22,065 153 600000
3 9.30𝐸 − 07 500 56 547 1426 45,860 159 600000
4 9.50𝐸 − 07 21 96 274 2114 12,730 239 600000
5 5.90𝐸 − 07 3.80𝐸 − 05 3 3 1932 1442 239 600000
6 9.90𝐸 − 07 5105 56 465 1434 28,205 177 600000
7 9.60𝐸 − 07 381.58 102 384 1350 18,365 166 600000
8 9.60𝐸 − 07 1.125 107 867 1414 20,880 176 600000
9 9.30𝐸 − 07 1.1249 92 905 1382 25,450 171 600000
10 9.30𝐸 − 07 9.5609 106 519 1382 26,165 171 600000
11 9.20𝐸 − 07 3.8742 234 2,138 1898 54,270 209 600000

searching and bisecting the box with the least lower bound
𝐹 is a fastest way to reach the optimal solutions.

For unconstrained problems if we assume that 𝑓 is
continuous, we know for certain that the box with the least
lower bound of 𝐹 must contain a minimum. The earlier a
quality 𝑓𝑏𝑒𝑠𝑡 can be discovered, the faster the unwanted
boxes can be deleted.

To obtain a quality 𝑓𝑏𝑒𝑠𝑡, we consider combining SA
and GA with an interval branch and bound. SA and GA act
as search engine while the interval branch and bound are
responsible for keeping all solutions.

When dealing with constrained problem the deletion
condition will be in effect only if the box is feasible or
infeasible. For most problems, the list will contain a high
percentage of the boxes with status 1 which is indeterminate.
That means the width of the box must be small enough in
order to split feasible from the infeasible region.The situation
is even worse when the dimension of the problem is high.

There are two concerns in our algorithm as follows:

(i) choosing a potential box to search: as a result, a quality
𝑓𝑏𝑒𝑠𝑡 can be obtained to promote the deletion of
unwanted boxes,

(ii) bisecting the box to isolate a feasible region.

For unconstrained problem, we can search in a box with
the least lower bound of𝐹. However, for constrained problem
we need a function that provides information about the value
of 𝑓 and the lower bound of 𝐹 in making a decision about
which box to search for a better 𝑓𝑏𝑒𝑠𝑡. Let us first define a
function fit(𝑋) to be the minimum value of 𝑓 among the
feasible points from a box 𝑋. If the box contains 𝑥∗, fit(𝑋)
is getting close to 𝑓∗ when the width of𝑋 approaches 0. The
information of 𝑓 and lb(𝐹) is combined by using a function
called fun defined by

fun (𝑋) = (1 − 𝛽
𝑘
) ∗ fit (𝑋) + 𝛽

𝑘
∗ lb (𝐹 (𝑋)) . (3)
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(1) Set 𝐴 = Ω.
(2) Calculate 𝐹(𝐴) and set 𝑓𝑏𝑒𝑠𝑡 = 𝑓(mid(𝐴)).
(3) Initialize listx = {(𝐴, lb(𝐹(𝐴)))}.
(4) repeat
(5) Bisect 𝐴 in the direction of the maximum length of the edge such that 𝐴 = 𝑉

1
∪ 𝑉
2
.

(6) Calculate 𝐹(𝑉
1
) and 𝐹(𝑉

2
).

(7) Remove (𝐴, lb(𝐹(𝐴))) from listx.
(8) Enter the pairs (𝑉

1
, lb(𝐹(𝑉

1
))) and (𝑉

2
, lb(𝐹(𝑉

2
))) into listx in a way that lb(𝐹(𝑋)) in the list do not decrease.

(9) Denote the first box in listx as 𝐴.
(10) Let 𝑥

𝑐
= mid(𝐴) and calculate 𝑓(𝑥

𝑐
).

(11) 𝑓𝑏𝑒𝑠𝑡 = min{𝑓𝑏𝑒𝑠𝑡, 𝑓(𝑥
𝑐
)}

(12) Delete a pair (𝑉, lb(𝐹(𝑉))) from listx if 𝑓𝑏𝑒𝑠𝑡 < lb(𝐹(𝑉)).
(13) until (the stopping condition becomes true)

Algorithm 2: Ichida-Fujii.

(1) Set 𝐴 = Ω.
(2) Calculate 𝐹(𝐴) and set 𝑓𝑏𝑒𝑠𝑡 = 𝑓(mid(𝐴)).
(3) Initialize listx = {(𝐴, lb(𝐹(𝐴)))}.
(4) repeat
(5) Bisect 𝐴 in the direction of the maximum width such that 𝐴 = 𝑉

1
∪ 𝑉
2
.

(6) Calculate 𝐹(𝑉
1
) and 𝐹(𝑉

2
).

(7) Remove (𝐴, lb(𝐹(𝐴))) from listx.
(8) Enter the pairs (𝑉

1
, lb(𝐹(𝑉

1
))) and (𝑉

2
, lb(𝐹(𝑉

2
))) at the end of listx.

(9) Discard a pair (𝑉, lb(𝐹(𝑉))) from listx if 𝑓𝑏𝑒𝑠𝑡 < lb(𝐹(𝑉)).
(10) Denote the first pair of listx by (𝐴, lb(𝐹(𝐴))).
(11) 𝑓𝑏𝑒𝑠𝑡 = min{𝑓𝑏𝑒𝑠𝑡, 𝑓(mid(𝐴))}
(12) until (the stopping condition becomes true)

Algorithm 3: Hansen.

{𝛽
𝑘
} is a nonincreasing sequence and 𝛽

𝑘
∈ [0, 1]. Note that

if 𝛽
𝑘
= 1 for all 𝑘, the algorithm uses lb(𝐹(𝑋)) in making

decision for a searched box. And when 𝛽
𝑘
= 0 for all 𝑘, only

function fit which related to 𝑓 will be considered.
We will first present two algorithms for unconstrained

problems to study their efficiency in terms of the speed,
storage, and cost. Then the algorithm for constrained prob-
lems is described. Our goal is to get information of the
search region from the interval branch and bound and then
provide it for the continuous genetic algorithm to improve its
efficiency.

3.1. Hybrid Interval Branch and Bound and Simulated Anneal-
ing for Unconstrained Problems. Our algorithm uses simu-
lated annealing as a mechanism that encourages the search
in a promising box, at the same time avoiding entrapment in
a local minimum. It is described in Algorithm 6. We choose
the box with maximum difference of the best value found so
far and the least lower bound of 𝐹, max

𝑖
{𝑓𝑏𝑒𝑠𝑡 − lb(𝐹(𝑉

𝑖
))},

to be bisected. Since lb(𝐹(𝑉)) < 𝑓∗ < 𝑓𝑏𝑒𝑠𝑡, it might result
in being able to discard half of the box.

Algorithm 6 is different from [18] in the selection of a
working box.We also evaluate more than one point to update
the value of the best found so far, 𝑓𝑏𝑒𝑠𝑡.

The stopping criteria are 𝑤(𝐹(𝑉)) < 𝜖
𝐹
or 𝑤(𝑉) < 𝜖

𝑥
for

all boxes 𝑉 in listx, or the maximum number of iterations
has exceeded a prescribed value𝑚𝑎𝑥𝑖𝑡𝑒𝑟.

We use a linear cooling schedule by prescribing the
number of iterations at each temperature. The temperature
is changed by using the given cooling rate; that is, new
temperature = cooling rate ∗ temperature.

For Algorithm 6, the parameters that can be adjusted are
the number of the initial boxes 𝑛

𝑏
, an initial temperature𝑇init,

and the annealing schedule.
Note that the value of fit(𝑋) can be obtained by per-

forming some iterations of your choice of search algorithm
in box𝑋. In each iteration, fit value of two boxes,𝐴 and𝐶,
is calculated. Thus, 𝑓𝑏𝑒𝑠𝑡 can also be updated.

The Convergence. The following behaviors can be observed
from the mechanism of Algorithm 6.

(i) At an initialization stage, the probability that the box
in listx is selected to be a working box 𝐴 is 1/𝑛

𝑏
. In

each iteration every box has a probability of 1/(𝑛
𝑙
−

1) to be a box 𝐶. Both 𝐴 and 𝐶 will be searched
by randomly choosing 𝑛

𝑠
points and recording the

best found in 𝑓𝑏𝑒𝑠𝑡 (Algorithm 7). Thus, 𝑓𝑏𝑒𝑠𝑡(𝑖) is
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(1) Set up an initial state 𝑥
0
, initial temperature 𝑇, the number of iterations for a fixed temperature𝑁

𝑇
and 𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑥

0
).

(2) repeat
(3) for 𝑖 = 0 to𝑁

𝑇
do

(4) Randomly select a new state 𝑥 from its neighborhood.
(5) 𝑓𝑏𝑒𝑠𝑡 = min{𝑓𝑏𝑒𝑠𝑡, 𝑓(𝑥)}
(6) Calculate 𝛿 = 𝑓(𝑥) − 𝑓(𝑥

0
).

(7) Generate a random number 𝑟 uniformly in the range [0, 1].
(8) if (𝑟 < exp(−𝛿/𝑇)) then
(9) 𝑥

0
= 𝑥.

(10) end if
(11) end for
(12) Update 𝑇 = 𝛼(𝑇).
(13) until (the stopping condition becomes true)

Algorithm 4: Simulated annealing.

(1) Set 𝑡 = 0.
(2) Set up an initial population of individuals 𝑃

𝑡
.

(3) repeat
(4) Create offsprings from population 𝑃

𝑡
and put them in a set 𝐶.

(5) Select a new generation 𝑃
𝑡+1

from 𝑃
𝑡
and 𝐶.

(6) Perform mutation to individuals in 𝑃
𝑡+1

with probability 𝜇(𝑡).
(7) Set 𝑡 = 𝑡 + 1.
(8) until (the termination condition is met)

Algorithm 5: Genetic algorithm.

a decreasing sequence. This process can be viewed as
a random search in the domain that shrink over time.

(ii) For each box 𝑉 in listx, the following inequality
holds:

lb (𝐹 (𝑉)) ≤ 𝑓𝑏𝑒𝑠𝑡 (𝑖) ≤ ub (𝐹 (𝑉)) . (4)

(iii) At iteration 𝑖, 𝐴 or 𝐶 will be bisected depending on
whom has a higher value of 𝑓𝑏𝑒𝑠𝑡 − lb(𝐹).

(iv) It is possible that there is a box𝑉 in which the width is
not small and survives through iterations.This means
𝑓𝑏𝑒𝑠𝑡(𝑖) − lb(𝐹(𝑉)) < 𝑓𝑏𝑒𝑠𝑡(𝑖) − lb(𝐹(𝐴(𝑖))) for some
𝑖where 1 ≤ 𝑖 ≤ 𝑛

𝑙
. Since 𝑓𝑏𝑒𝑠𝑡(𝑖)− lb(𝐹(𝑉)) decreases

with 𝑖, this 𝑉 will be selected to be 𝐴 sometimes later.
Therefore, a sequence of 𝑤(𝐴) is not decreasing.

(v) Every box has a nonzero probability to be bisected
to make 𝑤(𝐹(𝑉)) smaller, although those boxes in
listx have different size. We can conclude that
𝑤(𝐹(𝑉)) → 0 as 𝑛 → ∞ for 𝑉 ∈ listx.

We can show that all solutions will be in listx after the
algorithm successfully terminates.

Let us assume the properties of an inclusion function
𝑤(𝐹(𝑌)) → 0 as 𝑤(𝑌) → 0. Denote 𝑈

𝑛
to be a union of

all boxes in listx at iteration 𝑛; that is, 𝑈
𝑛
= ∩
𝑛𝑙

𝑖=1
𝑈
𝑛𝑖
:

𝑋∗ ⊆
∞

⋂
𝑖=1

𝑈
𝑛
. (5)

From the discarding rule the box 𝑈
𝑛𝑗
will be discarded if

𝑓𝑏𝑒𝑠𝑡(𝑛) < lb(𝐹(𝑈
𝑛𝑗
)). Since 𝑓∗ ≤ 𝑓𝑏𝑒𝑠𝑡(𝑛) and ◻𝑓(𝑈

𝑛𝑗
) ⊆

𝐹(𝑈
𝑛𝑗
), the solution is still in the list. Therefore, all boxes in

the list contain solutions; that is,𝑋∗ ⊆ ∩∞
𝑖=1
𝑈
𝑛
.

Suppose 𝑥 ∈ 𝑈
𝑛
for all 𝑛. There exist a box 𝑋

𝑛
where 𝑥 ∈

𝑋
𝑛
and lb(𝐹(𝑋

𝑛
)) ≤ 𝑓𝑏𝑒𝑠𝑡(𝑛). The properties 𝑤(𝐹(𝑋

𝑛
)) →

0 as 𝑛 → ∞ and ◻𝑓(𝑋
𝑛
) → 𝑓(𝑥) ∈ 𝐹(𝑋

𝑛
) imply that

𝐹(𝑋
𝑛
) → 𝑓(𝑥) as 𝑛 → ∞.

Now suppose that 𝑌
𝑛
is a box containing the minimum

of 𝑓; then lb(𝐹(𝑌
𝑛
)) ≤ lb(𝐹(𝑋

𝑛
)) ≤ 𝑓𝑏𝑒𝑠𝑡(𝑛) ≤ fit(𝑌

𝑛
) ∈

𝐹(𝑌
𝑛
). With the properties 𝐹(𝑌

𝑛
) → 𝑓∗ and lb(𝐹(𝑌

𝑛
)) →

𝑓∗, we can conclude that 𝑥 ∈ 𝑋∗.

3.2. Integrated Interval Branch and Bound and GA for Uncon-
strained Problems. Algorithm 8 will combine a population
techniquewith the interval branch and bound to give a higher
probability in obtaining a better value of the best found,
𝑓𝑏𝑒𝑠𝑡. Thus, more boxes will be deleted from the list. The
population is selected from 𝑛

𝑤
boxes with the least lower

bound of 𝐹 to create a new set of candidates using the linear
crossover from Michalewicz’s book [3] (Algorithm 10). The
information of two points is combined and the two outputs
are controlled to be in the search domain. They are not
necessary in a set of working boxes. Only the best 𝑛

𝑘
points

are carried to the next generation.
The parameters that can be adjusted for the performance

of Algorithm 8 are the following: the number of boxes 𝑛
𝑏
,

the number of individuals per generation 𝑛
𝑝
, the number

of working boxes 𝑛
𝑤
, the number of individuals to include



Abstract and Applied Analysis 7

(1) Set 𝑇 = 𝑇init.
(2) Subdivide the domain Ω into 𝑛

𝑏
boxes and put them in listx.

(3) Randomly select an active box from listx, called 𝐴.
(4) Calculate fit(𝐴) using Algorithm 7.
(5) 𝑓𝑏𝑒𝑠𝑡 = fit(𝐴).
(6) repeat
(7) Pick a new box at random from listx excluding 𝐴, called 𝐶.
(8) Calculate fit(𝐶).
(9) Calculate 𝜆 = exp(−(lb(𝐹(𝐶)) − lb(𝐹(𝐴)))/𝑇).
(10) Calculate 𝑑

𝑎
= 𝑓𝑏𝑒𝑠𝑡 − lb(𝐹(𝐴)), 𝑑

𝑐
= 𝑓𝑏𝑒𝑠𝑡 − lb(𝐹(𝐶)).

(11) Randomly select a number 𝑟 ∈ Unif(0, 1).
(12) if 𝑟 < 𝜆 then
(13) if 𝑑

𝑎
< 𝑑
𝑐
then

(14) Bisect 𝐶 in the direction of the maximum length of the edge such that 𝐶 = 𝑉
1
∪ 𝑉
2
.

(15) Delete 𝐶 from listx. Put 𝑉
1
and 𝑉

2
into listx.

(16) Set 𝐴 = 𝑉
1
.

(17) else
(18) Bisect 𝐴 = 𝑉

1
∪ 𝑉
2
. Delete 𝐴 from listx. Put 𝑉

1
and 𝑉

2
into listx.

(19) Set 𝐴 = 𝐶.
(20) end if
(21) else
(22) if 𝑑

𝑎
> 𝑑
𝑐
then

(23) Bisect 𝐴 = 𝑉
1
∪ 𝑉
2
. Delete 𝐴 from listx. Put 𝑉

1
and 𝑉

2
into listx.

(24) Set 𝐴 = 𝑉
1
.

(25) else
(26) Bisect 𝐶 = 𝑉

1
∪ 𝑉
2
. Delete 𝐶 from listx. Put 𝑉

1
and 𝑉

2
into listx.

(27) end if
(28) end if
(29) Calculate fit(𝐴) using Algorithm 7.
(30) 𝑓𝑏𝑒𝑠𝑡 = min{fit(𝐴), 𝑓𝑏𝑒𝑠𝑡}.
(31) Update 𝑇 using annealing schedule.
(32) Check deletion criteria to remove some boxes from listx.
(33) until (stopping criteria are satisfied)

Algorithm 6: Hybrid interval SA.

(1) Randomly select 𝑛
𝑠
points from a given box𝑋 and evaluate 𝑓 of each point.

(2) Let 𝑦 be the minimum value of 𝑓 among the 𝑛
𝑠
sample points.

Algorithm 7: Calculate 𝑦 = fit(𝑋).

in the new generation 𝑛
𝑘
, and the maximum number of

iterations.There are also two procedures that can be changed,
the process of creating a new set of points and the rule for
selecting a new generation (Algorithm 9).

3.3. Integrated Interval Algorithm and GA for Constrained
Problems. The major disadvantage of the interval methods
is that they require more memory and CPU time than
the noninterval algorithms. We propose an algorithm that
integrates a known bound from an interval algorithm and the
quickness of a genetic algorithm. Of course, a certainty of the
solutions is lost. However, an improvement of the quality of
the solution and a reduction of the cost are gained.

Let us first introduce additional functions which will
be used in the algorithm. ifit box(𝑋) is 0 if at least one
feasible point has been found from box 𝑋. Otherwise, it is 1.

Elements of the flag vector 𝑟 corresponding to box𝑋 are 0 or
1. Therefore, we define nviol box(𝑋) to be the sum of the
elements of a flag vector 𝑟. It roughly indicates the amount
of constraint violation for a box 𝑋. The status of a box in the
list is either 0 or 1, since a box with status 2 is discarded right
after becoming known. For constrained problem fun(𝑋) is
modified. The term (ifit box(𝑋) + 1) is added, taking care
of feasibility. Consider

fun (𝑋) = (1 − 𝛽
𝑘
) ∗ fit (𝑋) ∗ (ifit box (𝑋) + 1)

+ 𝛽
𝑘
∗ lb (𝐹 (𝑋)) .

(6)

In the case that a feasible point is not discovered in Step 3
of Algorithm 11, the upper bound of 𝐹(𝑋) will be assigned to
fit(𝑋).
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(1) Subdivide the domainΩ into 𝑛
𝑏
boxes {𝑋

1
, . . . , 𝑋

𝑛𝑏
} and calculate 𝐹(𝑋

𝑖
).

(2) Put the box𝑋
𝑘
along with its lower bound of 𝐹 in listx in nondecreasing order of

lb(𝐹(𝑋
𝑘
)) that is, listx = {(𝑋

𝑘
, lb(𝐹(𝑋

𝑘
)))}.

(3) Set 𝑡 = 0.
(4) LetW

𝑡
be a set of the first 𝑛

𝑤
boxes on listx.

(5) Randomly select 𝑛
𝑝
points fromW

𝑡
and put them in a setP

𝑡
. Evaluate 𝑓 value for each point inW

𝑡
.

(6) Set 𝑓𝑏𝑒𝑠𝑡 to be the minimum value of 𝑓 fromW
𝑡
.

(7) repeat
(8) Generate a new set of 𝑛

𝑝
points,C

𝑡
, fromP

𝑡
using Algorithm 9.

(9) Evaluate 𝑓 value of each point inC
𝑡
. Update 𝑓𝑏𝑒𝑠𝑡.

(10) Let 𝐴 be a box with the maximum value of 𝑓𝑏𝑒𝑠𝑡 − lb(𝐹(𝑋
𝑖
)) where𝑋

𝑖
∈W
𝑡
.

(11) Bisect 𝐴 in the direction of the maximum length of the edge such that 𝐴 = 𝑉
1
∪ 𝑉
2
.

(12) Calculate 𝐹(𝑉
1
) and 𝐹(𝑉

2
).

(13) Remove (𝐴, lb(𝐹(𝐴))) from listx.
(14) Enter the pairs (𝑉

1
, lb(𝐹(𝑉

1
))) and (𝑉

2
, lb(𝐹(𝑉

2
))) into listx in a way that lb(𝐹(𝑉

𝑖
)) do not decrease.

(15) LetW
𝑡+1

be a set of the first 𝑛
𝑤
boxes on listx.

(16) PrepareP
𝑡+1

by choosing 𝑛
𝑘
points with the lowest value of 𝑓 from

the two setsP
𝑡
andC

𝑡
. The other 𝑛

𝑝
− 𝑛
𝑘
points fromW

𝑡+1
.

(17) Delete a pair (𝑉, lb(𝐹(𝑉))) from listx if 𝑓𝑏𝑒𝑠𝑡 < lb(𝐹(𝑉)).
(18) Set 𝑡 = 𝑡 + 1.
(19) until (the stopping condition becomes true)

Algorithm 8: Integrated interval algorithm and GA for unconstrained problem.

Reqiure: a set 𝑃, a number of points𝑚
(1) repeat
(2) Randomly select two points from 𝑃.
(3) Perform linear crossover using Algorithm 10 and put the output points in 𝐶
(4) until (the number of points inC is𝑚)
(5) return a set 𝐶

Algorithm 9: Create a new set of points from a given set 𝑃.

We use a simple GA without mutation in Algorithm 12.
Themutation is omitted because GA will be invoked in every
iteration. The parameters that related to GA are a number of
individuals in each generation and the maximum number of
generations.Thedifference ofAlgorithm 11 andGA is pointed
out next.

In GA, an initial population is randomly chosen from
a search domain. Then this population is evolved through
the three operators crossover, selection, and mutation. The
change of individuals in a population is through the creation
of children and mutation process.

In Algorithm 11, GA is performed in every iteration
with the assigned value of maximum generations, 𝑚𝑎𝑥 𝑔𝑒𝑛.
An initial population consists of the best individual, 𝑥𝑏𝑒𝑠𝑡,
and the individuals randomly chosen from a given box
considered as a potential region for a better solution. In a
big picture, it is similar to performing mutation with the
rate of one at every 𝑚𝑎𝑥 𝑔𝑒n iteration. The mutation is
biased because it is restricted to those in the promising
region, which is listx[idsearch]. After this, the offsprings
and populations are allowed to be in Ω. For Algorithm 11,

the convergence is achieved when no box can be discarded.
Thus those boxes left in the list have𝑤(𝐹) < 𝜖

𝐹
or𝑤(𝑋) < 𝜖

𝑥
.

4. Numerical Results

4.1. Unconstrained Problems. Tables 3 and 6 show the value
of 𝑓𝑏𝑒𝑠𝑡 found by Algorithms 2, 3, 4, 6, and 8 for 𝑛 = 10
and 𝑛 = 20, respectively. The maximum number of iterations
is set to be 400,000 and 600,000. In the tables, A1 stands for
Algorithm 1 and similarly for other algorithms. InAlgorithms
6 and 8, the maximum length of listx, the number of
iterations, and the number of function evaluations are the
maximum number taken over ten runs. The tolerance 𝜖

𝐹
=

10−6 is set. The algorithm is successfully terminated with
𝑤(𝐹(𝑉)) < 10−6 for all ten runs. Since 𝑓𝑏𝑒𝑠𝑡 is in the range of
10−7, the table presents only 1𝐸 − 07.

Table 4 displays the maximum length of listx and the
number of iterations used in algorithm of Ichida-Fujii (A2).
Since A2 uses the least storage, the ratio of the amount of the
storage used by the other algorithms and A2 is presented in
the tables. For example, in problem 1 themaximum list length
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Require: V = (V
1
, . . . , V

𝑛
), 𝑤 = (𝑤

1
, . . . , 𝑤

𝑛
) where 𝑙

𝑖
≤ V
𝑖
, 𝑤
𝑖
≤ 𝑢
𝑖
, 𝑖 = 1, . . . , 𝑛

(1) Randomly select an integer 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}.
(2) Randomly select 𝑎 from the following given interval.
(3) if V

𝑘
> 𝑤
𝑘
, 𝑎 ∈ [max ((𝑙

𝑘
− 𝑤
𝑘
) / (V
𝑘
− 𝑤
𝑘
) , (𝑢
𝑘
− V
𝑘
) / (𝑤

𝑘
− V
𝑘
)) ,min ((𝑙

𝑘
− V
𝑘
) / (𝑤

𝑘
− V
𝑘
) , (𝑢
𝑘
− 𝑤
𝑘
) / (V
𝑘
− 𝑤
𝑘
))].

(4) if V
𝑘
= 𝑤
𝑘
, 𝑎 = 0.

(5) if V
𝑘
< 𝑤
𝑘
, 𝑎 ∈ [max ((𝑙

𝑘
− V
𝑘
) / (𝑤

𝑘
− V
𝑘
) , (𝑢
𝑘
− 𝑤
𝑘
) / (V
𝑘
− 𝑤
𝑘
)) ,min ((𝑙

𝑘
− 𝑤
𝑘
) / (V
𝑘
− 𝑤
𝑘
) , (𝑢
𝑘
− V
𝑘
) / (𝑤

𝑘
− V
𝑘
))].

(6) V = (V
0
, . . . , V

𝑘−1
, 𝑎𝑤
𝑘
+ (1 − 𝑎)V

𝑘
, . . . , 𝑎𝑤

𝑛−1
+ (1 − 𝑎)V

𝑛−1
).

(7) 𝑤 = (𝑤
0
, . . . , 𝑤

𝑘−1
, 𝑎V
𝑘
+ (1 − 𝑎)𝑤

𝑘
, . . . , 𝑎V

𝑛−1
+ (1 − 𝑎)𝑤

𝑛−1
).

(8) return V, 𝑤

Algorithm 10: Linear crossover (Michalewicz [3]).

(1) Set 𝑇 = 𝑇init.
(2) Subdivide Ω into 𝑛

𝑏
boxes and put them in listx.

(3) Calculate fit(𝑋) using Algorithm 7 for every box in listx and set the value of ifit box(𝑋).
(4) 𝑓𝑏𝑒𝑠𝑡 = min{fit(𝑋)} where𝑋 ∈ listx.
(5) Randomly choose an integer idactive ∈ {1, . . . , 𝑛

𝑙
}. Denote the box in listx[idactive] by 𝐴.

(6) Calculate nviol box(𝐴) and 𝐹(𝐴).
(7) repeat
(8) Randomly choose an integer idnew ∈ {1, . . . , 𝑛

𝑙
} \ {idactive}. Let 𝐶 be the box in listx[idnew].

(9) Calculate nviol box(𝐶) and 𝐹(𝐶).
(10) Calculate 𝜆 = exp(−(fun(𝐶)− fun(𝐴))/𝑇) where fun is defined in (6).
(11) Randomly select a number 𝑟 ∈ Unif(0, 1).
(12) If 𝑟 < 𝜆 then
(13) idsearch = idactive

(14) else
(15) idsearch = idnew

(16) end if
(17) Perform GA by using Algorithm 12.
(18) Let idbisect be an integer corresponding to the box with max{nviol box(𝐶), nviol box(𝐴)}.
(19) Bisect the box from listx[idbisect] as 𝑉

1
and 𝑉

2
.

(20) Delete listx[idbisect].
(21) Check status of 𝑉

1
and 𝑉

2
. Discard the box with status 2.

(22) Put 𝑉
1
and 𝑉

2
at the bottom of listx.

(23) if (idsearch == idbisect) then
(24) idactive = 𝑛

𝑙

(25) else
(26) idactive = idsearch

(27) end if
(28) Check deletion criteria to remove some boxes from listx.
(29) Update 𝑇 using annealing schedule.
(30) Update 𝛽

𝑡
.

(31) until (stopping criteria are satisfied)

Algorithm 11: Integrated interval algorithm and GA for constrained problems.

(1) Set up an initial population 𝑃
0
. It consists of 𝑥𝑏𝑒𝑠𝑡 and the other 𝑛 𝑝𝑜𝑝 − 1 points from the box corresponding to idsearch.

(2) for 𝑖 = 1 to max 𝑔𝑒𝑛 do
(3) Use linear crossover, Algorithm 10, produces a set of individuals 𝐶 where 𝐶 ⊂ Ω.
(4) Choose the 𝑛 𝑝𝑜𝑝 best from 𝐶 and 𝑃

𝑖
and put them in 𝑃

𝑖+1
. For

feasible, the less 𝑓 value is the better. For infeasible, the less violation,
measured by ∑𝑛𝑔

𝑗=1
max{𝑔

𝑗
(𝑥), 0} + ∑

𝑛ℎ

𝑗=1
|ℎ
𝑗
(𝑥)|, is the better.

(5) Update 𝑓𝑏𝑒𝑠𝑡 and fit value of the box if it applies.
(6) end for

Algorithm 12: GA (idsearch, max 𝑔𝑒𝑛, 𝑥𝑏𝑒𝑠𝑡, 𝑛 𝑝𝑜𝑝,Ω).
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Table 3: The value of 𝑓𝑏𝑒𝑠𝑡 from A2, A3, A4, A6, and A8 for 𝑛 = 10.

fn A2 A3 A4 A6 A8
Ichida-Fujii Hansen SA Hybrid ISA Intv and GA

1 4.8𝐸 − 07 9 1.8𝐸 − 06 1.𝐸 − 07 1.𝐸 − 07

2 8.9𝐸 − 07 24.918 7.8𝐸 − 09 1.𝐸 − 07 1.𝐸 − 07

3 9.3𝐸 − 07 5.6𝐸 − 14 7.4𝐸 − 09 1.𝐸 − 07 1.𝐸 − 07

4 6.0𝐸 − 07 0.156 0 1.𝐸 − 07 1.𝐸 − 07

5 6.0𝐸 − 07 7.5𝐸 − 08 0 1.𝐸 − 07 1.𝐸 − 07

6 9.2𝐸 − 07 1.1𝐸 − 13 9.5𝐸 − 09 1.𝐸 − 07 1.𝐸 − 07

7 8.0𝐸 − 07 44.761 16.0625 1.𝐸 − 07 1.𝐸 − 07

8 7.7𝐸 − 07 1.063 0.1156 1.𝐸 − 07 1.𝐸 − 07

9 1.0𝐸 − 06 1.061 0.2249 1.𝐸 − 07 1.𝐸 − 07

10 1.0𝐸 − 06 6.731 1.3388 1.𝐸 − 07 1.𝐸 − 07

11 8.5𝐸 − 07 0.532 0.7077 1.𝐸 − 07 1.𝐸 − 07

Table 4: The maximum list length from A2 and the ratio of the maximum list length from A3, A6, and A8 to the maximum list length from
A2 when 𝑛 = 10. Also the result of the number of iterations.

fn Max length Ratio Number of iterations Ratio
A2 A3 A6 A8 A2 A3 A6 A8

1 188 232.7 4.2 1.1 682 586.5 5.1 1.1
2 38 1930 6.2 1.2 153 2614.4 10 1
3 22 407.7 13.6 1.6 159 2331.7 14.3 1.1
4 36 1129.4 5.3 1.3 239 1673.6 8.5 1.1
5 3 1 69 87 239 1.17 0.10 0.09
6 23 377.5 13.9 1.7 177 1294.8 10.3 1
7 52 6133.6 3.8 1.4 166 2409.6 5.4 1
8 50 3492.6 4.4 1.3 176 2272.7 5.9 1.1
9 44 3968.9 6.5 1.4 171 2339.2 6.3 1
10 49 3713 4.8 1.4 171 2339.2 7.1 1
11 112 1689.4 5.4 1 209 1913.9 7 1.1

of A4 is 4.2 times of the maximum list length of A1, which is
about 1714. Table 5 shows the number of function evaluations
of A2 and the ratio of the number of function evaluations
used by the other algorithms and A2 for 𝑛 = 10. Tables 6,
7, 8, and 9 present similar results for 𝑛 = 20, 40 and 100,
respectively.

The observations from the numerical results are the
following.

(1) Ichida-Fujii (A2) works best.
(2) Our proposed algorithms (A6 and A8) are faster than

SA (A4) and Hansen (A3).
(3) The hybrid interval SA (A6) can handle a higher

dimensional domain better than SA (A4).
(4) Maximum list length used by A6 and A8 is mostly

about 1-2 times of the used by A2 for 𝑛 = 20, 40, 100
even though A8 uses a lot more of function evalua-
tions. It implies that an effort on function evaluations
does not contribute much to the reduction of the
boxes. However, it shows that the structure of the
algorithm can keep the storage under control. It
suggests using a small number of sample points or
number of individuals in the population.

(5) Algorithms 6 and 8 use a lot more storage than A2
in problem 5 but works better when the dimension is
higher.

(6) Even if the algorithm found a high quality of 𝑓𝑏𝑒𝑠𝑡 at
an early iteration, it may not be able to discard some
boxes right away because those boxes are not small
enough that the condition on the value of the lower
bound of𝐹will be satisfied. At each iteration only one
box is bisected; the removing process is put on hold.

(7) When 𝑛 = 100, Algorithm 6 does not work for
problem 11. The termination is due to the memory
before the reasonable result is obtained.

(8) Algorithm 6 still works quite well when 𝑛 is higher,
but the population based method, A8, shows the
trouble with the memory.

The result suggests that the structure of the algorithm as
in A6 seems to handle the length and the number of function
evaluations quite well. However, using population based
method captures the best faster. Therefore, the number of
populations and the maximum generation must be adjusted
for not having to waste too much of the number of function
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Table 5: The total number of function evaluations both 𝐹 and 𝑓 from A2 and the ratio of the number of function evaluations from A3, A6,
and A8 to the number of function evaluations from A2 when 𝑛 = 10.

fn # 𝑓 eval Ratio
A2 A3 A4 A6 A8

1 2734 585.2 1406 15.4 4.7
2 618 2589 6262.1 26.9 4.2
3 642 2309.9 4135.5 42.7 4.7
4 962 1663.2 3355.5 784.1 4.5
5 962 1.17 1024.95 4.92 8.45
6 714 1283.9 3721.3 30.8 4.2
7 670 2388.1 3567.2 16 4.3
8 710 2253.5 2925.4 17.7 4.5
9 690 2318.8 2995.7 20.2 4.3
10 690 2318.8 3042 21.1 4.4
11 842 1900.2 2663.9 20.8 4.6

Table 6: The value of 𝑓𝑏𝑒𝑠𝑡 of A2, A3, A4, A6, and A8 for 𝑛 = 20.

fn A2 A3 A4 A6 A8
Ichida-Fujii Hansen SA Hybrid ISA Intv and GA

1 9.8𝐸 − 07 19 3.23𝐸 − 06 1.𝐸 − 07 1.𝐸 − 07

2 3.4𝐸 − 07 220.313 6.07𝐸 − 08 1.𝐸 − 07 1.𝐸 − 07

3 9.3𝐸 − 07 500 2.05𝐸 − 08 1.𝐸 − 07 1.𝐸 − 07

4 9.5𝐸 − 07 21 0 1.𝐸 − 07 1.𝐸 − 07

5 5.9𝐸 − 07 3.8𝐸 − 05 1 1.𝐸 − 07 1.𝐸 − 07

6 9.9𝐸 − 07 5105 1.40𝐸 − 08 1.𝐸 − 07 1.𝐸 − 07

7 9.6𝐸 − 07 381.58 46.7629 1.𝐸 − 07 1.𝐸 − 07

8 9.6𝐸 − 07 1.1250 0.0172361 1.𝐸 − 07 1.𝐸 − 07

9 9.3𝐸 − 07 1.1249 0.0394193 1.𝐸 − 07 1.𝐸 − 07

10 9.3𝐸 − 07 9.5609 1.72853 1.𝐸 − 07 1.𝐸 − 07

11 9.2𝐸 − 07 3.8742 4.49503 1.𝐸 − 07 1.𝐸 − 07

evaluations. This information influences the development of
A11 for constrained problems.

4.2. Constrained Problems. The parameters setting for Algo-
rithm 11 is described next. The maximum generation for GA
in each iteration is set to be in the range of 15 and 25. The
population size is 8–16 depending on the size of the domain.
An initial 𝛽 is 1. Both cooling temperature and a sequence of
𝛽 are linearly decreasing. A parameter 𝑛

𝑏
, line 2 of A11, is set

to be 2.
In problems 2, 3, and 5, Algorithm 11 is terminated with

the condition that no box in the list can be processed (𝑤(𝑋) ≤
10−6 or 𝑤(𝐹(𝑋)) ≤ 10−6). The other problems are terminated
with the maximum iterations 10,000.

Table 10 shows information about the problem and the
experimental results: the dimension, the number of con-
straints, the maximum width of the search domain, the
error of 𝑓𝑏𝑒𝑠𝑡 found by Algorithm 11, and the error from
regular GA. The seventh column is the ratio of the number
of function evaluations used by GA to the number used
by Algorithm 11. GA usually uses more of the number of
function evaluations except for the last two problems that
it uses about the same amount of number of function

evaluations but Algorithm 11 discovers better solutions. The
last column shows the percentage of the reduction of the
number of function evaluations when Algorithm 11 is used.

Algorithm 11 successfully found optimal solutions with
the condition of no box to be processed in problems 2, 3,
and 5. For the other problems, A11 reports better solutions
with less number of function evaluations compared with the
traditional GA.

Notice that the test problems only consist of inequality
constraints. For the equality constraints or the mixed one,
the results are not impressive.The branch and bound process
does not provide good information about solutions at an early
stage.All boxes in the list still have status 1when the algorithm
reaches the maximum number of iterations.

5. Conclusions

We proposed two hybrid algorithms for unconstrained prob-
lems, Algorithms 6 and 8. Metropolis criterion is used for
choosing a search box. Algorithm 6 performs the search by
random sampling and Algorithm 8 by GA. The box to be
bisected is considered by the maximum difference of the
best value found by the algorithm and the lower bound of
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Table 7: The maximum list length from A2 and the ratio of the maximum list length from A3, A6, and A8 to the maximum list length from
A2 when 𝑛 = 20. Also the result of the total number of function evaluations (𝐹 and 𝑓).

fn Length Ratio # fn eval Ratio
A2 A3 A6 A8 A2 A3 A4 A6 A8

1 408 8.67 1.12 2.1 6094 33.31 454.71 2.81 31.17
2 113 6.27 0.74 0.99 1250 17.65 3483.2 2.91 18.68
3 56 9.77 1.29 2.38 1426 32.16 1922.86 3.01 30.79
4 96 2.85 1.06 1.25 2114 6.02 470.67 2.97 19.13
5 3 1 139.67 175.67 1932 0.75 735.51 4.79 8.47
6 56 8.3 1.46 1.57 1434 19.67 1794.98 3.17 20.15
7 102 3.76 1.32 1.44 1350 13.6 1758.52 3.18 20.2
8 107 8.10 1.21 1.26 1414 14.77 1412.31 3.14 20.27
9 92 9.84 1.34 1.35 1382 18.42 1422.58 3.04 19.34
10 106 4.9 1.15 1.21 1382 18.93 1470.33 3.06 19.57
11 234 9.14 1.07 1.04 1898 28.59 1190.73 2.98 19.2

Table 8: The maximum list length from A2 and the ratio of the maximum list length from A6 and A8 to the maximum list length from A2
when 𝑛 = 40. Also the result of the total number of function evaluations (𝐹 and 𝑓).

fn Max length Ratio # fn eval Ratio
A2 A6 A8 A2 A6 A8

1 858 1.16 1.23 12494 2.66 20.05
2 187 0.44 1.21 2502 2.82 18.94
3 147 1.06 1.07 2870 2.84 19.75
4 222 1.20 1.20 4282 2.80 19.53
5 3 27.00 27.67 3842 3.07 4.48
6 143 1.34 1.33 2878 2.96 20.80
7 278 1.01 1.05 2718 2.97 20.92
8 213 1.28 1.28 2830 2.96 20.22
9 178 1.39 1.40 2762 2.83 19.80
10 210 1.21 1.25 2762 2.85 19.72
11 541 3.00 35.80 3834 6.85 401.70

an inclusion function of the box. Both of them perform
better than the traditional SA and Hansen’s algorithm, where
the bisected box is considered by age. The structure of
Algorithm 6 is modified to handle constrained problem,
Algorithm 11.

The contribution of our proposed Algorithm 11 is a
good structure of the algorithm which gives the following
advantages.

(1) It reduces the number of function evaluations of the
regular genetic algorithm.

(2) If the problem is not so complicated, the solution is
ensured by the branch and bound process. This is the
advantage of our hybrid algorithm over GA. If the
storage is limited, the quality of the reported solution
is still acceptable. Moreover, the region that might
contain optimum is still in the list. If required, the
local search can be applied to that region.

(3) The branch and bound process, which is easy to
implement, is responsible for providing the potential

individuals for GA. It can be viewed as acceleration
for GA.

One weak point of our algorithms is that the deletion
process is not activated until the box is small enough,
although a high quality 𝑓𝑏𝑒𝑠𝑡 is found in an early iteration.

A further study includes the division of a box and the
technique for handling equality constraints.

Appendices

A. Unconstrained Problems [1]

(1) Modified Rosenbrock function over [−100, 100]𝑛

𝑓 (𝑥) =
𝑛−1

∑
𝑖=1

[100 (𝑥
𝑖+1

− 𝑥2
𝑖
)
2

+ (1 − 𝑥
𝑖
)
2

] . (A.1)

(2) Zakharov function over [−9, 11]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥2
𝑖
+ (0.5

𝑛

∑
𝑖=1

𝑖𝑥
𝑖
)

2

+ (0.5
𝑛

∑
𝑖=1

𝑖𝑥
𝑖
)

4

. (A.2)
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Table 9:Themaximum list length fromA2 and the ratio of the maximum list length fromAlgorithms A6 and A8 to the maximum list length
from A2 when 𝑛 = 100. Also the result of the total number of function evaluations (𝐹 and 𝑓).

fn Max length Ratio # fn eval Ratio
A2 A6 A8 A2 A6 A8

1 2238 1.24 1.32 2238 2.96 3.27
2 465 1.41 1.63 465 3.36 6.33
3 389 1.18 2.29 389 3.26 5.24
4 742 1.03 1.04 742 3.22 3
5 3 69.33 69.67 3 3.37 3
6 383 1.42 1.43 383 3.33 3
7 710 1.1 1.11 710 3.03 3
8 655 1.05 1.05 655 3.26 3.02
9 465 1.3 1.3 465 3.12 3.01
10 524 1.24 1.25 524 3.12 3
11 1586 1.02 — 1586 2.98 —

Table 10: The result of constrained problems. The ratio in the seventh column is the ratio of number of functions evaluations used by GA to
the number used by A11. The last column is the percentage of the number of function evaluations that can be reduced when using A11.

fn Dim # constr Max width Error A11 Error GA Ratio % reduction
c1 2 2 100 5.1𝐸 − 04 4.9𝐸 − 03 1.84 45.72
c2 2 2 10 0 6.8𝐸 − 03 659.76 99.85
c3 2 1 1 0 6.6𝐸 − 02 178.97 99.44
c4 2 2 6 5.5𝐸 − 05 2.3𝐸 − 03 1.93 99.44
c5 5 6 24 0 1.4𝐸 − 04 1.42 29.74
c6 6 4 0.31 2.0𝐸 − 04 4.1𝐸 + 01 1.98 49.6
c7 6 6 30 9.6𝐸 − 03 9.0𝐸 − 02 1.93 48.29
c8 7 4 100 6.9𝐸 − 03 1.7𝐸 − 02 11.87 48.29
c9 8 6 100 9.1𝐸 − 03 8.2𝐸 − 02 1.00 0.19
c10 13 9 100 4.0𝐸 − 05 1.3𝐸 − 03 1.00 0.45

(3) Sphere function over [−95, 105]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥2
𝑖
. (A.3)

(4) Schwefel function 2.22 over [−10, 8]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥𝑖
 +
𝑛

∏
𝑖=1

𝑥𝑖
 . (A.4)

(5) Schwefel function 2.21 over [−100, 80]𝑛

𝑓 (𝑥) =
𝑛max
𝑖=1

{
𝑥𝑖
} . (A.5)

(6) Step function over [−100, 200]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

(𝑥
𝑖
+ 0.5)

2

. (A.6)

(7) Generalized Rastrigin function over [−6.12, 5.12]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

(𝑥2
𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) . (A.7)

(8) Modified Griewank function over [−590, 600]𝑛

𝑓 (𝑥) = 1 +
𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−
𝑛

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) . (A.8)

(9) Another modified Griewank function over
[−590, 600]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−
𝑛

∏
𝑖=1

[2 + cos (𝑥
𝑖
/√𝑖)]

3
+ 1. (A.9)

(10) Locatelli’s modification #2 of Griewank function over
[−590, 600]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−
𝑛

∑
𝑖=1

ln [2 + cos(
𝑥
𝑖

√𝑖
)] + 𝑛 ln 3. (A.10)

(11) Locatelli’s modification #3 of Griewank function over
[−590, 600]𝑛

𝑓 (𝑥) =
𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−
𝑛

∑
𝑖=1

ln[

[

2 + cos(
𝑛

∑
𝑗=1

𝐴
𝑖𝑗
𝑥
𝑗
)]

]

+ 𝑛 ln 3,

(A.11)
where 𝐴

𝑖𝑗
= 1 if 𝑖 ̸= 𝑗 and 𝐴

𝑖𝑖
= 𝑛 + 1.
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B. Constrained Problems [3, 19]

(c1) min𝑓(𝑥) = (𝑥
1
− 10)3 + (𝑥

2
− 20)3 subject to

𝑔
1
(𝑥) = (𝑥

1
− 5)2 + (𝑥

2
− 5)2 + 100 ≤ 0

𝑔
2
(𝑥) = (𝑥

1
− 5)2 + (𝑥

2
− 5)2 − 82.81 ≤ 0

The bounds: 𝐿 = (13, 0) and 𝑈 = (100, 100)

𝑥∗ = (14.095, 0.84296), 𝑓(𝑥∗) = −6961.81388

(c2) max𝑓(𝑥) = sin3(2𝜋𝑥
1
) sin(2𝜋𝑥

2
)/𝑥3
1
(𝑥
1
+ 𝑥
2
) sub-

ject to
𝑔
1
(𝑥) = 𝑥2

1
− 𝑥
2
+ 1 ≤ 0

𝑔
2
(𝑥) = 1 − 𝑥

1
+ (𝑥
2
− 4)2 ≤ 0

The bounds: 𝐿 = (0, 0) and 𝑈 = (10, 10)

𝑥∗ = (1.2279713, 4.2453733), 𝑓(𝑥∗) = 0.095825
(c3) min𝑓(𝑥) = −𝑥

1
− 𝑥
2
subject to

𝑔
1
= −(3/32)[(𝑥

1
−1)2+(𝑥

2
−1)2]−(3/16)(𝑥

1
−1)(𝑥

2
−

1) ≤ 0

The bounds: 𝐿 = (0, 0) and 𝑈 = (1, 1)

𝑓(𝑥∗) = −1.8729

(c4) min𝑓(𝑥) = (𝑥2
1
+ 𝑥
2
− 11)2 + (𝑥2

2
+ 𝑥
1
− 7)2 subject to

𝑔
1
= −4.84 + (𝑥

1
− 0.05)2 + (𝑥

2
− 2.5)2 ≤ 0

𝑔
2
= 4.84 − 𝑥2

1
− (𝑥
2
− 2.5)2 ≤ 0

The bounds: 𝐿 = (0, 0) and 𝑈 = (6, 6)

𝑓(𝑥∗) = 13.59085

(c5) min𝑓(𝑥) = 5.3578547𝑥23 + 0.8356891𝑥1𝑥5 +
37.293239𝑥1 − 40792.141 subject to
𝑔
1
(𝑥) = 𝑢(𝑥) − 92 ≤ 0

𝑔
2
(𝑥) = −𝑢(𝑥) ≤ 0

𝑔
3
(𝑥) = V(𝑥) − 110 ≤ 0

𝑔
4
(𝑥) = −V(𝑥) + 90 ≤ 0

𝑔
5
(𝑥) = 𝑤(𝑥) − 25 ≤ 0

𝑔
6
(𝑥) = −𝑤(𝑥) + 20 ≤ 0 where

𝑢(𝑥) = 85.334407+0.0056858𝑥
2
𝑥
5
+0.0006262𝑥

1
𝑥
4
−

0.0022053𝑥
3
𝑥
5

V(𝑥) = 80.51249 + 0.0071317𝑥
2
𝑥
5
+ 0.0029955𝑥

1
𝑥
2
+

0.0021813𝑥2
3

𝑤(𝑥) = 9.300961+0.0047026𝑥
3
𝑥
5
+0.0012547𝑥

1
𝑥
3
+

0.0019085𝑥
3
𝑥
4

The bounds: 𝐿 = (78, 33, 27, 27, 27) and 𝑈 =
(102, 45, 45, 45, 45)

𝑥∗ =(78, 33, 29.995256025682, 45,36.775812905788),
𝑓(𝑥∗) = −30665.539

(c6) min𝑓(𝑥) = 4.3𝑥
1
+31.8𝑥

2
+63.3𝑥

3
+15.8𝑥

4
+68.5𝑥

5
+

4.7𝑥
6
subject to

𝑔
1
= 4.97 − 17.1𝑥

1
− 38.2𝑥

2
− 204.2𝑥

3
− 212.3𝑥

4
−

623.4𝑥
5
−1495.5𝑥

6
+169𝑥

1
𝑥
3
+3580𝑥

3
𝑥
5
+3810𝑥

4
𝑥
5
+

18500𝑥
4
𝑥
6
+ 24300𝑥

6
𝑥
5
≤ 0

𝑔
2
= −1.88 − 17.9𝑥

1
− 36.8𝑥

2
− 113.9𝑥

3
− 169.7𝑥

4
−

337.8𝑥
5
−1385.2𝑥

6
+139.0𝑥

1
𝑥
3
+2450𝑥

4
𝑥
5
+600𝑥

4
𝑥
6
+

17200𝑥
6
𝑥
5
≤ 0

𝑔
3
= −429.08+273𝑥

2
+70𝑥
4
+819𝑥

5
−26000𝑥

4
𝑥
5
≤ 0

𝑔
4
= −78.02 − 159.9𝑥

1
+ 311𝑥

2
− 587𝑥

4
− 391𝑥

5
−

2198𝑥
6
+ 14000𝑥

1
𝑥
6
≤ 0

The bounds: 𝐿 = (0, 0, 0, 0, 0, 0) and 𝑈 = (0.31, 0.046,
0.068, 0.042, 0.028, 0.0134)

𝑓(𝑥∗) = 0.0156

(c7) min𝑓(𝑥) = −25(𝑥
1
− 2.0)2 − (𝑥

2
− 2)2 − (𝑥

3
− 1.0)2 −

(𝑥
4
− 4.0, 2)2 − (𝑥

5
− 1.0)2 − (𝑥

6
− 4.0)2 subject to

𝑔
1
= −(𝑥

3
− 3)2 − 𝑥

4
+ 4 ≤ 0

𝑔
2
= −(𝑥

5
− 3)2 − 𝑥

6
+ 4 ≤ 0

𝑔
3
= 𝑥
1
− 3𝑥
2
− 2 ≤ 0

𝑔
4
= −𝑥
1
+ 𝑥
2
− 2 ≤ 0

𝑔
5
= 𝑥
1
+ 𝑥
2
− 6 ≤ 0

𝑔
6
= −𝑥
1
− 𝑥
2
+ 2 ≤ 0

The bounds: 𝐿 = (0, 0, 1, 0, 1) and 𝑈 = (30, 30, 5, 6, 5)

𝑓(𝑥∗) = −310

(c8) min𝑓(𝑥) = (𝑥
1
−10)2+5(𝑥

2
−12)2+𝑥4

3
+3(𝑥
4
−11)2+

10𝑥6
5
+ 7𝑥2
6
+ 𝑥4
7
− 4𝑥
6
𝑥
7
− 10𝑥

6
− 8𝑥
7
subject to

𝑔
1
(𝑥) = 2𝑥2

1
+ 3𝑥4
2
+ 𝑥
3
+ 4𝑥2
4
+ 5𝑥
5
− 127 ≤ 0

𝑔
2
(𝑥) = 7𝑥

1
+ 3𝑥
2
+ 10𝑥2

3
+ 𝑥
4
− 𝑥
5
− 282 ≤ 0

𝑔
3
(𝑥) = 23𝑥

1
+ 𝑥2
2
+ 6𝑥2
6
− 8𝑥
7
− 196 ≤ 0

𝑔
4
(𝑥) = 4𝑥2

1
+ 𝑥2
2
− 3𝑥
1
𝑥
2
+ 2𝑥2
3
+ 5𝑥
6
− 11𝑥

7
≤ 0

The bounds: 𝐿 = (−10, . . . , −10) and 𝑈 = (10, . . . , 10)

𝑥∗ = (2.330499, 1.951372, −0.4775414, 4.365726,
−0.6244870, 1.038131, 1.594227),
𝑓(𝑥∗) = 680.6300573

(c9) min𝑓(𝑥) = 𝑥
1
+ 𝑥
2
+ 𝑥
3
subject to

𝑔
1
(𝑥) = −1 + 0.0025(𝑥

4
+ 𝑥
6
) ≤ 0

𝑔
2
(𝑥) = −1 + 0.0025(−𝑥

4
+ 𝑥
5
+ 𝑥
7
) ≤ 0

𝑔
3
(𝑥) = −1 + 0.01(−𝑥

5
+ 𝑥
8
) ≤ 0

𝑔
4
(𝑥) = 100𝑥

1
−𝑥
1
𝑥
6
+ 833.33252𝑥

4
− 83333.333 ≤ 0

𝑔
5
(𝑥) = 𝑥

2
𝑥
4
− 𝑥
2
𝑥
7
− 1250𝑥

4
+ 1250𝑥

5
≤ 0

𝑔
6
(𝑥) = 𝑥

3
𝑥
5
− 𝑥
3
𝑥
8
− 2500𝑥

5
+ 1250000 ≤ 0

The bounds: 𝐿 = (100, 1000, 1000, 10, . . . , 10) and
𝑈 = (10000, 10000, 10000, 1000, . . . , 1000)

𝑥∗ = (579.3167, 1359.943, 5110.071, 182.0174,
295.5985, 217.9799, 286.4162, 395.5979),
𝑓(𝑥∗) = 7049.3307

(c10) min𝑓(𝑥) = 5∑4
𝑖=1
𝑥
𝑖
− 5∑
4

𝑖=1
𝑥2
𝑖
− ∑
13

𝑖=5
𝑥
𝑖
subject to

𝑔
1
(𝑥) = 2𝑥

1
+ 2𝑥
2
+ 𝑥
10
+ 𝑥
11
− 10 ≤ 0

𝑔
2
(𝑥) = 2𝑥

1
+ 2𝑥
3
+ 𝑥
10
+ 𝑥
12
− 10 ≤ 0
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𝑔
3
(𝑥) = 2𝑥

2
+ 2𝑥
3
+ 𝑥
11
+ 𝑥
12
− 10 ≤ 0

𝑔
4
(𝑥) = −8𝑥

1
+ 𝑥
10
≤ 0

𝑔
5
(𝑥) = −8𝑥

2
+ 𝑥
11
≤ 0

𝑔
6
(𝑥) = −8𝑥

3
+ 𝑥
12
≤ 0

𝑔
7
(𝑥) = −2𝑥

4
− 𝑥
5
+ 𝑥
10
≤ 0

𝑔
8
(𝑥) = −2𝑥

6
− 𝑥
7
+ 𝑥
11
≤ 0

𝑔
9
(𝑥) = −2𝑥

8
− 𝑥
9
+ 𝑥
12
≤ 0

The bounds: 𝐿 = (0, . . . , 0) and 𝑈 = (1, . . . , 1, 100,
100, 100, 1)

𝑥∗ = (1, . . . , 1, 3, 3, 3, 1), 𝑓(𝑥∗) = −15.
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