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Abstract. 
We investigate the complete moment convergence of double-indexed weighted sums of martingale differences. Then it is easy to obtain the Marcinkiewicz-Zygmund-type strong law of large numbers of double-indexed weighted sums of martingale differences. Moreover, the convergence of double-indexed weighted sums of martingale differences is presented in mean square. On the other hand, we give the application to study the convergence of the state observers of linear-time-invariant systems and present the convergence with probability one and in mean square.


1. Introduction
Hsu and Robbins [1] introduced the concept of complete convergence; that is, a sequence of random variables 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 is said to converge completely to a constant 
	
		
			

				𝐶
			

		
	
 if 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				𝑃
				(
				|
				𝑋
			

			

				𝑛
			

			
				−
				𝐶
				|
				≥
				𝜀
				)
				<
				∞
			

		
	
 for all 
	
		
			
				𝜀
				>
				0
			

		
	
. By Borel-Cantelli lemma, it follows that 
	
		
			

				𝑋
			

			

				𝑛
			

			
				→
				𝐶
			

		
	
 almost surely (a.s.). The converse is true if 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 is independent. But the converse cannot always be true for the dependent case. Hsu and Robbins [1] obtained that the sequence of arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected value if the variance of the summands is finite. Erdös [2] proved the converse. The result of Hsu-Robbins-Erdös is a fundamental theorem in probability theory, and it has been generalized and extended in several directions by many authors. Baum and Katz [3] gave the following generalization to establish a rate of convergence in the sense of Marcinkiewicz-Zygmund-type strong law of large numbers.
Theorem 1.  Let 
	
		
			
				𝛼
				>
				1
				/
				2
			

		
	
, 
	
		
			
				𝛼
				𝑝
				>
				1
			

		
	
, and 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be a sequence of i.i.d. random variables. Assume that 
	
		
			
				𝐸
				𝑋
			

			

				1
			

			
				=
				0
			

		
	
 if 
	
		
			
				𝛼
				≤
				1
			

		
	
. Then the following statements are equivalent: (i)
	
		
			
				𝐸
				|
				𝑋
			

			

				1
			

			

				|
			

			

				𝑝
			

			
				<
				∞
			

		
	
;(ii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
			

			
				𝑃
				(
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				∑
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝑖
			

			
				|
				>
				𝜀
				𝑛
			

			

				𝛼
			

			
				)
				<
				∞
			

		
	
 for all 
	
		
			
				𝜀
				>
				0
			

		
	
.
Many authors have extended Theorem 1 to the martingale differences. For example, Yu [4] obtained the complete convergence for weighted sums of martingale differences; Ghosal and Chandra [5] gave the complete convergence of martingale arrays; Stoica [6, 7] investigated the Baum-Katz-Nagaev-type results for martingale differences and the rate of convergence in the strong law of large numbers for martingale differences; Wang et al. [8] also studied the complete convergence and complete moment convergence for martingale differences, which generalized some results of Stoica [6, 7]; Yang et al. [9] obtained the complete convergence for the moving average process of martingale differences and so forth. For other works about convergence analysis, one can refer to Gut [10], Chen et al. [11], Sung [12–14], Sung and Volodin [15], Hu et al. [16], and the references therein.
In this paper, we study the moment complete convergence of double-indexed weighted sums of martingale differences. Then it is easy to obtain the Marcinkiewicz-Zygmund-type strong law of large numbers of double-indexed weighted sums of martingale differences. Moreover, the convergence of double-indexed weighted sums of martingale differences is presented in mean square. For the details, see Theorem 5, Corollary 6, and Theorem 7 in Section 2. On the other hand, we give the applications of Corollary 6 and Theorem 7 to study the convergence of the state observers of linear-time-invariant systems and present their convergence with probability one and in mean square, respectively (see Theorems 11 and 12 in Section 3).
Recall that the sequence 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 is stochastically dominated by a nonnegative random variable 
	
		
			

				𝑋
			

		
	
 if 
	
		
			
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				𝑃
				(
				|
				𝑋
			

			

				𝑛
			

			
				|
				>
				𝑡
				)
				≤
				𝐾
				𝑃
				(
				𝑋
				>
				𝑡
				)
			

		
	
 for some positive constant 
	
		
			

				𝐾
			

		
	
 and for all 
	
		
			
				𝑡
				≥
				0
			

		
	
.
Throughout the paper, let 
	
		
			

				ℱ
			

			

				0
			

			
				=
				{
				∅
				,
				Ω
				}
			

		
	
, 
	
		
			
				𝟙
				(
				𝐵
				)
			

		
	
 be the indicator function of set 
	
		
			
				𝐵
				𝑥
			

			

				+
			

			
				=
				𝑥
				𝟙
				(
				𝑥
				≥
				0
				)
			

		
	
, and let 
	
		
			
				𝐾
				,
				𝐾
			

			

				1
			

			
				,
				𝐾
			

			

				2
			

			
				,
				…
			

		
	
 denote some positive constants not depending on 
	
		
			

				𝑛
			

		
	
, which may be different in various places.
The following lemmas are useful for the proofs of the main results.
Lemma 2 (cf. Hall and Heyde [17, Theorem 2.11]).  If 
	
		
			
				{
				𝑋
			

			

				𝑖
			

			
				,
				ℱ
			

			

				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
 are martingale differences and 
	
		
			
				𝑝
				>
				0
			

		
	
, then there exists a constant 
	
		
			

				𝐾
			

		
	
 depending only on 
	
		
			

				𝑝
			

		
	
 such that
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
			

			

				𝑝
			

			
				⎞
				⎟
				⎟
				⎠
				⎧
				⎪
				⎨
				⎪
				⎩
				𝐸
				
				≤
				𝐾
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝐸
				
				𝑋
			

			
				2
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
			

			
				𝑝
				/
				2
			

			
				
				+
				𝐸
				m
				a
				x
			

			
				1
				≤
				𝑖
				≤
				𝑛
			

			
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
			

			

				𝑝
			

			
				
				⎫
				⎪
				⎬
				⎪
				⎭
				,
				𝑛
				≥
				1
				.
			

		
	

Lemma 3 (cf. Sung [12, Lemma 2.4]).  Let 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 and 
	
		
			
				{
				𝑌
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be sequences of random variables. Then for any 
	
		
			
				𝑛
				≥
				1
			

		
	
, 
	
		
			
				𝑞
				>
				1
			

		
	
, 
	
		
			
				𝜀
				>
				0
			

		
	
, and 
	
		
			
				𝑎
				>
				0
			

		
	
, one has 
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑗
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			
				(
				𝑋
			

			

				𝑖
			

			
				+
				𝑌
			

			

				𝑖
			

			
				)
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎠
				−
				𝜀
				𝑎
			

			

				+
			

			
				≤
				
				1
			

			
				
			
			

				𝜀
			

			

				𝑞
			

			
				+
				1
			

			
				
			
			
				
				1
				𝑞
				−
				1
			

			
				
			
			

				𝑎
			

			
				𝑞
				−
				1
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑗
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
			

			

				𝑞
			

			
				⎞
				⎟
				⎟
				⎠
				⎛
				⎜
				⎜
				⎝
				+
				𝐸
				m
				a
				x
			

			
				1
				≤
				𝑗
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑗
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑌
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎠
				.
			

		
	

Lemma 4 (cf. Wang et al. [8, Lemma 2.2]).  Let 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be a sequence of random variables stochastically dominated by a nonnegative random variable 
	
		
			

				𝑋
			

		
	
. Then for any 
	
		
			
				𝑛
				≥
				1
			

		
	
, 
	
		
			
				𝑎
				>
				0
			

		
	
, and 
	
		
			
				𝑏
				>
				0
			

		
	
, the following two statements hold:
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝐸
				
				|
				|
				𝑋
			

			

				𝑛
			

			
				|
				|
			

			

				𝑎
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑛
			

			
				|
				|
				≤
				𝑏
				
				
				≤
				𝐾
			

			

				1
			

			
				
				𝐸
				
				𝑋
			

			

				𝑎
			

			
				
				𝟙
				(
				𝑋
				≤
				𝑏
				)
				+
				𝑏
			

			

				𝑎
			

			
				
				,
				𝐸
				
				|
				|
				𝑋
				𝑃
				(
				𝑋
				>
				𝑏
				)
			

			

				𝑛
			

			
				|
				|
			

			

				𝑎
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑛
			

			
				|
				|
				>
				𝑏
				
				
				≤
				𝐾
			

			

				2
			

			
				𝐸
				
				𝑋
			

			

				𝑎
			

			
				
				.
				𝟙
				(
				𝑋
				>
				𝑏
				)
			

		
	

						Consequently, 
	
		
			
				𝐸
				|
				𝑋
			

			

				𝑛
			

			

				|
			

			

				𝑎
			

			
				≤
				𝐾
			

			

				3
			

			
				𝐸
				𝑋
			

			

				𝑎
			

		
	
. Here 
	
		
			

				𝐾
			

			

				1
			

		
	
, 
	
		
			

				𝐾
			

			

				2
			

		
	
, and 
	
		
			

				𝐾
			

			

				3
			

		
	
 are positive constants.
2. The Convergence of Double-Indexed Weighted Sums of Martingale Differences
First, we give the complete moment convergence of double-indexed weighted sums of martingale differences.
Theorem 5.  Let 
	
		
			
				𝛼
				>
				1
				/
				2
			

		
	
, 
	
		
			
				𝑝
				≥
				2
			

		
	
, and 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				ℱ
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be martingale differences stochastically dominated by a nonnegative random variable 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
			

		
	
. Let 
	
		
			
				{
				𝑎
			

			
				𝑛
				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑛
				≥
				1
				}
			

		
	
 be a triangular array of real numbers. For some 
	
		
			
				𝑞
				>
				2
				(
				𝛼
				𝑝
				−
				1
				)
				/
				(
				2
				𝛼
				−
				1
				)
			

		
	
, we assume that 
	
		
			
				𝐸
				[
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				𝐸
				(
				𝑋
			

			
				2
				𝑛
			

			
				∣
				ℱ
			

			
				𝑛
				−
				1
			

			
				)
				]
			

			
				𝑞
				/
				2
			

			
				<
				∞
			

		
	
 and 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			
				|
				|
			

			

				𝑞
			

			
				=
				𝑂
				(
				𝑛
				)
				.
			

		
	

						Then for every 
	
		
			
				𝜀
				>
				0
			

		
	
, 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				−
				𝜀
				𝑛
			

			

				𝛼
			

			
				⎞
				⎟
				⎟
				⎠
			

			

				+
			

			
				<
				∞
				.
			

		
	

Taking 
	
		
			
				𝑝
				=
				2
				𝑙
			

		
	
 and 
	
		
			
				𝛼
				=
				2
				/
				𝑝
			

		
	
 for 
	
		
			
				1
				≤
				𝑙
				<
				2
			

		
	
 in Theorem 5, we have the following result.
Corollary 6.  Let 
	
		
			
				1
				≤
				𝑙
				<
				2
			

		
	
, 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				ℱ
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be martingale differences stochastically dominated by a nonnegative random variable 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝐸
				𝑋
			

			
				2
				𝑙
			

			
				<
				∞
			

		
	
. Let 
	
		
			
				{
				𝑎
			

			
				𝑛
				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑛
				≥
				1
				}
			

		
	
 be a triangular array of real numbers. For some 
	
		
			
				𝑞
				>
				2
				𝑙
				/
				(
				2
				−
				𝑙
				)
			

		
	
, one assumes that 
	
		
			
				𝐸
				[
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				𝐸
				(
				𝑋
			

			
				2
				𝑛
			

			
				∣
				ℱ
			

			
				𝑛
				−
				1
			

			
				)
				]
			

			
				𝑞
				/
				2
			

			
				<
				∞
			

		
	
 and (4) holds true. Then for every 
	
		
			
				𝜀
				>
				0
			

		
	
, 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				−
				1
				/
				𝑙
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				−
				𝜀
				𝑛
			

			
				1
				/
				𝑙
			

			
				⎞
				⎟
				⎟
				⎠
			

			

				+
			

			
				<
				∞
				.
			

		
	

						In particular, one has 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				1
			

			
				
			
			

				𝑛
			

			
				𝑛
				1
				/
				𝑙
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
				.
				𝑠
				.
			

		
	

Next, we investigate the convergence in mean square.
Theorem 7.  Let 
	
		
			
				𝑟
				>
				1
				/
				2
			

		
	
 and 
	
		
			
				{
				𝑋
			

			

				𝑛
			

			
				,
				ℱ
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be martingale differences stochastically dominated by a nonnegative random variable 
	
		
			

				𝑋
			

		
	
 with 
	
		
			
				𝐸
				𝑋
			

			

				2
			

			
				<
				∞
			

		
	
. Let 
	
		
			
				{
				𝑎
			

			
				𝑛
				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑛
				≥
				1
				}
			

		
	
 be a triangular array of real numbers and 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				2
				𝑛
				𝑖
			

			
				=
				𝑂
				(
				𝑛
				)
				.
			

		
	

						Then, one has 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑛
			

			
				2
				𝑟
				−
				1
			

			
				𝐸
				
				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≤
				𝐾
				,
				𝑛
				≥
				1
				,
			

		
	

						where 
	
		
			

				𝐾
			

		
	
 is a positive constant.
Remark 8. Wang et al. [8] obtained the complete convergence and complete moment convergence for nonweighted martingale differences, which generalized some results of Stoica [6, 7]. In this paper, we study the complete moment convergence of double-indexed weighted sums of martingale differences. So we extend the results of Wang et al. [8] and Stoica [6, 7] to the case of double-indexed weighted sums of martingale differences. On the other hand, we give the applications of Corollary 6 and Theorem 7 to study the convergence of the state observers of linear-time-invariant systems and present the convergence with probability one and in mean square, respectively (see Theorems 11 and 12 in Section 3).
Proof of Theorem 5. Let 
	
		
			

				𝑋
			

			
				𝑛
				𝑖
			

			
				=
				𝑋
			

			

				𝑖
			

			
				𝟙
				(
				|
				𝑋
			

			

				𝑖
			

			
				|
				≤
				𝑛
			

			

				𝛼
			

			

				)
			

		
	
, 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
. It can be found that 
	
		
			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				=
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				𝟙
				(
				|
				𝑋
			

			

				𝑖
			

			
				|
				>
				𝑛
			

			

				𝛼
			

			
				)
				+
				[
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				−
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				(
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				)
				]
				+
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				(
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			

				)
			

		
	
,
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
.By Lemma 3 with 
	
		
			
				𝑎
				=
				𝑛
			

			

				𝛼
			

		
	
, for any 
	
		
			
				𝑞
				>
				1
			

		
	
, we obtain that
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				−
				𝜀
				𝑛
			

			

				𝛼
			

			
				⎞
				⎟
				⎟
				⎠
			

			

				+
			

			
				≤
				𝐾
			

			
				1
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
			

			
				⎛
				⎜
				⎜
				⎝
				×
				𝐸
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				−
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				|
				|
				|
				|
				|
				
				
			

			

				𝑞
			

			
				⎞
				⎟
				⎟
				⎠
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				>
				𝑛
			

			

				𝛼
			

			
				
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎠
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎠
				∶
				=
				𝐻
			

			

				1
			

			
				+
				𝐻
			

			

				2
			

			
				+
				𝐻
			

			

				3
			

			

				.
			

		
	

						For 
	
		
			
				𝑝
				≥
				2
			

		
	
, it is easy to see that 
	
		
			
				𝑞
				>
				2
				(
				𝛼
				𝑝
				−
				1
				)
				/
				(
				2
				𝛼
				−
				1
				)
				≥
				2
			

		
	
. Consequently, for any 
	
		
			
				1
				≤
				𝑠
				≤
				2
			

		
	
, we get by Hölder’s inequality and (4) that 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			
				|
				|
			

			

				𝑠
			

			
				≤
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			
				|
				|
			

			

				𝑞
			

			

				
			

			
				𝑠
				/
				𝑞
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				1
				
			

			
				1
				−
				𝑠
				/
				𝑞
			

			
				=
				𝑂
				(
				𝑛
				)
				.
			

		
	

						So, it can be checked by Markov’s inequality, Lemma 4, (11), and 
	
		
			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
			

		
	
 (
	
		
			
				𝑝
				≥
				2
			

		
	
) that 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝐻
			

			

				2
			

			

				≤
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝑛
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			
				|
				|
				𝐸
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				>
				𝑛
			

			

				𝛼
			

			
				
				
				≤
				𝐾
			

			
				1
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝛼
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑋
				>
				𝑛
			

			

				𝛼
			

			
				)
				
				=
				𝐾
			

			
				1
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				∞
				𝛼
				𝑝
				−
				1
				−
				𝛼
			

			

				
			

			
				𝑚
				=
				𝑛
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑚
			

			

				𝛼
			

			
				<
				𝑋
				≤
				(
				𝑚
				+
				1
				)
			

			

				𝛼
			

			
				)
				
				=
				𝐾
			

			
				1
				∞
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑚
			

			

				𝛼
			

			
				<
				𝑋
				≤
				(
				𝑚
				+
				1
				)
			

			

				𝛼
			

			
				)
				
			

			

				𝑚
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝛼
			

			
				≤
				𝐾
			

			
				2
				∞
			

			

				
			

			
				𝑚
				=
				1
			

			

				𝑚
			

			
				𝛼
				𝑝
				−
				𝛼
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑚
			

			

				𝛼
			

			
				<
				𝑋
				≤
				(
				𝑚
				+
				1
				)
			

			

				𝛼
			

			
				)
				
				≤
				𝐾
			

			

				2
			

			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
				.
			

		
	

						Since 
	
		
			
				{
				𝑋
			

			

				𝑖
			

			
				,
				ℱ
			

			

				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
 are martingale differences, by the martingale property and the proof of (12), one has that
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐻
			

			

				3
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			

				𝑖
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				≤
				𝑛
			

			

				𝛼
			

			
				
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎠
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			

				𝑖
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				>
				𝑛
			

			

				𝛼
			

			
				
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎠
				≤
				𝐾
			

			
				1
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝑛
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			
				|
				|
				𝐸
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				>
				𝑛
			

			

				𝛼
			

			
				
				
				≤
				𝐾
			

			
				2
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝛼
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑋
				>
				𝑛
			

			

				𝛼
			

			
				)
				
				≤
				𝐾
			

			

				3
			

			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
				.
			

		
	
Next, we turn to prove 
	
		
			

				𝐻
			

			

				1
			

			
				<
				∞
			

		
	
 under conditions of Theorem 5. It can be seen that 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑎
				
				
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				−
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
				,
				ℱ
			

			

				𝑖
			

			
				
				,
				1
				≤
				𝑖
				≤
				𝑛
			

		
	

						are also martingale differences. So, by Markov’s inequality, (10), and Lemma 2 with 
	
		
			
				𝑝
				=
				𝑞
			

		
	
, it can be found that 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝐻
			

			

				1
			

			
				=
				𝐾
			

			
				1
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				−
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				×
				
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				|
				|
				|
				|
				|
				
				
			

			

				𝑞
			

			
				⎞
				⎟
				⎟
				⎠
				≤
				𝐾
			

			
				2
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
			

			
				𝐸
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝐸
				𝑎
				
				
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				−
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				×
				
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
			

			

				2
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
			

			
				𝑞
				/
				2
			

			
				+
				𝐾
			

			
				3
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝑛
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝐸
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				−
				𝑎
			

			
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				|
				|
			

			

				𝑞
			

			
				=
				∶
				𝐾
			

			

				2
			

			

				𝐻
			

			
				1
				1
			

			
				+
				𝐾
			

			

				3
			

			

				𝐻
			

			
				1
				2
			

			

				.
			

		
	

						Obviously, it follows that 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝐸
				
				
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				
				𝑎
				−
				𝐸
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			
				𝑛
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
			

			

				2
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
				𝑎
				=
				𝐸
			

			
				2
				𝑛
				𝑖
			

			

				𝑋
			

			
				2
				𝑖
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				≤
				𝑛
			

			

				𝛼
			

			
				
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				−
				
				𝐸
				
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				≤
				𝑛
			

			

				𝛼
			

			
				
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
			

			

				2
			

			
				≤
				𝑎
			

			
				2
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			
				2
				𝑖
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				≤
				𝑛
			

			

				𝛼
			

			
				
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				≤
				𝑎
			

			
				2
				𝑛
				𝑖
			

			
				𝐸
				
				𝑋
			

			
				2
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				,
				a
				.
				s
				.
				,
				1
				≤
				𝑖
				≤
				𝑛
				.
			

		
	

						Combining (11) with 
	
		
			
				𝐸
				[
				s
				u
				p
			

			
				𝑖
				≥
				1
			

			
				𝐸
				(
				𝑋
			

			
				2
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				)
				]
			

			
				𝑞
				/
				2
			

			
				<
				∞
			

		
	
, we obtain that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐻
			

			
				1
				1
			

			

				≤
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				2
				𝑛
				𝑖
			

			

				
			

			
				𝑞
				/
				2
			

			
				𝐸
				
				s
				u
				p
			

			
				𝑖
				≥
				1
			

			
				𝐸
				
				𝑋
			

			
				2
				𝑖
			

			
				∣
				ℱ
			

			
				𝑖
				−
				1
			

			
				
				
			

			
				𝑞
				/
				2
			

			
				≤
				𝐾
			

			
				4
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
				+
				𝑞
				/
				2
			

			
				<
				∞
				,
			

		
	

						following from the fact that 
	
		
			
				𝑞
				>
				2
				(
				𝛼
				𝑝
				−
				1
				)
				/
				(
				2
				𝛼
				−
				1
				)
			

		
	
. Meanwhile, by 
	
		
			

				𝐶
			

			

				𝑟
			

		
	
 inequality, Lemma 4, and (4), 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐻
			

			
				1
				2
			

			
				≤
				𝐾
			

			
				5
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝑛
				𝛼
				𝑝
				−
				2
				−
				𝑞
				𝛼
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑎
			

			
				𝑛
				𝑖
			

			
				|
				|
			

			

				𝑞
			

			
				𝐸
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
			

			

				𝑞
			

			
				𝟙
				
				|
				|
				𝑋
			

			

				𝑖
			

			
				|
				|
				≤
				𝑛
			

			

				𝛼
			

			
				
				
				≤
				𝐾
			

			
				6
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝑞
				𝛼
			

			
				𝐸
				
				𝑋
			

			

				𝑞
			

			
				𝟙
				(
				𝑋
				≤
				𝑛
			

			

				𝛼
			

			
				)
				
				+
				𝐾
			

			
				7
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
			

			
				𝑃
				(
				𝑋
				>
				𝑛
			

			

				𝛼
			

			
				)
				≤
				𝐾
			

			
				6
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝑞
				𝛼
			

			
				𝐸
				
				𝑋
			

			

				𝑞
			

			
				𝟙
				(
				𝑋
				≤
				𝑛
			

			

				𝛼
			

			
				)
				
				+
				𝐾
			

			
				7
				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝛼
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑋
				>
				𝑛
			

			

				𝛼
			

			
				)
				
				=
				∶
				𝐾
			

			

				6
			

			

				𝐻
			

			
				∗
				1
				1
			

			
				+
				𝐾
			

			

				7
			

			

				𝐻
			

			
				∗
				1
				2
			

			

				.
			

		
	

						By the conditions 
	
		
			
				𝑝
				≥
				2
			

		
	
 and 
	
		
			
				𝛼
				>
				1
				/
				2
			

		
	
, we have that 
	
		
			
				2
				(
				𝛼
				𝑝
				−
				1
				)
				/
				(
				2
				𝛼
				−
				1
				)
				−
				𝑝
				≥
				0
			

		
	
, which implies 
	
		
			
				𝑞
				>
				𝑝
			

		
	
. So, we obtain by 
	
		
			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
			

		
	
 that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝐻
			

			
				∗
				1
				1
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝑛
				𝛼
				𝑝
				−
				1
				−
				𝑞
				𝛼
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝐸
				
				𝑋
			

			

				𝑞
			

			
				𝟙
				(
				(
				𝑖
				−
				1
				)
			

			

				𝛼
			

			
				<
				𝑋
				≤
				𝑖
			

			

				𝛼
			

			
				)
				
				=
			

			

				∞
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝐸
				
				𝑋
			

			

				𝑞
			

			
				𝟙
				(
				(
				𝑖
				−
				1
				)
			

			

				𝛼
			

			
				<
				𝑋
				≤
				𝑖
			

			

				𝛼
			

			
				)
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				𝑖
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝑞
				𝛼
			

			
				≤
				𝐾
			

			
				8
				∞
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝐸
				
				𝑋
			

			

				𝑝
			

			

				𝑋
			

			
				𝑞
				−
				𝑝
			

			
				𝟙
				(
				(
				𝑖
				−
				1
				)
			

			

				𝛼
			

			
				<
				𝑋
				≤
				𝑖
			

			

				𝛼
			

			
				)
				
				𝑖
			

			
				𝛼
				𝑝
				−
				𝑞
				𝛼
			

			
				≤
				𝐾
			

			

				8
			

			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
				.
			

		
	

						By the proof of (12), one has that 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐻
			

			
				∗
				1
				2
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				1
				−
				𝛼
			

			
				𝐸
				
				𝑋
				𝟙
				(
				𝑋
				>
				𝑛
			

			

				𝛼
			

			
				)
				
				≤
				𝐾
			

			

				9
			

			
				𝐸
				𝑋
			

			

				𝑝
			

			
				<
				∞
				.
			

		
	

						Thus, by (15)–(20), we have that 
	
		
			

				𝐻
			

			

				1
			

			
				<
				∞
			

		
	
. So, it completes the proof of (5).
Proof of Corollary 6. If 
	
		
			
				𝑝
				=
				2
				𝑙
			

		
	
 and 
	
		
			
				𝛼
				=
				2
				/
				𝑝
			

		
	
, then one has 
	
		
			
				𝛼
				𝑝
				=
				2
			

		
	
. So as an application of Theorem 5, one gets (6) immediately. On the other hand, it can be seen that
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			
				𝐸
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				−
				𝜀
				𝑛
			

			

				𝛼
			

			
				⎞
				⎟
				⎟
				⎠
			

			

				+
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			

				
			

			
				∞
				0
			

			
				𝑃
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				−
				𝜀
				𝑛
			

			

				𝛼
			

			
				⎞
				⎟
				⎟
				⎠
				≥
				>
				𝑡
				𝑑
				𝑡
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
				−
				𝛼
			

			

				
			

			
				𝜀
				𝑛
			

			

				𝛼
			

			

				0
			

			
				𝑃
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				−
				𝜀
				𝑛
			

			

				𝛼
			

			
				⎞
				⎟
				⎟
				⎠
				>
				𝑡
				𝑑
				𝑡
				≥
				𝜀
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑛
			

			
				𝛼
				𝑝
				−
				2
			

			
				𝑃
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				>
				2
				𝜀
				𝑛
			

			

				𝛼
			

			
				⎞
				⎟
				⎟
				⎠
				.
			

		
	

						So by (5) and (21) with 
	
		
			
				𝛼
				𝑝
				=
				2
			

		
	
, we have for every 
	
		
			
				𝜀
				>
				0
			

		
	
 that 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑃
				⎛
				⎜
				⎜
				⎝
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑛
			

			
				|
				|
				|
				|
				|
			

			

				𝑘
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
				>
				𝜀
				𝑛
			

			
				1
				/
				𝑙
			

			
				⎞
				⎟
				⎟
				⎠
				<
				∞
				.
			

		
	

						It follows from Borel-Cantelli lemma that 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				1
			

			
				
			
			

				𝑛
			

			
				𝑛
				1
				/
				𝑙
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				=
				0
				,
				a
				.
				s
				.
			

		
	

						So, (7) holds.
Proof of Theorem 7. Since 
	
		
			
				{
				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			
				,
				ℱ
			

			

				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
 are martingale differences, it can be found by Lemmas 2 and 4 and (8) that 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝐸
				
				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			

				
			

			

				2
			

			
				=
				1
			

			
				
			
			

				𝑛
			

			
				2
				𝑟
			

			
				𝐸
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑋
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≤
				𝐾
			

			

				1
			

			
				
			
			

				𝑛
			

			
				𝑛
				2
				𝑟
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				2
				𝑛
				𝑖
			

			
				𝐸
				𝑋
			

			
				2
				𝑖
			

			
				≤
				𝐾
			

			

				2
			

			
				
			
			

				𝑛
			

			
				2
				𝑟
			

			
				𝐸
				𝑋
			

			
				2
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				2
				𝑛
				𝑖
			

			
				≤
				𝐾
			

			

				3
			

			
				
			
			

				𝑛
			

			
				2
				𝑟
				−
				1
			

			
				,
				𝑛
				≥
				1
				.
			

		
	

						Consequently, (9) holds true.
3. Applications to the Convergence of the State Observers of Linear-Time-Invariant Systems
In this section, we give the applications of Corollary 6 and Theorem 7 to study the convergence of the state observers of linear-time-invariant systems.
For 
	
		
			
				𝑡
				≥
				0
			

		
	
, consider an MISO (multi-input-single-output) linear-time-invariant system 
						
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				̇
				𝑥
				(
				𝑡
				)
				=
				𝐴
				𝑥
				(
				𝑡
				)
				+
				𝐵
				𝑢
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				=
				𝐶
				𝑥
				(
				𝑡
				)
				,
			

		
	

					where 
	
		
			
				𝐴
				∈
				𝑅
			

			

				𝑚
			

			

				0
			

			
				×
				𝑚
			

			

				0
			

		
	
, 
	
		
			
				𝐵
				∈
				𝑅
			

			

				𝑚
			

			

				0
			

			
				×
				𝑚
			

			

				1
			

		
	
, and 
	
		
			
				𝐶
				∈
				𝑅
			

			
				1
				×
				𝑚
			

			

				0
			

		
	
 are known system matrices, and for 
	
		
			
				𝑡
				≥
				0
			

		
	
, 
	
		
			
				𝑢
				(
				𝑡
				)
				∈
				𝑅
			

			

				𝑚
			

			

				1
			

		
	
 is the control input, 
	
		
			
				𝑥
				(
				𝑡
				)
				∈
				𝑅
			

			

				𝑚
			

			

				0
			

		
	
 is the state, and 
	
		
			
				𝑦
				(
				𝑡
				)
				∈
				𝑅
			

		
	
 is the system output. The initial state 
	
		
			
				𝑥
				(
				0
				)
			

		
	
 is unknown. We are interested in estimation of 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
, from some limited observations on 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
.
In our setup, the output 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 is only measured at a sequence of sampling time instants 
	
		
			
				{
				𝑡
			

			

				𝑖
			

			

				}
			

		
	
 with measured values 
	
		
			
				𝛾
				(
				𝑡
			

			

				𝑖
			

			

				)
			

		
	
, and noise 
	
		
			

				𝑑
			

			

				𝑖
			

		
	

	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝛾
				
				𝑡
			

			

				𝑖
			

			
				
				
				𝑡
				=
				𝑦
			

			

				𝑖
			

			
				
				−
				𝑑
			

			

				𝑖
			

			

				.
			

		
	

We would like to estimate the state 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 from information on 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
, 
	
		
			
				{
				𝑡
			

			

				𝑖
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝛾
				(
				𝑡
			

			

				𝑖
			

			
				)
				}
			

		
	
. In practical systems, the irregular sampling sequences 
	
		
			
				{
				𝛾
				(
				𝑡
			

			

				𝑖
			

			
				)
				}
			

		
	
 can be generated by different means such as randomized sampling, event-triggered sampling, and signal quantization.
It is obvious that state estimation will not be possible if the system is not observable. Also, in this paper, 
	
		
			

				𝑑
			

			

				𝑘
			

		
	
 is assumed to be martingale difference. We give the following assumption.
Assumption 9. The system (25) is observable; that is, the observability matrix 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑊
			

			

				′
			

			

				𝑜
			

			
				=
				
				𝐶
			

			

				′
			

			
				,
				(
				𝐶
				𝐴
				)
			

			

				′
			

			
				
				,
				…
				,
				𝐶
				𝐴
			

			

				𝑚
			

			

				0
			

			
				−
				1
			

			

				
			

			

				′
			

			

				
			

		
	

						has full rank.
For both 
	
		
			
				𝑡
				>
				𝑡
			

			

				0
			

		
	
 and 
	
		
			
				𝑡
				<
				𝑡
			

			

				0
			

		
	
, the solution to system (25) can be expressed as 
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				)
				=
				𝑒
			

			
				𝐴
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

			
				𝑥
				
				𝑡
			

			

				0
			

			
				
				+
				
			

			
				𝑡
				𝑡
			

			

				0
			

			

				𝑒
			

			
				𝐴
				(
				𝑡
				−
				𝜏
				)
			

			
				𝐵
				𝑢
				(
				𝜏
				)
				𝑑
				𝜏
				.
			

		
	

Suppose that 
	
		
			
				{
				𝑡
			

			

				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				}
			

		
	
 is a sequence of sampling times. For 
	
		
			

				𝑡
			

			

				𝑖
			

			
				≤
				𝑡
			

			

				𝑛
			

		
	
, we have 
						
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝛾
				
				𝑡
			

			

				𝑖
			

			
				
				+
				𝑑
			

			

				𝑖
			

			
				
				𝑡
				=
				𝑦
			

			

				𝑖
			

			
				
				=
				𝐶
				𝑒
			

			
				𝐴
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

			
				𝑥
				
				𝑡
			

			

				𝑛
			

			
				
				
				+
				𝐶
			

			

				𝑡
			

			

				𝑖
			

			

				𝑡
			

			

				𝑛
			

			

				𝑒
			

			
				𝐴
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝜏
				)
			

			
				𝐵
				𝑢
				(
				𝜏
				)
				𝑑
				𝜏
				.
			

		
	

Since the second term is known, it will be denoted by 
	
		
			
				𝑣
				(
				𝑡
			

			

				𝑖
			

			
				,
				𝑡
			

			

				𝑛
			

			
				∫
				)
				=
				𝐶
			

			

				𝑡
			

			

				𝑖
			

			

				𝑡
			

			

				𝑛
			

			

				𝑒
			

			
				𝐴
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝜏
				)
			

			
				𝐵
				𝑢
				(
				𝜏
				)
				𝑑
				𝜏
			

		
	
. This leads to the observations 
						
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐶
				𝑒
			

			
				𝐴
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

			
				𝑥
				
				𝑡
			

			

				𝑛
			

			
				
				
				𝑡
				=
				𝛾
			

			

				𝑖
			

			
				
				
				𝑡
				−
				𝑣
			

			

				𝑖
			

			
				,
				𝑡
			

			

				𝑛
			

			
				
				+
				𝑑
			

			

				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				𝑛
				.
			

		
	

Define 
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑛
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐶
				𝑒
			

			
				𝐴
				(
				𝑡
			

			

				1
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

			
				⋮
				𝐶
				𝑒
			

			
				𝐴
				(
				𝑡
			

			
				𝑛
				−
				1
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

			
				𝐶
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				Γ
			

			

				𝑛
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝛾
				
				𝑡
			

			

				1
			

			
				
				⋮
				𝛾
				
				𝑡
			

			
				𝑛
				−
				1
			

			
				
				𝛾
				
				𝑡
			

			

				𝑛
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝑉
			

			

				𝑛
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑣
				
				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				𝑛
			

			
				
				⋮
				𝑣
				
				𝑡
			

			
				𝑛
				−
				1
			

			
				,
				𝑡
			

			

				𝑛
			

			
				
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				𝐷
			

			

				𝑛
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑑
			

			

				1
			

			
				⋮
				𝑑
			

			
				𝑛
				−
				1
			

			

				𝑑
			

			

				𝑛
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

Then, (30) can be written as 
						
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑛
			

			
				𝑥
				
				𝑡
			

			

				𝑛
			

			
				
				=
				Γ
			

			

				𝑛
			

			
				−
				𝑉
			

			

				𝑛
			

			
				+
				𝐷
			

			

				𝑛
			

			

				.
			

		
	

Suppose that 
	
		
			

				Φ
			

			

				𝑛
			

		
	
 is full rank, which will be established later. Then, a least-squares estimate of 
	
		
			
				𝑥
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 is given by 
						
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝑡
				̂
				𝑥
			

			

				𝑛
			

			
				
				=
				
				Φ
			

			

				′
			

			

				𝑛
			

			

				Φ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			
				
				Γ
			

			

				𝑛
			

			
				−
				𝑉
			

			

				𝑛
			

			
				
				.
			

		
	

					Here, 
	
		
			

				𝐺
			

			

				′
			

		
	
 denotes the transpose of 
	
		
			

				𝐺
			

		
	
. From (32) and (33), the estimation error for 
	
		
			
				𝑥
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 at sampling time 
	
		
			

				𝑡
			

			

				𝑛
			

		
	
 is 
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑒
				
				𝑡
			

			

				𝑛
			

			
				
				
				𝑡
				=
				̂
				𝑥
			

			

				𝑛
			

			
				
				
				𝑡
				−
				𝑥
			

			

				𝑛
			

			
				
				=
				
				Φ
			

			

				′
			

			

				𝑛
			

			

				Φ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			
				=
				
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				Φ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

		
	

					for some 
	
		
			
				1
				/
				2
				<
				𝑟
				<
				1
			

		
	
. For convergence analysis, one must consider a typical entry in 
	
		
			
				(
				1
				/
				𝑛
			

			

				𝑟
			

			
				)
				Φ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

		
	
. By the Cayley Hamilton theorem (see Ogata [18]), the matrix exponential can be expressed by a polynomial function of 
	
		
			

				𝐴
			

		
	
 of order at most 
	
		
			

				𝑚
			

			

				0
			

			
				−
				1
			

		
	
, 
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝐴
				𝑡
			

			
				=
				𝛼
			

			

				1
			

			
				(
				𝑡
				)
				𝐼
				+
				⋯
				+
				𝛼
			

			

				𝑚
			

			

				0
			

			
				(
				𝑡
				)
				𝐴
			

			

				𝑚
			

			

				0
			

			
				−
				1
			

			

				,
			

		
	

					where the time functions 
	
		
			

				𝛼
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 can be derived by the Lagrange-Hermite interpolation method (see Ogata [18]). This implies that 
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝐶
				𝑒
			

			
				𝐴
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

			
				=
				
				𝛼
			

			

				1
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				,
				…
				,
				𝛼
			

			

				𝑚
			

			

				0
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝐶
				⋮
				
				
				𝐶
				𝐴
				𝐶
				𝐴
			

			

				𝑚
			

			

				0
			

			
				−
				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				=
				𝜑
			

			

				′
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				𝑊
			

			

				𝑜
			

			

				,
			

		
	

					where 
	
		
			

				𝜑
			

			

				′
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				=
				[
				𝛼
			

			

				1
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				,
				…
				,
				𝛼
			

			

				𝑚
			

			

				0
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				]
			

		
	
 and 
	
		
			

				𝑊
			

			

				𝑜
			

		
	
 is the observability matrix.
Denote 
						
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				Ψ
			

			

				𝑛
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝜑
			

			

				′
			

			
				
				𝑡
			

			

				1
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				⋮
				𝜑
			

			

				′
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
				(
				0
				)
			

		
	

					Then 
						
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑛
			

			
				=
				Ψ
			

			

				𝑛
			

			

				𝑊
			

			

				𝑜
			

			

				,
			

		
	

					which implies that 
						
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				Φ
			

			

				𝑛
			

			
				=
				𝑊
			

			

				′
			

			

				𝑜
			

			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			

				𝑊
			

			

				𝑜
			

			
				,
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			
				=
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				𝑊
			

			

				′
			

			

				𝑜
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			

				.
			

		
	

As a result, for any 
	
		
			
				𝑟
				>
				0
			

		
	
, one has 
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝑒
				
				𝑡
			

			

				𝑛
			

			
				
				=
				
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				Φ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Φ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			
				=
				𝑊
			

			
				𝑜
				−
				1
			

			
				
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			

				.
			

		
	

Under Assumption 9, 
	
		
			

				𝑊
			

			
				0
				−
				1
			

		
	
 exists. Convergence results will be established by the following two sufficient conditions: 
	
		
			
				(
				1
				/
				𝑛
			

			

				𝑟
			

			
				)
				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			
				→
				0
			

		
	
 and 
	
		
			
				(
				1
				/
				𝑛
			

			

				𝑟
			

			
				)
				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			
				≥
				𝛽
				𝐼
			

		
	
, for some 
	
		
			
				𝛽
				>
				0
			

		
	
. So we need the following persistent excitation (PE) condition, which was used by Wang et al. [19] and Thanh et al. [20].
Assumption 10. For some 
	
		
			
				1
				/
				2
				<
				𝑟
				<
				1
			

		
	
, 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝛽
				=
				i
				n
				f
			

			
				𝑛
				≥
				1
			

			

				𝜎
			

			
				m
				i
				n
			

			
				
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			
				
				>
				0
				,
			

		
	

						where 
	
		
			

				𝜎
			

			
				m
				i
				n
			

			
				(
				𝐻
				)
			

		
	
 is the small eigenvalue of 
	
		
			

				𝐻
			

		
	
 for a suitable symmetric 
	
		
			

				𝐻
			

		
	
.
We can investigate the convergence of double-indexed summations of random variables form 
						
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			
				𝑛
				𝑖
			

			

				𝑑
			

			

				𝑖
			

		
	

					for some 
	
		
			
				1
				/
				2
				<
				𝑟
				<
				1
			

		
	
. Here, 
	
		
			
				{
				𝑎
			

			
				𝑛
				𝑖
			

			

				}
			

		
	
 is a triangular array of real numbers and 
	
		
			
				{
				𝑑
			

			

				𝑖
			

			

				}
			

		
	
 is a sequence of martingale differences. It can be seen that (42) is a special case of (7) in Corollary 6. The 
	
		
			

				𝑗
			

		
	
th component of 
	
		
			
				(
				1
				/
				𝑛
			

			

				𝑟
			

			
				)
				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

		
	
 takes the form 
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			

				𝑗
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				𝑑
			

			

				𝑖
			

			

				,
			

		
	

					where 
	
		
			
				{
				𝛼
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				}
			

		
	
 is a triangular array of real numbers. The convergence analysis of (43) for 
	
		
			
				𝑒
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 is a special case of (42) or (7) in Corollary 6.
Recently, Wang et al. [19] investigated the convergence analysis of the state observers of linear-time-invariant systems under 
	
		
			

				𝜌
			

			

				∗
			

		
	
-mixing sampling. Thanh et al. [20] studied the convergence analysis of double-indexed and randomly weighted sums of 
	
		
			

				𝜌
			

			

				∗
			

		
	
-mixing sequence and gave its application to state observers. For more related works, one can refer to [18–23] and the references therein.
As an application of Corollary 6 to the observers and state estimation, we obtain the following theorem.
Theorem 11.  Let Assumptions 9 and 10 hold. Let 
	
		
			
				1
				/
				2
				<
				𝑟
				<
				1
			

		
	
 and 
	
		
			
				{
				𝑑
			

			

				𝑛
			

			
				,
				ℱ
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 be martingale differences stochastically dominated by a nonnegative random variable 
	
		
			

				𝑑
			

		
	
 with 
	
		
			
				𝐸
				𝑑
			

			
				2
				/
				𝑟
			

			
				<
				∞
			

		
	
. Suppose that for any 
	
		
			
				𝑞
				>
				2
				/
				(
				2
				𝑟
				−
				1
				)
			

		
	
, one has 
	
		
			
				𝐸
				[
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				𝐸
				(
				𝑑
			

			
				2
				𝑛
			

			
				∣
				ℱ
			

			
				𝑛
				−
				1
			

			
				)
				]
			

			
				𝑞
				/
				2
			

			
				<
				∞
			

		
	
 and 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝛼
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				|
				|
			

			

				𝑞
			

			
				=
				𝑂
				(
				𝑛
				)
				,
			

		
	

						where 
	
		
			
				1
				≤
				𝑗
				≤
				𝑚
			

			

				0
			

		
	
. Then 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			
				|
				|
				|
				|
				|
				|
				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			
				|
				|
				|
				|
				|
				|
				⟶
				0
				,
				𝑎
				.
				𝑠
				.
			

		
	

						Consequently, 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝑒
				
				𝑡
			

			

				𝑛
			

			
				
				⟶
				0
				,
				𝑎
				.
				𝑠
				.
			

		
	

As an application to Theorem 7, we get the following result.
Theorem 12.  Let 
	
		
			
				1
				/
				2
				<
				𝑟
				<
				1
			

		
	
 and Assumptions 9 and 10 hold. Assume that 
	
		
			
				{
				𝑑
			

			

				𝑛
			

			
				,
				ℱ
			

			

				𝑛
			

			
				,
				𝑛
				≥
				1
				}
			

		
	
 are martingales differences stochastically dominated by a nonnegative random variable 
	
		
			

				𝑑
			

		
	
 with 
	
		
			
				𝐸
				𝑑
			

			

				2
			

			
				<
				∞
			

		
	
. For 
	
		
			
				1
				≤
				𝑗
				≤
				𝑚
			

			

				0
			

		
	
, it is supposed that 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			
				2
				𝑗
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				=
				𝑂
				(
				𝑛
				)
				.
			

		
	

						Then 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝜁
				=
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			

				𝑛
			

			
				2
				𝑟
				−
				1
			

			
				𝐸
				𝑒
			

			

				′
			

			
				
				𝑡
			

			

				𝑛
			

			
				
				𝑒
				
				𝑡
			

			

				𝑛
			

			
				
				<
				∞
				.
			

		
	

Remark 13. If we assume that, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
, 
	
		
			
				{
				𝜑
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				}
			

		
	
 is uniformly bounded, then we can find that condition (44) holds for any 
	
		
			

				𝑞
			

		
	
. On the other hand, similar to Theorems 11 and 12, Wang et al. [19] also obtained the convergence of the state observers with probability one and in mean square under 
	
		
			

				𝜌
			

			

				∗
			

		
	
-mixing sampling (see Theorems 4 and 5 of Wang et al. [19]). So Theorems 11 and 12 generalize the results of Wang et al. [19] to the case of martingale differences.
Proof of Theorem 11. It can be seen that 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			

				1
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				𝑑
			

			

				𝑖
			

			
				⋮
				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			

				𝑚
			

			

				0
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				𝑑
			

			

				𝑖
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

						To prove (45), it suffices to look at the 
	
		
			

				𝑗
			

		
	
th component 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			

				𝑗
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				𝑑
			

			

				𝑖
			

		
	

						of
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

			

				.
			

		
	

						For any 
	
		
			
				𝑞
				>
				2
				/
				(
				2
				𝑟
				−
				1
				)
			

		
	
, by 
	
		
			
				𝐸
				[
				s
				u
				p
			

			
				𝑛
				≥
				1
			

			
				𝐸
				(
				𝑑
			

			
				2
				𝑛
			

			
				∣
				ℱ
			

			
				𝑛
				−
				1
			

			
				)
				]
			

			
				𝑞
				/
				2
			

			
				<
				∞
			

		
	
 and (44), we can obtain (45) from Corollary 6 with 
	
		
			
				𝑙
				=
				1
				/
				𝑟
			

		
	
, 
	
		
			

				𝑎
			

			
				𝑛
				𝑖
			

			
				=
				𝛼
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 in (43), and 
	
		
			

				𝑋
			

			

				𝑛
			

			
				=
				𝑑
			

			

				𝑛
			

		
	
.On the other hand, by Assumption 9, 
	
		
			

				𝑊
			

			
				0
				−
				1
			

		
	
 exists, and by (41) in Assumption 10, 
	
		
			
				(
				(
				1
				/
				𝑛
			

			

				𝑟
			

			
				)
				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			

				)
			

			
				−
				1
			

		
	
 exists and 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				𝜎
			

			
				m
				a
				x
			

			
				
				
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			
				
				≤
				1
			

			
				
			
			
				𝛽
				,
			

		
	

						where 
	
		
			

				𝜎
			

			
				m
				a
				x
			

			
				(
				⋅
				)
			

		
	
 is the largest eigenvalue. Together with 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				𝑒
				
				𝑡
			

			

				𝑛
			

			
				
				=
				𝑊
			

			
				𝑜
				−
				1
			

			
				
				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				Ψ
			

			

				𝑛
			

			

				
			

			
				−
				1
			

			

				1
			

			
				
			
			

				𝑛
			

			

				𝑟
			

			

				Ψ
			

			

				′
			

			

				𝑛
			

			

				𝐷
			

			

				𝑛
			

		
	

						and (45), it follows (46).
Proof of Theorem 12. For 
	
		
			
				1
				≤
				𝑗
				≤
				𝑚
			

			

				0
			

		
	
, by (47), (8) holds. Applying Theorem 7 with 
	
		
			

				𝑎
			

			
				𝑛
				𝑖
			

			
				=
				𝛼
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			

				𝑋
			

			

				𝑛
			

			
				=
				𝑑
			

			

				𝑛
			

		
	
, and 
	
		
			
				1
				/
				2
				<
				𝑟
				<
				1
			

		
	
, we obtain that for a typical term 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			

				𝑗
			

			
				
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				
				𝑑
			

			

				𝑖
			

		
	

						in (49),
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				𝑛
			

			
				2
				𝑟
				−
				1
			

			
				𝐸
				
				1
			

			
				
			
			

				𝑛
			

			
				𝑟
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛼
			

			

				𝑗
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑛
			

			
				)
				𝑑
			

			

				𝑖
			

			

				
			

			

				2
			

			
				≤
				𝐾
			

			

				1
			

			
				,
				𝑛
				≥
				1
				.
			

		
	

						Together with (49), (53), and (55), we obtain that 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				𝑛
			

			
				2
				𝑟
				−
				1
			

			
				𝐸
				𝑒
			

			

				′
			

			
				
				𝑡
			

			

				𝑛
			

			
				
				𝑒
				
				𝑡
			

			

				𝑛
			

			
				
				≤
				𝑚
			

			

				0
			

			

				𝐾
			

			

				2
			

			
				<
				∞
				,
			

		
	

						where 
	
		
			

				𝐾
			

			

				2
			

		
	
 is a positive constant. Lastly, by (56), (48) holds true.
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