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A combination of homotopy perturbationmethod and Sumudu transform is applied to find exact and approximate solution of space
and time fractional nonlinear Schrödinger equation. The fractional derivatives are described in the Caputo sense. The solutions
are given in the form of convergent series with easily computable components. The results show that the method is effective and
convenient for solving nonlinear differential equations of fractional order.

1. Introduction

Fractional calculus is a generalization of differentiations
and integrations of integer order to arbitrary orders [1–
7]. Fractional calculus has attracted much attention due to
its appearance and numerous applications in science and
engineering during the last decades. Many problems in
physics, biology, and engineering are modulated in terms of
fractional differential and integral equations such as acous-
tics, diffusion, signal processing, electrochemistry, systems
identification, finance, fractional dynamics, nanotechnol-
ogy, fluid dynamics, stochastic dynamical system, plasma
physics and controlled thermonuclear fusion, nonlinear con-
trol theory, image processing, nonlinear biological systems,
astrophysics, and maybe other physical phenomena [8–13].
Recently, there is a very comprehensive literature dealing
with the problems of finding exact and approximate solu-
tions of fractional differential equations. The solutions of
fractional equations are investigated by many authors using
powerful analytical methods. For example, the homotopy

perturbation method [14–16], the Adomian decomposition
method [17–19], the variational iteration method [20–22],
the differential transform method [23–25], the fractional
Riccati expansion method [26], the fractional subequation
method [27, 28], the homotopy analysis method [29, 30],
and the fractional complex transform [31]. Watugala [32]
introduced Sumudu transform and used it in obtaining
the solution of ordinary differential equations in control
engineering problems.Thismethodhas been implemented by
many authors in investigating various types of problems [33–
40]. The homotopy perturbation Sumudu transform method
(HPSTM) is a combination of the Sumudu transformmethod
and homotopy perturbation method. It is applied to solve
numerous linear and nonlinear partial differential equations
[41–47].

Schrödinger equation is one of the most important mod-
els inmathematical physics; it arises inmany physical systems
with applications to numerous fields [48] such as nonlinear
optics [49], dynamics of accelerators [50], mean-field theory
of Bose-Einstein condensates [51, 52], and plasma physics
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[53]. The fractional Schrödinger equation is a developing
part of quantum physics which studies nonlocal quantum
phenomena. Naber [54] studied time fractional Schrödinger
equation in sense of Caputo derivative. Wang and Xu [55]
generalized the linear Schrödinger equation to space-time
fractional one and studied the problem by using integral
transform technique. Jiang [56] obtained the time dependent
solutions in terms of 𝐻-function to a linear space-time
fractional Schrödinger equation containing a nonlocal term.
Ford et al. [57] introduced a numerical method to solve
a linear fractional Schrödinger equation in the case where
the space has dimension two; they obtained the stability
conditions for a finite difference scheme. In recent years,
nonlinear fractional Schrödinger equation has attracted sev-
eral researchers. The existence and uniqueness of the global
solution to the periodic boundary value problem of fractional
nonlinear Schrödinger equations are proved based on energy
method [58] and Faedo-Galërkin method [59]. Analytical
and numerical methods have been investigated for time
fractional nonlinear Schrödinger equation [18, 60–62]. Very
few theoretical and numerical analyses have been carried
out for nonlinear Schrödinger equations with both space
and time fractional derivatives. Herzallah and Gepreel [19]
constructed an approximate solution for the cubic nonlinear
fractional Schrödinger equation with time and space frac-
tional derivatives using Adomian decomposition method.
Hemida et al. [29] used a homotopy analysis method to
construct approximate solutions for the space-time fractional
nonlinear Schrödinger equation.

In this paper, we applied the homotopy perturbation
Sumudu transform method (HPSTM) to obtain the ana-
lytical exact and approximate solutions for the fractional
Schrödinger equation with space and time fractional deriva-
tives of the form

𝑖𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = 𝑐

1
𝐷
𝛽

𝑥
𝑈 (𝑥, 𝑡) + 𝑉 (𝑥)𝑈 (𝑥, 𝑡)

+ 𝑐
2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

, 𝑈 (𝑥, 0) = 𝑓 (𝑥) ,

(1)

where𝛼 and𝛽 are parameters describing the order of the time
and space fractional derivatives of 𝑈(𝑥, 𝑡), respectively, and
they satisfy 0 < 𝛼 ≤ 1, 1 < 𝛽 ≤ 2, 𝑡 > 0, 𝑉(𝑥) is the
trapping potential, 𝑐

1
, 𝑐
2
are constants, and 𝑓(𝑥) is the initial

condition [19]. The fractional derivatives are considered in
the Caputo sense. In the case of 𝛼 = 1 and 𝛽 = 2, (1) reduces
to the classical Schrödinger equation. The solution of (1) is
obtained for linear case when 𝑐

2
= 0 and nonlinear case when

𝑐
2

̸= 0. Moreover, this method is applied in approximating
the solution of the problem in the case of nonzero trapping
potential when 𝑉(𝑥) ̸= 0.

The rest of this work is organized as follows. In Section 2,
we provide some preliminaries. Section 3 introduces the
concept of homotopy perturbation method, while Section 4
gives the Sumudu transform. The homotopy perturbation
Sumudu transform method (HPSTM) is analyzed in Sec-
tion 5. Applications of numerical examples are provided in
Section 6. The conclusions are given in Section 7.

2. Preliminaries

Definition 1. The Caputo fractional derivative of order 𝛼 > 0

of a function 𝑓(𝑥), 𝑥 > 0, is defined by [4, 10]

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

{{{

{{{

{

1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑡) 𝑑𝑡, 𝑛 − 1 < 𝛼 ≤ 𝑛 ∈ N

𝑑
𝑛

𝑑𝑥𝑛
𝑓 (𝑥) , 𝛼 = 𝑛 ∈ N,

(2)

where𝐷
𝛼

𝑥
is called the Caputo derivative operator.

Definition 2. The Mittag-Leffler function with two parame-
ters is defined by [63, 64]

𝐸
𝛼,𝛽

(𝑥) =

∞

∑

𝑛=0

𝑥
𝑛

Γ (𝛼𝑛 + 𝛽)
, 𝛼, 𝛽 ≥ 0. (3)

The Mittag-Leffler function 𝐸(𝑥,𝑚, 𝑎) is expressed in terms
of formula (3) as

𝐸 (𝑥,𝑚, 𝑎) = 𝑥
𝑚

𝐸
1,𝑚+1

(𝑎𝑥) . (4)

Note 1. The following results are used further in this paper.

From Definition 2 and formula (4), these functions are
directly obtained:

𝐸 (𝑥, −𝑚, 𝜆) = 𝑥
−𝑚

𝐸
1,1−𝑚

(𝜆𝑥) = 𝜆
𝑚

𝑒
𝜆𝑥

, 𝑚 = 0, 1, 2, . . . .

(5)

The special type of Mittag-Leffler function 𝐸
1/2,1

(𝑎√𝑡) is
given by [58]

𝐸
1/2,1

(𝑎√𝑥) = 𝑒
𝑎
2
𝑡

𝑒𝑟𝑓𝑐 (−𝑎√𝑥) , (6)

where 𝑒𝑟𝑓𝑐 is a complementary error function.
The fractional derivatives of Mittag-Leffler function is

given by [10, 64]

𝐷
𝛾

𝑥
[𝑥
𝛽−1

𝐸
𝛼,𝛽

(𝑎𝑥
𝛼

)] = 𝑥
𝛽−𝛾−1

𝐸
𝛼,𝛽−𝛾

(𝑎𝑥
𝛼

) , 𝛾 ≥ 0. (7)

3. Homotopy Perturbation Method

To illustrate the concept of homotopy perturbation method,
we consider the nonlinear differential equation,

𝐿 (𝑈) + 𝑁 (𝑈) = 𝑓 (𝑟) , 𝑟 ∈ Ω, (8)

with the boundary conditions,

𝐵(𝑈,
𝜕𝑈

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (9)

where 𝐿 is a linear operator, 𝑁 is nonlinear operator, 𝐵 is
boundary operator, Γ is the boundary of the domain Ω, and
𝑓(𝑟) is a known analytic function.
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He’s homotopy perturbation technique [65–67] defines
the homotopy V(𝑟, 𝑝) : Ω × [0, 1] → 𝑅 which satisfies

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑈
0
)] + 𝑝 [𝐿 (V) + 𝑁 (V) − 𝑓 (𝑟)]

= 0,

(10)

or

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑈
0
) + 𝑝𝐿 (𝑈

0
) + 𝑝 [𝑁 (V) − 𝑓 (𝑟)]

= 0,

(11)

where 𝑟 ∈ Ω, 𝑝 ∈ [0, 1] is an impending parameter, and
𝑈
0
is an initial approximation which satisfies the boundary

condition. The basic assumption is that the solution of (10)
and (11) can be expressed as power series in 𝑝 as follows:

V = V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ . (12)

The approximate solution of (8) is given by

𝑈 = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (13)

4. Sumudu Transform

Consider functions in the set 𝐴 that are defined by

𝐴 = {𝑓 (𝑡) : ∃𝑀, 𝜏
1
, 𝜏
2
> 0, such 𝑓 (𝑡)

 < 𝑀𝑒
|𝑡|/𝜏
𝑗

if 𝑡 ∈ (−1)
𝑗

× [0,∞)} ,

(14)

where 𝑀 is a constant and must be finite and 𝜏
1
and 𝜏
2
need

not simultaneously exist and each may be finite.The Sumudu
transform is defined by [32]

𝐺 (𝑢) = 𝑆 (𝑓 (𝑡)) = ∫

∞

0

𝑓 (𝑢𝑡) 𝑒
−𝑡

𝑑𝑡, 𝑢 ∈ (−𝜏
1
, 𝜏
2
) . (15)

The Sumudu transform was shown to be the theoretical dual
of the Laplace transform. For the details of the relationship
between Sumudu and the Laplace transforms and the com-
parison between the two transformations, see [33–37].

Definition 3. The Sumudu transform of fractional order
derivative is defined by [45, 46]

𝑆 [𝐷
𝛼

𝑥
𝑓 (𝑥)] =

1

𝑢𝛼
𝑆 [𝑓 (𝑥)] −

𝑛−1

∑

𝑘=0

1

𝑢𝛼−𝑘
[𝑓
(𝑘)

(𝑥)]
𝑥=0

,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N.

(16)

5. Homotopy Perturbation Sumudu
Transform Method

In this section, we implement the homotopy perturbation
Sumudu transform method to space-time cubic nonlinear
fractional Schrödinger equation given by (1). By applying

Sumudu transform on both sides of (1) with respect to 𝑡, we
get the following:

𝑆 (𝑖𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡))

=𝑆(𝑐
1
𝐷
𝛽

𝑥
𝑈 (𝑥, 𝑡)+𝑉 (𝑥)𝑈 (𝑥, 𝑡)+𝑐

2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

),

𝑖

𝑢𝛼
𝑆 (𝑈 (𝑥, 𝑡)) − 𝑖

𝑛−1

∑

𝑘=0

1

𝑢𝛼−𝑘

𝜕
𝑘

𝑈 (𝑥, 0)

𝜕𝑡𝑘

=𝑆 (𝑐
1
𝐷
2𝛽

𝑥
𝑈 (𝑥, 𝑡)+𝑉 (𝑥)𝑈 (𝑥, 𝑡)+𝑐

2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

),

𝑆 (𝑈 (𝑥, 𝑡))

=

𝑛−1

∑

𝑘=0

𝑢
𝑘

𝑓
𝑘
(𝑥) − 𝑖𝑢

𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈 (𝑥, 𝑡) + 𝑉 (𝑥)𝑈 (𝑥, 𝑡)

+ 𝑐
2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

)) .

(17)

Taking the inverse Sumudu transform to (17), we have

𝑈 (𝑥, 𝑡) =

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑓
𝑘
(𝑥)

Γ (𝑘 + 1)

− 𝑖𝑆
−1

(𝑢
𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈 (𝑥, 𝑡) + 𝑉 (𝑥)𝑈 (𝑥, 𝑡)

+ 𝑐
2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

))) .

(18)

Application of the homotopy perturbation method to (18)
yields

(1 − 𝑃) (𝑈 (𝑥, 𝑡) − 𝑈 (𝑥, 0))

+ 𝑃(𝑈 (𝑥, 𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑓
𝑘
(𝑥)

Γ (𝑘 + 1)

+ 𝑖𝑆
−1

(𝑢
𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈 (𝑥, 𝑡) + 𝑉 (𝑥)𝑈 (𝑥, 𝑡)

+ 𝑐
2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

)))) = 0,

𝑈 (𝑥, 𝑡) = 𝑈 (𝑥, 0) + 𝑃

𝑛−1

∑

𝑘=1

𝑡
𝑘

𝑓
𝑘
(𝑥)

Γ (𝑘 + 1)

− 𝑖𝑃𝑆
−1

(𝑢
𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈 (𝑥, 𝑡) + 𝑉 (𝑥)𝑈 (𝑥, 𝑡)

+ 𝑐
2
𝑈 (𝑥, 𝑡) |𝑈 (𝑥, 𝑡)|

2

))) .

(19)

Let

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡) , 𝑈 (𝑥, 0) = 𝑈

0
(𝑥, 𝑡) . (20)
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Substituting (20) into (19), we get

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)

= 𝑈
0
(𝑥, 𝑡) + 𝑃

𝑛−1

∑

𝑘=1

𝑡
𝑘

𝑓
𝑘
(𝑥)

Γ (𝑘 + 1)

− 𝑖𝑃𝑆
−1

(𝑢
𝛼

(𝑆(𝑐
1
𝐷
𝛽

𝑥

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡))

+ 𝑉 (𝑥) 𝑆(

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡))

+ 𝑆(

∞

∑

𝑛=0

𝑃
𝑛

𝐻
𝑛
(𝑈 (𝑥, 𝑡))))) ,

(21)

where

𝐻
𝑛
(𝑈
0
, 𝑈
1
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

∞

∑

𝑖=0

𝑝
𝑖

𝑈
𝑖
)]

𝑝=0

,

𝑛 = 0, 1, 2, . . . ,

(22)

and then

𝑃
0

: 𝑈
0
(𝑥, 𝑡) = 𝑓

0
(𝑥) = 𝑓 (𝑥) ,

𝑃
1

: 𝑈
1
(𝑥, 𝑡) =

𝑛−1

∑

𝑘=1

𝑡
𝑘

𝑓
𝑘
(𝑥)

Γ (𝑘 + 1)

− 𝑖𝑆
−1

(𝑢
𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈
0
(𝑥, 𝑡))

+ 𝑉 (𝑥) 𝑆 (𝑈
0
(𝑥, 𝑡))

+ 𝑆 (𝐻
0
(𝑈 (𝑥, 𝑡))))) ,

𝑃
2

: 𝑈
2
(𝑥, 𝑡) = − 𝑖𝑆

−1

(𝑢
𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈
1
(𝑥, 𝑡))

+ 𝑉 (𝑥) 𝑆 (𝑈
1
(𝑥, 𝑡))

+ 𝑆 (𝐻
1
(𝑈 (𝑥, 𝑡))))) ,

𝑃
3

: 𝑈
3
(𝑥, 𝑡) = − 𝑖𝑆

−1

(𝑢
𝛼

(𝑆 (𝑐
1
𝐷
𝛽

𝑥
𝑈
2
(𝑥, 𝑡))

+ 𝑉 (𝑥) 𝑆 (𝑈
2
(𝑥, 𝑡))

+ 𝑆 (𝐻
2
(𝑈 (𝑥, 𝑡))))) ,

...

(23)

The HPMST assumes a series solution to (1) in the form

𝑈 = 𝑈
0
+ 𝑈
1
+ 𝑈
2
+ ⋅ ⋅ ⋅ =

∞

∑

𝑛=1

𝑈
𝑛
. (24)

This series solution generally converges rapidly [45–47].

6. Applications

Example 4. Consider the following time fraction nonlinear
Schrödinger equation:

𝑖𝐷
𝛼

𝑡
𝑈 + 𝑈

𝑥𝑥
+ 2


𝑈
2

𝑈 = 0, (25)

subject to the initial condition

𝑈 (𝑥, 0) = 𝑒
𝑖𝑥

. (26)

Use (21)–(24) to get

𝑈 (𝑥, 𝑡)

= 𝑈 (𝑥, 0) + 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
2

𝜕𝑥2
(𝑈
0
(𝑥, 𝑡)) + 2𝑈

0

2

𝑈
0
))

+ 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
2

𝜕𝑥2
(𝑈
1
(𝑥, 𝑡)) + 2 (2𝑈

0
𝑈
1
𝑈
0
+ 𝑈
0

2

𝑈
1
)))

+ 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
2

𝜕𝑥2
(𝑈
2
(𝑥, 𝑡))

+ 2 (2𝑈
0
𝑈
2
𝑈
0
+ 𝑈
1

2

𝑈
0

+ 2𝑈
0
𝑈
1
𝑈
1
+ 𝑈
0

2

𝑈
2
)))

+ ⋅ ⋅ ⋅ .

(27)

The terms of the series are calculated as

𝑈
0
(𝑥, 𝑡) = 𝑒

𝑖𝑥

.

𝑈
1
(𝑥, 𝑡) = 𝑖𝑆

−1

(𝑢
𝛼

𝑆(
𝜕
2

𝑈
0

𝜕𝑥2
+ 2𝑈
0

2

𝑈
0
))

=
𝑖𝑡
𝛼

Γ (𝛼 + 1)
𝑒
𝑖𝑥

,

𝑈
2
(𝑥, 𝑡) = 𝑖𝑆

−1

(𝑢
𝛼

𝑆(
𝜕
2

𝑈
1

𝜕𝑥2
+ 2 (2𝑈

0
𝑈
1
𝑈
0
+ 𝑈
0

2

𝑈
1
)))

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆 (−
𝑖𝑡
𝛼

Γ (𝛼 + 1)
𝑒
𝑖𝑥

+ 2(2𝑒
𝑖𝑥

(
𝑖𝑡
𝛼

Γ (𝛼 + 1)
𝑒
𝑖𝑥

) 𝑒
−𝑖𝑥

+ 𝑒
2𝑖𝑥

(−
𝑖𝑡
𝛼

Γ (𝛼 + 1)
𝑒
−𝑖𝑥

))))

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆 (
𝑖𝑡
𝛼

Γ (𝛼 + 1)
𝑒
𝑖𝑥

)) = −
𝑡
2𝛼

Γ (2𝛼 + 1)
𝑒
𝑖𝑥

.

...
(28)
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Figure 1: The surface plot of the solution 𝑈(𝑥, 𝑡) of Example 4: (a) 𝛼 = 0.5, (b) 𝛼 = 1.

Substituting 𝑈
0
(𝑥, 𝑡), 𝑈

1
(𝑥, 𝑡), 𝑈

2
(𝑥, 𝑡), . . . into (24) yields the

solution

𝑈 (𝑥, 𝑡) = 𝑒
𝑖𝑥

+
𝑖𝑡
𝛼

Γ (𝛼 + 1)
𝑒
𝑖𝑥

−
𝑡
2𝛼

Γ (2𝛼 + 1)
𝑒
𝑖𝑥

+ ⋅ ⋅ ⋅

= 𝑒
𝑖𝑥

𝐸
𝛼,1

(𝑖𝑡
𝛼

) .

(29)

Remark 5. If 𝛼 → 1/2, then the solution is given by𝑈(𝑥, 𝑡) =

𝑒
𝑖𝑥

𝐸
1/2,1

(𝑖√𝑡) = 𝑒
𝑖𝑥−𝑡

𝑒𝑟𝑓𝑐(−𝑖√𝑡). The solution for the classical
nonlinear Schrödinger equation is obtained as special case as
𝛼 → 1, by 𝑈(𝑥, 𝑡) = 𝑒

𝑖𝑥

𝐸
1,1

(𝑖𝑡) = 𝑒
𝑖(𝑥+𝑡).

Figure 1 shows the solution 𝑈(𝑥, 𝑡) of Example 4, Fig-
ure 1(a) the solution obtained for 𝛼 = 0.5, and Figure 1(b)
that obtained for the value of 𝛼 = 1 (the solution of classical
nonlinear Schrödinger equation).

Example 6. Consider the following linear space-time frac-
tional Schrödinger equation:

𝑖𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = 𝑐𝐷

𝛽

𝑥
𝑈 (𝑥, 𝑡) ,

0 < 𝛼 ≤ 1, 1 < 𝛽 ≤ 2, and 𝑐 is a constsnt,
(30)

subject to the initial condition

𝑈 (𝑥, 0) = 𝑒
𝑖𝑥

. (31)

By using (21) and (23), we have

𝑖

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)

= 𝑖𝑈
0
(𝑥, 𝑡) + 𝑐𝑃𝑆

−1

(𝑢
𝛼

(𝑆(
𝜕
𝛽

𝜕𝑥𝛽

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)))) ,

(32)

and then
𝑃
0

: 𝑈
0
(𝑥, 𝑡) = 𝑒

𝑖𝑥

,

𝑃
1

: 𝑈
1
(𝑥, 𝑡) = −𝑖𝑐𝑆

−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝑈
0

𝜕𝑥𝛽
))

= −𝑖𝑐𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝜕𝑥𝛽
𝑒
𝑖𝑥

))

=
𝑖𝑐𝑡
𝛼

Γ (𝛼 + 1)
𝑥
2−𝛽

𝐸
1,3−𝛽

(𝑖𝑥)

=
𝑖𝑐𝑡
𝛼

Γ (𝛼 + 1)
𝐸 (𝑥, 2 − 𝛽, 𝑖) ,

𝑃
2

: 𝑈
2
(𝑥, 𝑡)

= −𝑖𝑐𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝑈
1

𝜕𝑥𝛽
))

= −𝑖cS−1 (𝑢𝛼𝑆 (
𝑖𝑐𝑡
𝛼

Γ (𝛼 + 1)
𝐷
𝛽

𝑥
(𝐸 (𝑥, 2 − 𝛽, 𝑖))))

=
𝑐
2

𝑡
2𝛼

Γ (2𝛼 + 1)
𝑥
2−2𝛽

𝐸
1,3−2𝛽

(𝑖𝑥)

=
𝑐
2

𝑡
2𝛼

Γ (2𝛼 + 1)
𝐸 (𝑥, 2 − 2𝛽, 𝑖) ,

𝑃
3

: 𝑈
3
(𝑥, 𝑡)

= −𝑖𝑐𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝑈
2

𝜕𝑥𝛽
))

= −𝑖𝑐𝑆
−1

(𝑢
𝛼

𝑆(
𝑐
2

𝑡
2𝛼

Γ (2𝛼 + 1)
(

𝜕
𝛽

𝜕𝑥𝛽
𝐸 (𝑥, 2 − 2𝛽, 𝑖))))
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= −
𝑖𝑐
3

𝑡
3𝛼

Γ (3𝛼 + 1)
𝐸 (𝑥, 2 − 3𝛽, 𝑖) .

...
(33)

Substituting 𝑈
0
(𝑥, 𝑡), 𝑈

1
(𝑥, 𝑡), 𝑈

2
(𝑥, 𝑡), . . . into (24) gives the

series solution as

𝑈 (𝑥, 𝑡) = 𝑒
𝑖𝑥

+
𝑖𝑐𝑡
𝛼

Γ (𝛼 + 1)
𝐸 (𝑥, 2 − 𝛽, 𝑖)

+
𝑐
2

𝑡
2𝛼

Γ (2𝛼 + 1)
𝐸 (𝑥, 2 − 2𝛽, 𝑖)

−
𝑖𝑐
3

𝑡
3𝛼

Γ (3𝛼 + 1)
𝐸 (𝑥, 2 − 3𝛽, 𝑖) + ⋅ ⋅ ⋅

= 𝑒
𝑖𝑥

+
𝑖𝑐𝑡
𝛼

Γ (𝛼 + 1)
𝐸 (𝑥, 2 − 𝛽, 𝑖)

−
(𝑖𝑐𝑡
𝛼

)
2

Γ (2𝛼 + 1)
𝐸 (𝑥, 2 − 2𝛽, 𝑖)

+
(𝑖𝑐𝑡
𝛼

)
3

Γ (3𝛼 + 1)
𝐸 (𝑥, 2 − 3𝛽, 𝑖) + ⋅ ⋅ ⋅

= 𝑒
𝑖𝑥

+

∞

∑

𝑘=1

(−1)
𝑘+1

(𝑖𝑐𝑡
𝛼

)
𝑘

Γ (𝑘𝛼 + 1)
𝐸 (𝑥, 2 − 𝛽𝑘, 𝑖) .

(34)

Remark 7. In (34), if we let 𝛼 → 1, 𝛽 → 2, and 𝑐 = 1, using
the result given by formula (5), then we get the solution of the
classical equation as

𝑈clas (𝑥, 𝑡) = 𝑒
𝑖𝑥

+

∞

∑

𝑘=1

(−1)
𝑘+1 (𝑖𝑡)

𝑘

Γ (𝑘 + 1)
𝐸 (𝑥, 2 − 2𝑘, 𝑖)

= 𝑒
𝑖𝑥

+

∞

∑

𝑘=1

(𝑖𝑡)
𝑘

Γ (𝑘 + 1)
𝑒
𝑖𝑥

= 𝑒
𝑖(𝑥+𝑡)

.

(35)

Remark 8. Let �̃�(𝑥, 𝑡) be the solution when 𝛼 → 1/2, 𝛽 →

3/2, and 𝑐 = 1; then, from (34), we have

�̃� (𝑥, 𝑡) = 𝑒
𝑖𝑥

+

∞

∑

𝑘=1

(−1)
𝑘+1

(𝑖√𝑡)
𝑘

Γ ((𝑘/2) + 1)
𝐸 (𝑥, 2 −

3

2
𝑘, 𝑖)

= [𝑒
𝑖𝑥

+

∞

∑

𝑘=1

(−1)
𝑘+1

𝑡
𝑘

Γ (𝑘 + 1)
𝐸 (𝑥, 2 − 3𝑘, 𝑖)]

+ [

[

∞

∑

𝑘=1

(𝑖√𝑡)
𝑘

Γ (𝑘 + (1/2))
𝐸(𝑥,

1 − 6𝑘

2
, 𝑖)]

]

= [𝑒
𝑖𝑥

+

∞

∑

𝑘=1

(
(𝑖𝑡)
𝑘

Γ (𝑘 + 1)
) 𝑒
𝑖𝑥

]

+ [

[

∞

∑

𝑘=1

(𝑖√𝑡)
𝑘

Γ (𝑘 + (1/2))
𝐸 (𝑥,

1 − 6𝑘

2
, 𝑖)]

]

= 𝑈clas (𝑥, 𝑡) +
[

[

∞

∑

𝑘=1

(𝑖√𝑡)
𝑘

Γ (𝑘 + (1/2))
𝐸 (𝑥,

1 − 6𝑘

2
, 𝑖)]

]

.

(36)

It is noted that the function ∑
∞

𝑘=1
((𝑖√𝑡)

𝑘

/Γ(𝑘 +

(1/2)))𝐸(𝑥, ((1 − 6𝑘)/2), 𝑖) represents the variation between
the two solutions 𝑈clas(𝑥, 𝑡) and �̃�(𝑥, 𝑡) given by (35) and
(36), respectively.

Figure 2 compares the real part of the solution of
Example 6. In Figure 2(a) we have the solution obtained for
the value of 𝛼 = 0.5, 𝛽 = 1.5 and in Figure 2(b) for the
value of 𝛼 = 1, 𝛽 = 2 (the solution of classical nonlinear
Schrödinger equation). Figure 3 compares the imaginary part
of the solution of Example 6. In Figure 3(a) we have the
solution obtained for the value of 𝛼 = 0.5, 𝛽 = 1.5 and in
Figure 3(b) the solution obtained for the value of 𝛼 = 1, 𝛽 = 2

(the solution of classical nonlinear Schrödinger equation).

Example 9. Consider the space-time fractional nonlinear
Schrödinger equation:

𝑖𝐷
𝛼

𝑡
𝑈 + 𝐷

𝛽

𝑥
𝑈 + 2


𝑈
2

𝑈 = 0, 0 < 𝛼 ≤ 1, 1 < 𝛽 ≤ 2, (37)

subject to the initial condition

𝑈 (𝑥, 0) = 𝑒
𝑖𝑥

. (38)

By applying (21)–(23), we have

𝑖

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)

= 𝑖𝑈
0
(𝑥, 𝑡) − 𝑃𝑆

−1

× (𝑢
𝛼

(𝑆(
𝜕
𝛽

𝜕𝑥𝛽

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)+2

∞

∑

𝑛=0

𝑃
𝑛

𝐻
𝑛
(𝑈 (𝑥, 𝑡))))) ,

𝑃
0

: 𝑈
0
(𝑥, 𝑡) = 𝑒

𝑖𝑥

,

𝑃
1

: 𝑈
1
(𝑥, 𝑡) = 𝑖𝑆

−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝑈
0

𝜕𝑥𝛽
+ 2𝑈
0

2

𝑈
0
))

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝑒
𝑖𝑥

𝜕𝑥𝛽
+ 2𝑒
2𝑖𝑥

𝑒
−𝑖𝑥

))

=
−𝑖𝑡
𝛼

Γ (𝛼 + 1)
(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 2𝑒

𝑖𝑥

) ,

𝑃
2

: 𝑈
2
(𝑥, 𝑡)

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
𝜕
𝛽

𝑈
1

𝜕𝑥𝛽
+ 2 (2𝑈

0
𝑈
1
𝑈
0
+ 𝑈
0

2

𝑈
1
)))
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Figure 2: The surface plot of the real part of the solution 𝑈(𝑥, 𝑡) of Example 6: (a) 𝛼 = 0.5, 𝛽 = 1.5, (b) 𝛼 = 1, 𝛽 = 2.
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Figure 3: The surface plot of the imaginary part of the solution 𝑈(𝑥, 𝑡) of Example 6: (a) 𝛼 = 0.5, 𝛽 = 1.5, (b) 𝛼 = 1, 𝛽 = 2.

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆 (𝐷
𝛽

𝑥
(

𝑖𝑡
𝛼

Γ (𝛼 + 1)
(−𝐸 (𝑥, 2 − 𝛽, 𝑖) + 2𝑒

𝑖𝑥

))

+2(2𝑒
𝑖𝑥

(
𝑖𝑡
𝛼

Γ (𝛼 + 1)
(−𝐸 (𝑥, 2 − 𝛽, 𝑖) +2𝑒

𝑖𝑥

))

× 𝑒
−𝑖𝑥

+ 𝑒
2𝑖𝑥

𝑈
1
)))

=
𝑡
2𝛼

Γ (2𝛼 + 1)
(𝐸 (𝑥, 2 − 2𝛽, 𝑖) + 6𝐸 (𝑥, 2 − 𝛽, 𝑖)

− 2𝑒
2𝑖𝑥

𝐸 (𝑥, 2 − 𝛽, −𝑖) − 4𝑒
𝑖𝑥

) .

...
(39)

Substituting𝑈
0
(𝑥, 𝑡), 𝑈

1
(𝑥, 𝑡), 𝑈

2
(𝑥, 𝑡), . . . into (24), we obtain

the following approximate solution to (37) and (38):

𝑈app (𝑥, 𝑡) = 𝑒
𝑖𝑥

−
𝑖𝑡
𝛼

Γ (𝛼 + 1)
(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 2𝑒

𝑖𝑥

)

+
𝑡
2𝛼

Γ (2𝛼 + 1)
(𝐸 (𝑥, 2 − 2𝛽, 𝑖) + 6𝐸 (𝑥, 2 − 𝛽, 𝑖)

− 2𝑒
2𝑖𝑥

𝐸 (𝑥, 2 − 𝛽, −𝑖) − 4𝑒
𝑖𝑥

)

+ ⋅ ⋅ ⋅ .

(40)

Remark 10. If 𝛼 → 1 and 𝛽 → 2, then the solution given by
(40) converged to 𝑈clas(𝑥, 𝑡) = 𝑒

𝑖(𝑥+𝑡), which is the solution of
the classical equation.

Figure 4 shows the surface plot of the approximate
solution of Example 9 for the values of 𝛼 = 0.5, 𝛽 = 1.5. In



8 Abstract and Applied Analysis

1

0.5

0 0
2

4
6

8
10

400

200

0

U
(x
,t
)

−200

−400

−600

−800

t x

𝛼 = 0.5, 𝛽 = 1.5

(a)

1

0.5

0 0
2

4
6

8
10

400

600

200

0

U
(x
,t
)

−200

t x

𝛼 = 0.5, 𝛽 = 1.5

(b)

Figure 4: The surface plot of the solution 𝑈app(𝑥, 𝑡) of Example 9 for the values of 𝛼 = 0.5, 𝛽 = 1.5. (a) The real part of the solution and (b)
the imaginary parts of the solution.

Figure 4(a) the graph is given for the real part of the solution
and in Figure 4(b) it is given for the imaginary part of the
solution.

Table 1 shows the comparison of the absolute approxi-
mate solution of Example 9 between the homotopy analysis
method [29], the homotopy perturbation Sumudu transform
used in this paper, and the exact solution. It shows that
an approximate solution obtained by HPSTM is in perfect
agreement with the exact solution for 𝛼 = 1, 𝛽 = 2; it is
noted that the absolute error between HPSTM and the exact
solution is sufficiently small compared with the homotopy
analysis method. Furthermore, the approximate solutions for
the values of 𝛼 = 0.9, 𝛽 = 1.8 obtained by the HPSTM and
homotopy analysis method are compared. Clearly, the results
obtained by HPSTM are closer to the exact solution than the
homotopy analysis method.

Example 11. Consider the space-time fractional nonlinear
Schrödinger equation with nonzero trapping potential:

𝑖𝐷
𝛼

𝑡
𝑈 +

1

2
𝐷
𝛽

𝑥
𝑈 − 𝑈cos2𝑥 −


𝑈
2

𝑈 = 0,

0 < 𝛼 ≤ 1, 1 < 𝛽 ≤ 2,

(41)

subject to the initial condition

𝑈 (𝑥, 0) = sin𝑥. (42)

By using (21)–(23), we get

𝑖

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)

= 𝑖𝑈
0
(𝑥, 𝑡) − 𝑃𝑆

−1

× (𝑢
𝛼

(𝑆(
1

2

𝜕
𝛽

𝜕𝑥𝛽

∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)

− cos2𝑥
∞

∑

𝑛=0

𝑃
𝑛

𝑈
𝑛
(𝑥, 𝑡)

−

∞

∑

𝑛=0

𝑃
𝑛

𝐻
𝑛
(𝑈 (𝑥, 𝑡))))) ,

𝑃
0

: 𝑈
0
(𝑥, 𝑡) = sin𝑥,

𝑃
1

: 𝑈
1
(𝑥, 𝑡)

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
1

2

𝜕
𝛽

𝑈
0

𝜕𝑥𝛽
−𝑈
0
cos2𝑥 − 𝐻

0
(𝑈 (𝑥, 𝑡))))

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
1

2

𝜕
𝛽

𝜕𝑥𝛽
sin𝑥 − sin𝑥 cos2𝑥 − sin3𝑥))

=
𝑡
𝛼

Γ (𝛼 + 1)

× ((
𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖)) − 𝑖 sin𝑥) ,

𝑃
2

: 𝑈
2
(𝑥, 𝑡)

= 𝑖𝑆
−1

(𝑢
𝛼

𝑆(
1

2

𝜕
𝛽

𝑈
1

𝜕𝑥𝛽
− 𝑈
1
cos2𝑥 − 𝐻

1
(𝑈 (𝑥, 𝑡)))) ,

(43)

where

1

2

𝜕
𝛽

𝑈
1

𝜕𝑥𝛽
−𝑈
1
cos2𝑥

=
𝑡
𝛼

Γ (𝛼 + 1)

× (((
𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖)) − 𝑖 sin𝑥)
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Table 1: Compare the absolute solution between the homotopy analysis method, the homotopy perturbation Sumudu transform, and the
exact solution of Example 9 for 0 < 𝑥 < 1, 0 < 𝑡 < 1.

𝛼 = 0.9, 𝛽 = 1.8 𝛼 = 1, 𝛽 = 2

𝑈HAM 𝑈HPSTM 𝑈HAM 𝑈HPSTM 𝑈clas abs|𝑈clas − 𝑈HAM| abs|𝑈clas − 𝑈HPSTM|

1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
1.0087 0.9682 1.0002 1.0000 1.0000 0.0002 0.0000
1.0159 0.9528 1.0032 1.0002 1.0000 0.0032 0.0002
1.0323 0.9539 1.0161 1.0010 1.0000 0.0161 0.0010
1.0718 0.9614 1.0500 1.0032 1.0000 0.0500 0.0032
1.1508 0.9658 1.1180 1.0078 1.0000 0.1180 0.0078
1.2840 0.9589 1.2322 1.0161 1.0000 0.2322 0.0161
1.4812 0.9338 1.4001 1.0296 1.0000 0.4001 0.0296
1.7462 0.8847 1.6243 1.0500 1.0000 0.6243 0.0500
2.0795 0.8074 1.9038 1.0789 1.0000 0.9038 0.0789
2.4798 0.6986 2.2361 1.1180 1.0000 1.2361 0.1180

− (
𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖))

× sin2𝑥 + 𝑖 sin3𝑥) ,

(44)

𝐻
1
(𝑈 (𝑥, 𝑡))

= 2𝑈
0
𝑈
1
𝑈
0
+ 𝑈
0

2

𝑈
1

= 2(sin𝑥(
𝑡
𝛼

Γ (𝛼 + 1)

× ((
𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖))

− 𝑖 sin𝑥)) sin𝑥)

− sin2𝑥(
𝑡
𝛼

Γ (𝛼 + 1)

× ((
𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖))

− 𝑖 sin𝑥))

=
𝑡
𝛼

Γ (𝛼 + 1)
((

𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖))

× sin2𝑥 − 𝑖 sin3𝑥) .

(45)

Substituting (44) and (45) into (43), we obtain

𝑈
2
(𝑥, 𝑡) =

𝑡
2𝛼

Γ (2𝛼 + 1)

× ((
𝑖

2
)

3

(𝐸 (𝑥, 2 − 2𝛽, 𝑖) − 𝐸 (𝑥, 2 − 2𝛽, −𝑖))

+ ((
𝑖

2
) (𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖)))

− sin𝑥) .

...
(46)

Substituting𝑈
0
(𝑥, 𝑡), 𝑈

1
(𝑥, 𝑡), 𝑈

2
(𝑥, 𝑡), . . . into (24), we obtain

the following approximate solution to (41) and (42):

𝑈app (𝑥, 𝑡)

= sin𝑥 +
𝑡
𝛼

Γ (𝛼 + 1)

× ((
𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖)) − 𝑖 sin𝑥)

+
𝑡
2𝛼

Γ (2𝛼 + 1)

× ((
𝑖

2
)

3

(𝐸 (𝑥, 2 − 2𝛽, 𝑖) − 𝐸 (𝑥, 2 − 2𝛽, −𝑖))

+ ((
𝑖

2
) (𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖))) − sin𝑥)

+ ⋅ ⋅ ⋅

= sin𝑥[1 +
(−𝑖𝑡
𝛼

)

Γ (𝛼 + 1)
+

(−𝑖𝑡
𝛼

)
2

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅ ]

+ [
𝑡
𝛼

Γ (𝛼 + 1)
((

𝑖

2
)

2

(𝐸 (𝑥, 2 − 𝛽, 𝑖) − 𝐸 (𝑥, 2 − 𝛽, −𝑖)))

+
𝑡
2𝛼

Γ (2𝛼 + 1)
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Figure 5: The surface plot of the real part of the approximate solution of Example 11 (a) for 𝛼 = 0.5, 𝛽 = 1.5 and (b) for the exact solution
𝛼 = 1, 𝛽 = 2.
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Figure 6: The surface plot of the imaginary part of the approximate solution of Example 11 (a) for 𝛼 = 0.5, 𝛽 = 1.5 and (b) for the exact
solution 𝛼 = 1, 𝛽 = 2.

× ((
𝑖

2
)

3

(𝐸 (𝑥, 2 − 2𝛽, 𝑖) − 𝐸 (𝑥, 2 − 2𝛽, −𝑖))

+ ((
𝑖

2
) (𝐸 (𝑥, 2 − 𝛽, 𝑖)−𝐸 (𝑥, 2 − 𝛽, −𝑖)))) +⋅ ⋅ ⋅ ].

(47)

Figure 5 compares the surface plot of the real part of the
approximate solution of Example 11. In Figure 5(a) we have
the solution obtained for the values of 𝛼 = 0.5, 𝛽 = 1.5 and
in Figure 5(b) for the exact solution in case 𝛼 = 1, 𝛽 = 2.
Figure 6 compares the surface plot of the imaginary part of
the approximate solution of Example 11. In Figure 6(a) we
have the solution obtained for the values of 𝛼 = 0.5, 𝛽 = 1.5

and in Figure 6(b) for the exact solution in case 𝛼 = 1, 𝛽 = 2.

7. Conclusion and Discussion

Homotopy perturbation Sumudu transform method is
applied successfully for finding exact solutions for linear
space-time fractional Schrödinger equation and approximate
solutions for nonlinear fractional Schrödinger equation with
space and time fractional derivatives that are considered in
the Caputo sense.We have demonstrated the efficiency of this
method by four numerical expository examples for a variety
of linear and nonlinear space-time fractional Schrödinger
equations with zero and nonzero trapping potential. Exam-
ple 4 is a time fractional nonlinear Schrödinger equation, in
which we readily obtained the exact solution in a compact
form. Furthermore, the solution is given for the values of 𝛼 =

0.5 and 𝛼 = 1, which are illustrated graphically in Figure 1.
Example 6 is a linear space-time fractional Schrödinger



Abstract and Applied Analysis 11

equation with zero trapping potential, in which we obtained
the solution in terms of Mittag-Leffler function; besides, the
real and imaginary parts of the solution for the value of 𝛼 =

0.5, 𝛽 = 1.5 are compared with classical solution graphically
in Figures 2 and 3, respectively. In Example 9, the solution of
a nonlinear space-time fractional Schrödinger equation with
zero trapping potential is approximated and the comparison
of the absolute approximate solutions between the homotopy
analysis method [29], the homotopy perturbation Sumudu
transform method used in this paper, and the exact solution
is given in Table 1. It is shown that, for a sufficiently small
number of components, the approximate solution given by
homotopy perturbation Sumudu transformmethod becomes
nearlymore identical to the exact solution than the homotopy
analysis method [29]. Example 11 calculated the approxi-
mate analytical solution of a nonlinear space-time fractional
Schrödinger equationwith nonzero trapping potential. To the
best of our knowledge, the approximate solution for nonlin-
ear space-time fractional Schrödinger equation with nonzero
trapping potential has not been reported in the literature
by using the homotopy perturbation method, the Adomian
decompositionmethod, the variational iterationmethod, and
the differential transform method. In conclusion, homotopy
perturbation Sumudu transformmethod is reliable, effective,
and easy to implement and produces accurate results. Thus,
the method can be applied to solve other nonlinear fractional
partial differential equations.
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