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The asymptotic dynamics of a stochastic SEIS epidemicmodel with treatment rate of latent population is investigated. First, we show
that the system provides a unique positive global solution starting from the positive initial value. Then, the long-term asymptotic
behavior of the model is studied: if 𝑅

0
, which is called the basic reproduction number of the corresponding deterministic model, is

not more than unity, the solution of the model is oscillating around the disease-free equilibrium of the corresponding deterministic
system, whereas if𝑅

0
is larger than unity, we show how the solution spirals around the endemic equilibrium of deterministic system

under certain parametric restrictions. Finally, numerical simulations are carried out to support our theoretical findings.

1. Introduction

Mathematical models describing the population dynamics
of infectious diseases have made a significant progress in
better understanding of disease transmissions and behavior
of epidemics. There have been a large number of works
on the dynamics of epidemic models described by ordinary
differential equations [1–9] and the references cited therein.
In most of the literatures, the incubation period is often
to be ignored usually. However, for some diseases, such
as tuberculosis, schistosomiasis, measles, and AIDS, once a
susceptible individual adequate contact with an infective, it
becomes exposed, that is, infected but not infective. This
individual remains in the exposed class for a certain latent
period before becoming infective [10–13]. Particularly, Fan
and Li in [12] established a class of SEIS epidemic model that
incorporates constant recruitment, disease-caused death, and
disease latency as follows:

𝑆
󸀠
= 𝐴 − 𝜆𝐼𝑆 − 𝑑𝑆 + 𝛾𝐼,

𝐸
󸀠
= 𝜆𝐼𝑆 − (𝑑 + 𝜖) 𝐸,

𝐼
󸀠
= 𝜖𝐸 − (𝑑 + 𝛾 + 𝛼) 𝐼,

(1)

where the meaning of the parameters can be found in the
literature [12]. The author obtained that the global dynamics
is completely determined by the basic reproduction number
𝑅
0
= 𝐴𝜆𝜖/𝑑(𝑑 + 𝜖)(𝑑 + 𝛾 + 𝛼). If 𝑅

0
≤ 1, then the disease-

free equilibrium 𝑃
0
= (𝐴/𝑑, 0, 0) is the only equilibrium and

it is globally asymptotically stable, implying that the disease
dies out. If 𝑅

0
> 1, then 𝑃

0
becomes unstable and there

exists a unique endemic equilibrium 𝑃
∗
= (𝑆
∗
, 𝐸
∗
, 𝐼
∗
) with

𝑆
∗
= (𝑑 + 𝜖)(𝑑 + 𝛾 + 𝛼)/𝜆𝜖, 𝐼∗ = (𝐴 − 𝑑𝑆

∗
)/(𝜆𝑆
∗
− 𝛾), and

𝐸
∗
= ((𝑑+𝛾+𝛼)/𝜖)𝐼

∗, and𝑃∗ is globally asymptotically stable
in the interior of the feasible region, meaning that the disease
persists at the endemic equilibrium. Furthermore, Castillo-
Chavez and Feng in [14] considered an SEIS model which
described the transmission of tuberculosis with standard
incidence ratio and treatment rates of latent individuals.They
show that there is a global stability switch from the disease-
free equilibrium to the positive endemic equilibrium when
the basic reproductive number passes through the critical
value 1. Xu in [15] studied an SEIS epidemiological model
with a saturation incidence rate and a time delay representing
the latent period of the disease. He obtained the basic
reproduction number𝑅

0
and the global asymptotical stability

of disease-free equilibrium and endemic equilibrium.
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In this paper, we consider a class of deterministic SEIS
model that incorporates bilinear incidence rate, disease-
caused death rate, disease latency, and treatment rates of
latent and infectious individuals as follows:

̇𝑆 (𝑡) = Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡) + 𝛿𝐼 (𝑡) + 𝛾𝐸 (𝑡) ,

𝐸̇ (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜖 + 𝛾) 𝐸 (𝑡) ,

̇𝐼 (𝑡) = 𝜖𝐸 (𝑡) − (𝜇 + 𝛿 + 𝑑) 𝐼 (𝑡) ,

(2)

where Λ is the recruitment rate of individuals (including
newborns and immigrants) in the susceptible population, the
natural death rate is assumed to be the same constant 𝜇 for all
hosts, infectious hosts suffer an extra disease-related death
with constant rate 𝑑, 𝛾 and 𝛿 are the per capita treatment
rates of latent and infectious individuals, respectively, 𝜖 is the
rate at which the exposed individuals become infective so
that 1/𝜖 is the mean latent period, and the incidence term is
taken as the bilinearmass-action form 𝛽𝑆(𝑡)𝐼(𝑡). Assume that
all parameters of (2) are positive constants. Using a similar
argument as in [12], we can easily get the following results.

(i) Model (2) always has a disease-free equilibrium 𝐹
0
=

(Λ/𝜇, 0, 0). And the basic reproduction number 𝑅
0
=

𝛽Λ𝜖/𝜇(𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑) is the threshold of the
system for an epidemic to occur.

(ii) When 𝑅
0
≤ 1, then the disease-free equilibrium 𝐹

0

is the only equilibrium and globally asymptotically
stable, which implies that the disease will disappear
eventually.

(iii) When 𝑅
0

> 1, then 𝐹
0
becomes unstable and

there exists a unique endemic equilibrium 𝐹
∗

=

(𝑆
∗
, 𝐸
∗
, 𝐼
∗
), where 𝑆∗ = (𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑)/𝛽𝜖,

𝐼
∗
= 𝜇(𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑)(𝑅

0
− 1)/𝛽[𝜇(𝜇 + 𝛿 + 𝑑) +

𝜖(𝜇 + 𝑑)], and 𝐸∗ = ((𝜇 + 𝛿 + 𝑑)/𝜖)𝐼
∗. Furthermore,

𝐹
∗ is globally asymptotically stable in the interior of

the feasible region, which means that the disease will
always prevail and persist in the population.

However, in the real world, epidemic dynamics is
inevitably affected by the environmental noise which is an
important component in the epidemic systems. As amatter of
fact, the epidemic models are often subject to environmental
noise; that is, due to environmental fluctuations, parameters
involved in epidemic models are not absolute constants, and
they may fluctuate around some average values. So, inclusion
of random perturbations in such models makes them more
realistic in comparison to their deterministicmodel. In recent
years, epidemicmodels under environmental noise described
by stochastic different equations have been studied by many
researchers [16–23]. To the best of our knowledge, there are
few papers to deal with the stochastic epidemic model with
latent individuals [22], as it is difficult to choose appropriate
Lyapunov functions. Yang et al. in [22] include stochastic
perturbations into SIR and SEIR epidemic models with
saturated incidence and investigate their dynamics according
to the basic reproduction number 𝑅

0
.

In addition, from a biological and mathematical perspec-
tive, there are different possible approaches which result in

different effects on the population system to include random
effects in the model. There are usually four approaches to
be mentioned [17]. The first one is through time Markov
chain model to consider environment noise [18]. The second
is with parameters perturbation [19]. The third one is the
environmental noise that is proportional to the variables
[20], and the last one is to robust the positive equilibria of
deterministic models [21]. In this paper, we will consider a
stochastic counterpart of model (2) by the third approach.
That is, the stochastic perturbation is assumed to be of a white
noise typewhich is directly proportional to 𝑆(𝑡),𝐸(𝑡), and 𝐼(𝑡)
and influenced by the ̇𝑆(𝑡), 𝐸̇(𝑡), and ̇𝐼(𝑡) in model (2). By this
way, a reasonable stochastic analogue of system (2) is given
by

𝑑𝑆 (𝑡) = (Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡) + 𝛿𝐼 (𝑡) + 𝛾𝐸 (𝑡)) 𝑑𝑡

+ 𝜎
1
𝑆 (𝑡) 𝑑𝐵

1
(𝑡) ,

𝑑𝐸 (𝑡) = (𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜖 + 𝛾) 𝐸 (𝑡)) 𝑑𝑡 + 𝜎2𝐸 (𝑡) 𝑑𝐵2 (𝑡) ,

𝑑𝐼 (𝑡) = (𝜖𝐸 (𝑡) − (𝜇 + 𝛿 + 𝑑) 𝐼 (𝑡)) 𝑑𝑡 + 𝜎
3
𝐼 (𝑡) 𝑑𝐵

3
(𝑡) ,

(3)

where𝐵
𝑖
(𝑡) aremutually independent Brownianmotions and

𝜎
𝑖
represent the noise intensities of 𝐵

𝑖
(𝑡), 𝑖 = 1, 2, 3.

Since system (3) is constructed by adding stochastic per-
turbation in a deterministic system (2), it seems reasonable to
investigate whether there are similar properties as in system
(2). But there is neither a disease-free equilibrium 𝐹

0
nor an

endemic equilibrium 𝐹
∗ for system (3). Hence, in order to

show the stability to some extent, we discuss the behavior
around 𝐹

0
and 𝐹

∗, respectively. Our main purpose is to
investigate how the solution of system (3) spirals around
the disease-free equilibrium and endemic equilibrium of the
corresponding deterministic system under some conditions.
We first show the existence and uniqueness of a global
positive solution of model (3). Then the main results will be
seen in Sections 3 and 4. Finally, numerical simulations are
present in Section 5 to illustrate our results.

Throughout this paper, unless otherwise specified, we
let (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with

a filtration satisfying the usual conditions (i.e., it is right
continuous and F

0
contains all P-null sets). Let 𝐵

𝑖
(𝑡) (𝑖 =

1, 2, 3) denote the independent standard Brownian motions
defined on this probability space. We also denote R3

+
= {𝑥 ∈

R3 : 𝑥
𝑖
> 0 for all 1 ≤ 𝑖 ≤ 3} and 𝑥(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡))𝑇.

Here we show the following auxiliary statements which
are introduced in [24].

Consider the𝑚-dimensional stochastic differential equa-
tion

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , for 𝑡 ≥ 𝑡
0
.

(4)

Denote by𝐶2,1(R𝑚×[𝑡
0
,∞];R) the family of all nonnegative

functions 𝑉(𝑥, 𝑡) defined on R𝑚 × [𝑡
0
,∞], such that they are
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continuously twice differentiable in 𝑥 and once in 𝑡. Define
the differential operator 𝐿 associated with (4) by

𝐿 =
𝜕

𝜕𝑡
+

𝑚

∑

𝑖=1

𝑓
𝑖
(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑖

+
1

2

𝑚

∑

𝑖=1

[𝑔
𝑇
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)]

𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑖

.

(5)

If 𝐿 acts on a function 𝑉 ∈ 𝐶
2,1
(R𝑚 × [𝑡

0
,∞];R), then

𝐿𝑉 (𝑥, 𝑡) = 𝑉
𝑡 (𝑥, 𝑡) + 𝑉𝑥 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

+
1

2
trace [𝑔𝑇 (𝑥, 𝑡) 𝑉𝑥𝑥 (𝑥, 𝑡) 𝑔 (𝑥, 𝑡)] ,

(6)

where 𝑉
𝑡
= 𝜕𝑉/𝜕𝑡, 𝑉

𝑥
= (𝜕𝑉/𝜕𝑥

1
, . . . , 𝜕𝑉/𝜕𝑥

𝑚
) and 𝑉

𝑥𝑥
=

(𝜕
2
𝑉/𝜕𝑥
𝑖
𝜕𝑥
𝑗
)
𝑚×𝑚

. By Itô’s formula, then

𝑑𝑉 (𝑥 (𝑡) , 𝑡)

= 𝐿𝑉 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑉
𝑥
(𝑥 (𝑡) , 𝑡) 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) .

(7)

2. Existence and Uniqueness
of the Positive Solution

In order to investigate the dynamical behavior, the first prob-
lem considered is the global existence of the solution. Since
𝑆(𝑡), 𝐸(𝑡), and 𝐼(𝑡) in model (2) are the sizes of the susceptible
individuals, latent individuals, and infected individuals at
time 𝑡, respectively, they should be nonnegative. Therefore,
we are only interested in positive solutions. In order to obtain
a unique global solution (i.e., no explosion in a finite time)
for any given initial value, the coefficients of the stochastic
differential equation are generally required to satisfy the
linear growth condition and local Lipschitz condition [24].
However, the coefficients of model (3) do not satisfy the
linear growth condition, though they are locally Lipschitz
continuous. Hence, the solution of model (3) may explode at
a finite time. In what follows, we will prove that the solution
of model (3) is positive and global.

Theorem 1. There is a unique positive solution (𝑆(𝑡), 𝐸(𝑡),
𝐼(𝑡)) of system (3) on 𝑡 ≥ 0 for any given initial value
(𝑆(0), 𝐸(0), 𝐼(0)) ∈ R3

+
, and the solution will remain in R3

+

with probability 1; that is, (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) ∈ R3
+
for all 𝑡 ≥ 0

almost surely.

Proof. Since the coefficients of system (3) are locally Lipschitz
continuous, then for any initial value (𝑆(0), 𝐸(0), 𝐼(0)) ∈ R3

+
,

there exists a unique local solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) on 𝑡 ∈

[0, 𝜏
𝑒
), where 𝜏

𝑒
is the explosion time [23]. Hence it suffices

to prove that the unique local solution of system (3) is global
and positive. To show this solution is global, we need to show
that 𝜏

𝑒
= +∞ a.s. Let 𝑚

0
> 0 be sufficiently large for 𝑆(0) ∈

[1/𝑚
0
, 𝑚
0
], 𝐸(0) ∈ [1/𝑚

0
, 𝑚
0
], and 𝐼(0) ∈ [1/𝑚

0
, 𝑚
0
]. For

each integer𝑚 ≥ 𝑚
0
, define the stopping time

𝜏
𝑚
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝑆 (𝑡) ∉ [

1

𝑚
,𝑚] or 𝐸 (𝑡) ∉ [ 1

𝑚
,𝑚]

or 𝐼 (𝑡) ∉ [ 1
𝑚
,𝑚]} ,

(8)

where throughout this paper we set inf ⌀ = ∞ (as usual ⌀
denotes the empty set). Clearly, 𝜏

𝑚
is increasing as𝑚 → ∞.

Set 𝜏
∞

= lim
𝑚→∞

𝜏
𝑚
; hence, 𝜏

∞
≤ 𝜏
𝑒
a.s. If it holds that

𝜏
∞
= ∞ a.s., then 𝜏

𝑒
= ∞ a.s. and (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) ∈ R3

+
a.s.

for 𝑡 ≥ 0. In other words, to complete the proof we need to
show that 𝜏

∞
= ∞ a.s. If this statement is false, then there

exist a pair of constants 𝑇 > 0 and 𝜀 ∈ (0, 1) such that

𝑃 {𝜏
∞
≤ 𝑇} > 𝜀. (9)

Hence, there is an integer𝑚
1
≥ 𝑚
0
such that

𝑃 {𝜏
𝑚
≤ 𝑇} ≥ 𝜀 ∀𝑚 ≥ 𝑚

1
. (10)

Define a 𝐶2-function 𝑉 : R3
+
→ R
+
by

𝑉 (𝑆, 𝐸, 𝐼) = (𝑆 − 𝑎 − 𝑎 log 𝑆
𝑎
) + (𝐸 − 1 − log𝐸)

+ (𝐼 − 1 − log 𝐼) ,
(11)

where 𝑎 is a positive constant to be defined later. The
nonnegativity of this function can be derived from 𝑢 − 1 −

log 𝑢 ≥ 0, for all 𝑢 > 0. Let 𝑚 ≥ 𝑚
0
and 𝑇 > 0 be arbitrary.

Using Itô’s formula, we obtain

𝑑𝑉 (𝑆, 𝐸, 𝐼)

= (1 −
𝑎

𝑆
) 𝑑𝑆 +

𝑎(𝑑𝑆)
2

2𝑆2
+ (1 −

1

𝐸
)𝑑𝐸

+
(𝑑𝐸)
2

2𝐸2
+ (1 −

1

𝐼
) 𝑑𝐼 +

(𝑑𝐼)
2

2𝐼2

= (1 −
𝑎

𝑆
) [(Λ − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝛿𝐼 + 𝛾𝐸) 𝑑𝑡 + 𝜎

1
𝑆𝑑𝐵
1 (𝑡)]

+
1

2
𝑎𝜎
2

1
𝑑𝑡 + (1 −

1

𝐸
)

× [(𝛽𝑆𝐼 − (𝜇 + 𝜖 + 𝛾) 𝐸) 𝑑𝑡 + 𝜎
2
𝐸𝑑𝐵
2 (𝑡)] +

1

2
𝜎
2

2
𝑑𝑡

+ (1 −
1

𝐼
) [(𝜖𝐸 − 𝐼 × (𝜇 + 𝛿 + 𝑑)) 𝑑𝑡 + 𝜎

3
𝐼𝑑𝐵
3
(𝑡)]

+
1

2
𝜎
2

3
𝑑𝑡

= [(1 −
𝑎

𝑆
) (Λ − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝛿𝐼 + 𝛾𝐸)

+ (1 −
1

𝐸
) (𝛽𝑆𝐼 − (𝜇 + 𝜖 + 𝛾) 𝐸)

+ (1 −
1

𝐼
) (𝜖𝐸 − (𝜇 + 𝛿 + 𝑑) 𝐼)] 𝑑𝑡

+ [𝜎
1
(𝑆 − 𝑎) 𝑑𝐵

1
(𝑡) + 𝜎

2
(𝐸 − 1) 𝑑𝐵

2
(𝑡)

+𝜎
3
(𝐼 − 1) 𝑑𝐵

3
(𝑡)]
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= 𝐿𝑉 (𝑆, 𝐸, 𝐼) 𝑑𝑡

+ [𝜎
1
(𝑆 − 𝑎) 𝑑𝐵

1
(𝑡) + 𝜎

2
(𝐸 − 1) 𝑑𝐵

2
(𝑡)

+𝜎
3
(𝐼 − 1) 𝑑𝐵

3
(𝑡)] ,

(12)

where 𝐿𝑉 : R3
+
→ R
+
is defined by

𝐿𝑉 (𝑆, 𝐸, 𝐼) = (1 −
𝑎

𝑆
) (Λ − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝛿𝐼 + 𝛾𝐸)

+ (1 −
1

𝐸
) (𝛽𝑆𝐼 − (𝜇 + 𝜖 + 𝛾) 𝐸)

+ (1 −
1

𝐼
) (𝜖𝐸 − (𝜇 + 𝛿 + 𝑑) 𝐼)

= Λ + 𝑎𝜇 + 2𝜇 + 𝜖 + 𝛾 + 𝛿 + 𝑑

+ (𝑎𝛽 − 𝜇 − 𝑑) 𝐼 +
1

2
𝑎𝜎
2

1
+
1

2
𝜎
2

2
+
1

2
𝜎
2

3

− 𝜇𝐸 −
𝑎Λ

𝑆
−
𝑎𝛿𝐼

𝑆
−
𝑎𝛾𝐸

𝑆
−
𝛽𝑆𝐼

𝐸
−
𝜖𝐸

𝐼
.

(13)

Choosing 𝑎 = (𝜇 + 𝑑)/𝛽 such that (𝑎𝛽 − 𝜇 − 𝑑)𝐼 = 0, then

𝐿𝑉 (𝑆, 𝐸, 𝐼) = Λ + 𝑎𝜇 + 2𝜇 + 𝜖 + 𝛾 + 𝛿 + 𝑑

+
1

2
𝑎𝜎
2

1
+
1

2
𝜎
2

2
+
1

2
𝜎
2

3
− 𝜇𝐸

−
𝑎Λ

𝑆
−
𝑎𝛿𝐼

𝑆
−
𝑎𝛾𝐸

𝑆
−
𝛽𝑆𝐼

𝐸
−
𝜖𝐸

𝐼

≤ Λ + 𝑎𝜇 + 2𝜇 + 𝜖 + 𝛾 + 𝛿 + 𝑑

+
1

2
𝑎𝜎
2

1
+
1

2
𝜎
2

2
+
1

2
𝜎
2

3

=: 𝐾.

(14)

The remainder of the proof follows that Theorem 2.1 in Ji et
al. [25].

3. Asymptotic Behavior
around the Disease-Free Equilibrium
of the Deterministic Model

As mentioned in Section 1, for the deterministic SEIS system
(2), there always exists a disease-free equilibrium 𝐹

0
=

(Λ/𝜇, 0, 0). And if𝑅
0
= 𝛽Λ𝜖/𝜇(𝜇+𝜖+𝛾)(𝜇+𝛿+𝑑) ≤ 1, then𝐹

0

is globally asymptotically stable, whichmeans that the disease
will vanish after some period of time. However, there is no
disease-free equilibrium in stochastic model (3); it is natural
to ask how we can consider the disease will go to extinction.
In this section we mainly use the method of estimating the
oscillation around 𝐹

0
to reflect how the solution of model (3)

spirals closely around 𝐹
0
. We have the following results.

Theorem 2. If 𝑅
0
= 𝛽Λ𝜖/𝜇(𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑) ≤ 1 and the

following condition is satisfied

𝜎
2

1
< 𝜇,

1

2
𝜎
2

2
< 𝜇,

1

2
𝜎
2

3
< 𝐴, (15)

where𝐴 = (2𝜇(𝜇 + 𝛿 + 𝑑)(2𝜇 + 𝜖 + 𝛿 + 𝑑) + 𝜖(2𝜇 + 𝜖)(𝜇 + 𝑑) +
𝜖𝑑(2𝜇 + 𝜖 + 𝑑))/(2𝜇(2𝜇 + 𝜖 + 𝛿 + 𝑑) + 𝜖(2𝜇 + 𝜖 + 𝑑)) > 0, then
for any given initial value (𝑆(0), 𝐸(0), 𝐼(0)) ∈ R3

+
, the solution

of model (3) has the property

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆(𝑠) −
Λ

𝜇
)

2

+ 𝐸
2
(𝑠) + 𝐼

2
(𝑠)] 𝑑𝑠 ≤

𝜖𝜎
2

1
Λ
2

𝜇2𝐾
1

,

(16)

where 𝐾
1
= min{𝜖(𝜇 − 𝜎2

1
), 𝜖(𝜇 − (1/2)𝜎

2

2
), 𝑎
2
(𝐴 − (1/2)𝜎

2

3
)}

and 𝑎
2
= (2𝜇(2𝜇 + 𝜖 + 𝛿 + 𝑑) + 𝜖(2𝜇 + 𝜖 + 𝑑))/𝜖.

Proof. Define a function 𝑉 : R3
+
→ R
+
by

𝑉 (𝑥) =
𝜖

2
(𝑆 −

Λ

𝜇
+ 𝐸)

2

+ (2𝜇 + 𝜖) (𝑆 −
Λ

𝜇
+ 𝐸) 𝐼 + 𝑎

1
𝐸

+
𝑎
2

2
𝐼
2
+ 𝑎
3
𝐼,

(17)

where 𝑎
1
, 𝑎
2
, and 𝑎

3
are positive constants to be chosen later.

For simplicity, we divide (17) into two functions: 𝑉(𝑥) =

𝑉
1
(𝑥) + 𝑉

2
(𝑥), where

𝑉
1 (𝑥) =

𝜖

2
(𝑆 −

Λ

𝜇
+ 𝐸)

2

+ (2𝜇 + 𝜖) (𝑆 −
Λ

𝜇
+ 𝐸) 𝐼,

𝑉
2
(𝑥) = 𝑎

1
𝐸 +

𝑎
2

2
𝐼
2
+ 𝑎
3
𝐼.

(18)

From Itô’s formula, we compute

𝑑𝑉
1
(𝑥) = 𝐿𝑉

1
𝑑𝑡 + [𝜖 (𝑆 −

Λ

𝜇
+ 𝐸) + (2𝜇 + 𝜖) 𝐼]

× (𝜎
1
𝑆𝑑𝐵
1
(𝑡) + 𝜎

2
𝐸𝑑𝐵
2
(𝑡))

+ 𝜎
3
(2𝜇 + 𝜖) (𝑆 −

Λ

𝜇
+ 𝐸) 𝐼𝑑𝐵

3
(𝑡) ,

𝑑𝑉
2
(𝑥) = 𝐿𝑉

2
𝑑𝑡 + 𝜎

2
𝑎
1
𝐸𝑑𝐵
2
(𝑡) + 𝜎

3
(𝑎
2
𝐼 + 𝑎
3
) 𝐼𝑑𝐵
3
(𝑡) .

(19)

In detail,

𝐿𝑉
1
(𝑥)

= [𝜖 (𝑆 −
Λ

𝜇
+ 𝐸) + (2𝜇 + 𝜖) 𝐼] [Λ − 𝜇𝑆 + 𝛿𝐼 − (𝜇 + 𝜖) 𝐸]

+ (2𝜇 + 𝜖) (𝑆 −
Λ

𝜇
+ 𝐸)

× (𝜖𝐸 − (𝜇 + 𝛿 + 𝑑) 𝐼) +
1

2
𝜖𝜎
2

1
𝑆
2
+
1

2
𝜖𝜎
2

2
𝐸
2
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= −𝜇𝜖(𝑆 −
Λ

𝜇
)

2

+ [𝜖𝛿 − (2𝜇 + 𝜖) (2𝜇 + 𝛿 + 𝑑)]

× (𝑆 −
Λ

𝜇
) 𝐼 − [2𝜇 (2𝜇 + 𝜖 + 𝛿 + 𝑑) + 𝜖 (2𝜇 + 𝜖 + 𝑑)] 𝐸𝐼

− 𝜇𝜖𝐸
2
+ 𝛿 (2𝜇 + 𝜖) 𝐼

2
+
1

2
𝜖𝜎
2

1
(𝑆 −

Λ

𝜇
+
Λ

𝜇
)

2

+
1

2
𝜖𝜎
2

2
𝐸
2

≤ −𝜖 (𝜇 − 𝜎
2

1
) (𝑆 −

Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2
+ 𝛿 (2𝜇 + 𝜖) 𝐼

2

− [2𝜇 (2𝜇 + 𝛿 + 𝑑) + 𝜖 (2𝜇 + 𝑑)] (𝑆 −
Λ

𝜇
) 𝐼

− [2𝜇 (2𝜇 + 𝜖 + 𝛿 + 𝑑) + 𝜖 (2𝜇 + 𝜖 + 𝑑)] 𝐸𝐼 + 𝜖
Λ
2

𝜇2
𝜎
2

1
,

𝐿𝑉
2
(𝑥)

= 𝑎
1
(𝛽𝑆𝐼 − (𝜇 + 𝜖 + 𝛾) 𝐼)

+ (𝑎
2
𝐼 + 𝑎
3
) (𝜖𝐸 − (𝜇 + 𝛿 + 𝑑) 𝐼) +

1

2
𝑎
2
𝜎
2

3
𝐼
2

= 𝛽𝑎
1
(𝑆 −

Λ

𝜇
) 𝐼 − 𝑎

2
(𝜇 + 𝛿 + 𝑑) 𝐼

2
+ 𝜖𝑎
2
𝐸𝐼

+ [𝜖𝑎
3
− (𝜇 + 𝜖 + 𝛾) 𝑎

1
] 𝐸

+ [𝛽
Λ

𝜇
𝑎
1
− (𝜇 + 𝛿 + 𝑑) 𝑎

3
] 𝐼 +

1

2
𝑎
2
𝜎
2

3
𝐼
2
.

(20)

Taking (20) together, we get

𝐿𝑉 (𝑥) = 𝐿𝑉
1
(𝑥) + 𝐿𝑉

2
(𝑥)

≤ − 𝜖 (𝜇 − 𝜎
2

1
) (𝑆 −

Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2

− [𝑎
2
(𝜇 + 𝛿 + 𝑑) − 𝛿 (2𝜇 + 𝜖) −

1

2
𝑎
2
𝜎
2

3
] 𝐼
2

− [2𝜇 (2𝜇 + 𝛿 + 𝑑 + 𝜖) + 𝜖𝑑 − 𝛽𝑎
1
] (𝑆 −

Λ

𝜇
) 𝐼

− [2𝜇 (2𝜇 + 𝜖 + 𝛿 + 𝑑) + 𝜖 (2𝜇 + 𝜖 + 𝑑) − 𝜖𝑎
2
] 𝐸𝐼

+ [𝜖𝑎
3
− (𝜇 + 𝜖 + 𝛾) 𝑎

1
] 𝐸

+ [𝛽
Λ

𝜇
𝑎
1
− (𝜇 + 𝛿 + 𝑑) 𝑎

3
] 𝐼 + 𝜖

Λ
2

𝜇2
𝜎
2

1
.

(21)

Choose 𝑎
1
= (2𝜇(2𝜇+𝛿+𝑑+𝜖)+𝜖𝑑)/𝛽, 𝑎

2
= (2𝜇(2𝜇+𝜖+𝛿+

𝑑)+𝜖(2𝜇+𝜖+𝑑))/𝜖, and 𝑎
3
= (𝜇+𝜖+𝛾)𝑎

1
/𝜖; then 2𝜇(2𝜇+𝛿+

𝑑+𝜖)+𝜖𝑑−𝛽𝑎
1
= 0, 2𝜇(2𝜇+𝜖+𝛿+𝑑)+𝜖(2𝜇+𝜖+𝑑)−𝜖𝑎

2
= 0,

and 𝜖𝑎
3
− (𝜇 + 𝜖 + 𝛾)𝑎

1
= 0. Besides, noting that 𝑅

0
≤ 1, thus

(21) takes the following:

𝐿𝑉 (𝑥) ≤ − 𝜖 (𝜇 − 𝜎
2

1
) (𝑆 −

Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2

− [𝑎
2
(𝜇 + 𝛿 + 𝑑) − 𝛿 (2𝜇 + 𝜖) −

1

2
𝑎
2
𝜎
2

3
] 𝐼
2

+
(𝜇 + 𝜖 + 𝛾) (𝜇 + 𝛿 + 𝑑) 𝑎

1

𝜖
(𝑅
0
− 1) 𝐼 + 𝜖

Λ
2

𝜇2
𝜎
2

1

≤ − 𝜖 (𝜇 − 𝜎
2

1
) (𝑆 −

Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2

− 𝑎
2
(𝐴 −

1

2
𝜎
2

3
) 𝐼
2
+ 𝜖

Λ
2

𝜇2
𝜎
2

1
,

(22)

where𝐴 = (𝜇+𝛿+𝑑)−(𝛿(2𝜇+𝜖)/𝑎
2
) = (2𝜇(𝜇+𝛿+𝑑)(2𝜇+𝜖+

𝛿+𝑑) + 𝜖(2𝜇 + 𝜖)(𝜇 + 𝑑) + 𝜖𝑑(2𝜇 + 𝜖 + 𝑑))/(2𝜇(2𝜇 + 𝜖 + 𝛿+𝑑)
+ 𝜖(2𝜇 + 𝜖 + 𝑑)) > 0. Therefore,

𝑑𝑉 (𝑥) ≤ [−𝜖 (𝜇 − 𝜎
2

1
) (𝑆 −

Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2

−𝑎
2
(𝐴 −

1

2
𝜎
2

3
) 𝐼
2
+ 𝜖

Λ
2

𝜇2
𝜎
2

1
]𝑑𝑡 + 𝜎

1
𝑆

× [𝜖 (𝑆 −
Λ

𝜇
+ 𝐸) + (2𝜇 + 𝜖) 𝐼] 𝑑𝐵

1
(𝑡)

+ [𝜖 (𝑆 −
Λ

𝜇
+ 𝐸) + (2𝜇 + 𝜖) 𝐼 + 𝑎

1
] 𝜎
2
𝐸

× 𝑑𝐵
2
(𝑡) + 𝜎

3
(𝑎
2
𝐼 + 𝑎
3
) 𝐼𝑑𝐵
3
(𝑡) .

(23)

Since 𝑎
2
= (2𝜇(2𝜇+𝜖+𝛿+𝑑)+ 𝜖(2𝜇+𝜖+𝑑))/𝜖 > (2𝜇+𝜖)

2
/𝜖,

the positive definiteness of the quadratic polynomial of the
Lyapunov function𝑉 is satisfied; thus, the Lyapunov function
𝑉 is nonnegative. Integrating both sides of (23) from 0 to 𝑡
and then taking expectation yield

0 ≤ 𝐸𝑉 (𝑥 (𝑡))

≤ 𝑉 (𝑥 (0))

+ 𝐸∫

𝑡

0

[−𝜖 (𝜇 − 𝜎
2

1
) (𝑆 (𝑠) −

Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2
(𝑠)

−𝑎
2
(𝐴 −

1

2
𝜎
2

3
) 𝐼
2
(𝑠) + 𝜖

Λ
2

𝜇2
𝜎
2

1
]𝑑𝑠,

(24)
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which implies

𝐸∫

𝑡

0

[𝜖 (𝜇 − 𝜎
2

1
) (𝑆 (𝑠) −

Λ

𝜇
)

2

+ 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2
(𝑠)

+𝑎
2
(𝐴 −

1

2
𝜎
2

3
) 𝐼
2
(𝑠)] 𝑑𝑠 ≤ 𝑉 (𝑥 (0)) + 𝜖𝜎

2

1

Λ
2

𝜇2
𝑡.

(25)

Therefore,

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[𝜖 (𝜇 − 𝜎
2

1
) (𝑆 (𝑠) −

Λ

𝜇
)

2

+ 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2
(𝑠)

+𝑎
2
(𝐴 −

1

2
𝜎
2

3
) 𝐼
2
(𝑠) ] 𝑑𝑠 ≤ 𝜖𝜎

2

1

Λ
2

𝜇2
.

(26)

If we let𝐾
1
= min{𝜖(𝜇−𝜎2

1
), 𝜖(𝜇− (1/2)𝜎

2

2
), 𝑎
2
(𝐴− (1/2)𝜎

2

3
)},

then

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆(𝑠) −
Λ

𝜇
)

2

+ 𝐸
2
(𝑠) + 𝐼

2
(𝑠)] 𝑑𝑠 ≤

𝜖𝜎
2

1
Λ
2

𝜇2𝐾
1

.

(27)

The proof of Theorem 2 is thus completed.

Remark 3. Theorem 2 reveals that the solution will oscillate
around the disease-free equilibrium, and the intensity is
relevant to the values of 𝜎

1
, 𝜎
2
, and 𝜎

3
. The weaker the values

are, the smaller the fluctuation is. In other words, if the
stochastic perturbations become small, the solution of system
(3) will be close to the disease-free equilibrium of system (2).
In addition, when 𝜎

1
= 0, then (22) can be reduced to the

following form:

𝐿𝑉 (𝑥) ≤ − 𝜖𝜇(𝑆 −
Λ

𝜇
)

2

− 𝜖 (𝜇 −
1

2
𝜎
2

2
)𝐸
2

− 𝑎
2
(𝐴 −

1

2
𝜎
2

3
) 𝐼
2
,

(28)

which means that 𝐿𝑉(𝑥) is negative definite provided that
(1/2)𝜎

2

2
< 𝜇 and (1/2)𝜎2

3
< 𝐴. Therefore, 𝐹

0
is stochastically

asymptotically stable in the large [24].

4. Asymptotic Behavior around the Endemic
Equilibrium of the Deterministic Model

In this section, we assume 𝑅
0
> 1. Then there is an endemic

equilibrium 𝐹
∗ for system (2) but not the endemic equilib-

rium 𝐹
∗ for system (3), as there is no endemic equilibrium

in system (3). Similarly, we also expect to find out whether or
not the solution goes around 𝐹∗. The following result gives a
positive answer under certain parametric restrictions.

Theorem4. Assume that𝑅
0
= 𝛽Λ𝜖/𝜇(𝜇+𝜖+𝛾)(𝜇+𝛿+𝑑) > 1;

then one has the following two cases to discuss.

(i) If

0 < 𝐵
2
< 4𝜇𝛾 (2𝜇 + 𝜖 + 𝛾) (𝜇 + 𝛿 + 𝑑)

× [(𝜇 + 𝜖) (𝜇 + 𝛿) + 𝜇𝛿] ,

(29)

and parameters 𝜎
1
, 𝜎
2
, and 𝜎

3
satisfy conditions

𝜎
2

1
<

2𝜌
1

2𝜇 + 𝜖 + 𝛾
, 𝜎

2

2
<
2𝜌
2

𝛾
, 𝜎

2

3
<
4𝑎𝜌
3

𝑏
, (30)

where

𝐵 = (2𝜇 + 𝜖) [(𝜇 + 𝜖) (𝜇 + 𝑑) + 𝜇𝛿] − 𝜖𝛿𝛾,

𝜌
1
=
2𝜇𝜖 (2𝜇 + 𝜖 + 𝛾)𝐶 − |𝐵|

2𝐶
,

𝜌
2
=
4𝑎𝛾 (𝜇 + 𝜖)𝐷 − (2𝑎𝛾𝛿 + 𝑏𝜖)

4𝑎𝐷
,

𝜌
3
=
2𝜖𝑏 (𝜇 + 𝛿 + 𝑑) − 2𝑎𝐶 |𝐵| − 𝜖𝐷 (2𝑎𝛾𝛿 + 𝑏𝜖)

4𝑎𝜖
,

𝑎 = 𝜇𝜖
4
(2𝜇 + 𝜖 + 𝛾) ,

𝑏 = 2𝜇𝛾𝜖
2
(2𝜇 + 𝜖 + 𝛾) [2 (𝜇 + 𝜖) (𝜇 + 𝑑) + 2𝜇𝛿 + 𝜖𝛿] ,

𝐶 =
|𝐵|

3𝜇𝜖 (2𝜇 + 𝜖 + 𝛾)

+
8𝑎𝑏𝜖𝛾 (𝜇 + 𝛿 + 𝑑) (𝜇 + 𝜖) − 𝜖(2𝑎𝛾𝛿 + 𝑏𝜖)

2

24𝛾𝑎2 |𝐵| (𝜇 + 𝜖)
,

𝐷 =
2𝑎𝛾𝛿 + 𝑏𝜖

6𝑎𝛾 (𝜇 + 𝜖)
+
2𝜇𝜖
2
𝑏 (𝜇 + 𝛿 + 𝑑) (2𝜇 + 𝜖 + 𝛾) − 𝑎𝐵

2

3𝜇𝜖2 (2𝑎𝛾𝛿 + 𝑏𝜖) (2𝜇 + 𝜖 + 𝛾)
,

(31)

then for any given initial value (𝑆(0), 𝐸(0), 𝐼(0)) ∈ R3
+
, the

solution of model (3) has the property

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆 (𝑟) −
2𝜌
1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗
)

2

+ (𝐸 (𝑟) −
2𝜌
2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗
)

2

+(𝐼(𝑟) −
4𝑎𝜌
3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟 ≤
𝐾
𝜎

𝑀
,

(32)

where

𝐾
𝜎
=

𝜌
1
(2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗2
+

𝜌
2
𝛾𝜎
2

2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗2

+
𝜌
3
𝑏𝜎
2

3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗2
,

𝑀 = min{𝜌
1
−
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
, 𝜌
2
−
𝛾

2
𝜎
2

2
, 𝜌
3
−

𝑏

4𝑎
𝜎
2

3
} .

(33)
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(ii) If𝐵 = 0 and parameters𝜎
1
,𝜎
2
, and𝜎

3
satisfy conditions

𝜎
2

1
< 2𝜇, 𝜎

2

2
< 2𝜇, 𝜎

2

3
< 2 (𝜇 + 𝑑) , (34)

then for any given initial value (𝑆(0), 𝐸(0), 𝐼(0)) ∈ R3
+
, the

solution of model (3) has the property

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆 (𝑟) −
2𝜇

2𝜇 − 𝜎
2

1

𝑆
∗
)

2

+ (𝐸 (𝑟) −
2𝜇

2𝜇 − 𝜎
2

2

𝐸
∗
)

2

+(𝐼(𝑟) −
2(𝜇 + 𝑑)

2(𝜇 + 𝑑) − 𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟 ≤
𝐾
󸀠

𝜎

𝑀󸀠
,

(35)

where

𝐾
󸀠

𝜎
=
𝜇𝜖 (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝛾 (2𝜇 − 𝜎
2

1
)

𝑆
∗2
+

𝜇𝜖𝜎
2

2

2𝜇 − 𝜎
2

2

𝐸
∗2

+
𝛿 (𝜇 + 𝑑) 𝜎

2

3

2 (𝜇 + 𝑑) − 𝜎
2

3

𝐼
∗2
,

𝑀
󸀠
= min{

𝜖 (2𝜇 + 𝜖 + 𝛾) (2𝜇 − 𝜎
2

1
)

2𝛾
,

𝜖 (2𝜇 − 𝜎
2

2
)

2
,

𝛿 [2 (𝜇 + 𝑑) − 𝜎
2

3
]

2
} .

(36)

Proof. Define a 𝐶2-function 𝑉 : R3
+
→ R
+
by

𝑉 (𝑥) =
𝑏
1

2
(𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
)
2
+
𝑏
2

2
(𝑆 − 𝑆

∗
)
2
+
𝑏
3

2
(𝐼 − 𝐼

∗
)
2
,

(37)

where 𝑏
1
, 𝑏
2
, and 𝑏

3
are positive constants to be chosen later.

For simplicity, we divide (37) into two functions: 𝑉(𝑥) =

𝑉
1
(𝑥) + 𝑉

2
(𝑥), where

𝑉
1
(𝑥) =

𝑏
1

2
(𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
)
2
+
𝑏
2

2
(𝑆 − 𝑆

∗
)
2
,

𝑉
2 (𝑥) =

𝑏
3

2
(𝐼 − 𝐼

∗
)
2
.

(38)

From Itô’s formula, we have

𝑑𝑉
1 (𝑥) = 𝐿𝑉

1
𝑑𝑡

+ [𝑏
1
(𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
) + 𝑏
2
(𝑆 − 𝑆

∗
)] 𝜎
1
𝑆𝑑𝐵
1
(𝑡)

+ 𝑏
1
𝜎
1
𝐸 (𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
) 𝑑𝐵
2
(𝑡) ,

𝑑𝑉
2
(𝑥) = 𝐿𝑉

2
𝑑𝑡 + 𝜎

3
𝐼 [𝑏
3
(𝐼 − 𝐼

∗
) + (𝐸 − 𝐸

∗
)] 𝑑𝐵
3
(𝑡) .

(39)

In detail,

𝐿𝑉
1
(𝑥) = 𝑏

1
(𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
) [Λ − 𝜇𝑆 + 𝛿𝐼 − (𝜇 + 𝜖) 𝐸]

+ (Λ − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝛿𝐼 + 𝛾𝐸) × 𝑏
2
(𝑆 − 𝑆

∗
)

+
1

2
𝑏
1
𝜎
2

1
𝑆
2
+
1

2
𝑏
1
𝜎
2

2
𝐸
2
+
1

2
𝑏
2
𝜎
2

1
𝑆
2

= 𝑏
1
(𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
)

× [−𝜇 (𝑆 − 𝑆
∗
) + 𝛿 (𝐼 − 𝐼

∗
) − (𝜇 + 𝜖) (𝐸 − 𝐸

∗
)]

+ 𝑏
2
(𝑆 − 𝑆

∗
)

× [−𝛽𝑆
∗
(𝐼 − 𝐼

∗
) − 𝛽𝐼 (𝑆 − 𝑆

∗
) − 𝜇 (𝑆 − 𝑆

∗
)

+𝛿 (𝐼 − 𝐼
∗
) + 𝛾 (𝐸 − 𝐸

∗
)]

+
𝑏
1
+ 𝑏
2

2
𝜎
2

1
𝑆
2
+
1

2
𝑏
1
𝜎
2

2
𝐸
2

= −𝜇𝑏
1
(𝑆 − 𝑆

∗
)
2
+ 𝑏
1
𝛿 (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
)

− 𝑏
1
(𝜇 + 𝜖) (𝐸 − 𝐸

∗
)
2
+ 𝑏
1
𝛿 (𝐸 − 𝐸

∗
) (𝐼 − 𝐼

∗
)

− 𝑏
1
(2𝜇 + 𝜖) (𝑆 − 𝑆

∗
) (𝐸 − 𝐸

∗
)

− 𝑏
2
𝛽𝑆
∗
(𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
)

− 𝛽𝑏
2
𝐼(𝑆 − 𝑆

∗
)
2
− 𝜇𝑏
2
(𝑆 − 𝑆

∗
)
2

+ 𝑏
2
𝛿 (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
) + 𝑏
2
𝛾 (𝑆 − 𝑆

∗
) (𝐸 − 𝐸

∗
)

+
𝑏
1
+ 𝑏
2

2
𝜎
2

1
𝑆
2
+
1

2
𝑏
1
𝜎
2

2
𝐸
2

≤ −𝜇 (𝑏
1
+ 𝑏
2
) (𝑆 − 𝑆

∗
)
2
− 𝑏
1
(𝜇 + 𝜖) (𝐸 − 𝐸

∗
)
2

+ [−𝑏
1
(2𝜇 + 𝜖) + 𝑏

2
𝛾] (𝑆 − 𝑆

∗
) (𝐸 − 𝐸

∗
)

+ (𝑏
1
𝛿 + 𝑏
2
𝛿 − 𝑏
2
𝛽𝑆
∗
) (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
)

+ 𝑏
1
𝛿 (𝐸 − 𝐸

∗
) (𝐼 − 𝐼

∗
) +

𝑏
1
+ 𝑏
2

2
𝜎
2

1
𝑆
2
+
1

2
𝑏
1
𝜎
2

2
𝐸
2
,

𝐿𝑉
2 (𝑥) = 𝑏3 (𝐼 − 𝐼

∗
) (𝜖𝐸 − (𝜇 + 𝛿 + 𝑑) 𝐼) +

1

2
𝑏
3
𝜎
2

3
𝐼
2

= 𝑏
3
(𝐼 − 𝐼

∗
) [𝜖 (𝐸 − 𝐸

∗
) − (𝜇 + 𝛿 + 𝑑) (𝐼 − 𝐼

∗
)]

+
1

2
𝑏
3
𝜎
2

3
𝐼
2

= 𝑏
3
𝜖 (𝐸 − 𝐸

∗
) (𝐼 − 𝐼

∗
) − 𝑏
3
(𝜇 + 𝛿 + 𝑑) (𝐼 − 𝐼

∗
)
2

+
1

2
𝑏
3
𝜎
2

3
𝐼
2
.

(40)
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Taking (40) together, noting that 𝑆∗ = (𝜇 + 𝜖)(𝜇 + 𝛿 + 𝑑)/𝛽𝜖,
we get

𝐿𝑉 (𝑥) = 𝐿𝑉1 (𝑥) + 𝐿𝑉2 (𝑥)

≤ −𝜇 (𝑏
1
+ 𝑏
2
) (𝑆 − 𝑆

∗
)
2
− 𝑏
1
(𝜇 + 𝜖) (𝐸 − 𝐸

∗
)
2

− 𝑏
3
(𝜇 + 𝛿 + 𝑑) (𝐼 − 𝐼

∗
)
2

− [𝑏
1
(2𝜇 + 𝜖) − 𝑏

2
𝛾] (𝑆 − 𝑆

∗
) (𝐸 − 𝐸

∗
)

+ [𝑏
1
𝛿 −

(𝜇 + 𝜖) (𝜇 + 𝑑) + 𝜇𝛿

𝜖
𝑏
2
] (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
)

+ (𝑏
1
𝛿 + 𝑏
3
𝜖) (𝐸 − 𝐸

∗
) (𝐼 − 𝐼

∗
) +

𝑏
1
+ 𝑏
2

2
𝜎
2

1
𝑆
2

+
1

2
𝑏
1
𝜎
2

2
𝐸
2
+
1

2
𝑏
3
𝜎
2

3
𝐼
2
.

(41)

Choose 𝑏
2
= ((2𝜇 + 𝜖)/𝛾)𝑏

1
, from the inequality ±𝑥𝑦 ≤

(1/2𝑐)𝑥
2
+ 2𝑐𝑦
2, where 𝑐 > 0; then (41) takes the following:

𝐿𝑉 (𝑥) ≤ −
𝜇 (2𝜇 + 𝜖 + 𝛾)

𝛾
𝑏
1
(𝑆 − 𝑆

∗
)
2
− (𝜇 + 𝜖) 𝑏

1
(𝐸 − 𝐸

∗
)
2

− 𝑏
3
(𝜇 + 𝛿 + 𝑑) (𝐼 − 𝐼

∗
)
2
−
𝐵𝑏
1

𝜖𝛾
(𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
)

+ (𝑏
1
𝛿 + 𝑏
3
𝜖) (𝐸 − 𝐸

∗
) (𝐼 − 𝐼

∗
) +

2𝜇 + 𝜖 + 𝛾

2𝛾
𝑏
1
𝜎
2

1
𝑆
2

+
1

2
𝑏
1
𝜎
2

2
𝐸
2
+
1

2
𝑏
3
𝜎
2

3
𝐼
2

≤ −
𝜇 (2𝜇 + 𝜖 + 𝛾)

𝛾
𝑏
1
(𝑆 − 𝑆

∗
)
2
− (𝜇 + 𝜖) 𝑏

1
(𝐸 − 𝐸

∗
)
2

− 𝑏
3
(𝜇 + 𝛿 + 𝑑) (𝐼 − 𝐼

∗
)
2
+
|𝐵| 𝑏1

2𝜖𝛾𝐶
(𝑆 − 𝑆

∗
)
2

+
𝐶 |𝐵| 𝑏1

2𝜖𝛾
(𝐼 − 𝐼

∗
)
2
+
𝑏
1
𝛿 + 𝑏
3
𝜖

2𝐷
(𝐸 − 𝐸

∗
)
2

+
𝐷 (𝑏
1
𝛿 + 𝑏
3
𝜖)

2

× (𝐼 − 𝐼
∗
)
2
+
2𝜇 + 𝜖 + 𝛾

2𝛾
𝑏
1
𝜎
2

1
𝑆
2
+
1

2
𝑏
1
𝜎
2

2
𝐸
2

+
1

2
𝑏
3
𝜎
2

3
𝐼
2

= − [𝜇 (2𝜇 + 𝜖 + 𝛾) −
|𝐵|

2𝜖𝐶
]
𝑏
1

𝛾
(𝑆 − 𝑆

∗
)
2

− [(𝜇 + 𝜖) 𝑏
1
−
𝑏
1
𝛿 + 𝑏
3
𝜖

2𝐷
] (𝐸 − 𝐸

∗
)
2

− [𝑏
3
(𝜇 + 𝛿 + 𝑑) −

𝐶 |𝐵| 𝑏1

2𝜖𝛾
−
𝐷 (𝑏
1
𝛿 + 𝑏
3
𝜖)

2
]

× (𝐼 − 𝐼
∗
)
2

+
2𝜇 + 𝜖 + 𝛾

2𝛾
𝑏
1
𝜎
2

1
𝑆
2
+
1

2
𝑏
1
𝜎
2

2
𝐸
2
+
1

2
𝑏
3
𝜎
2

3
𝐼
2
,

(42)

where 𝐵 = (2𝜇 + 𝜖)[(𝜇 + 𝜖)(𝜇 + 𝑑) + 𝜇𝛿] − 𝜖𝛿𝛾 and 𝐶, 𝐷 are
positive constants to be chosen later. We have to consider the
following two cases: (i) 𝐵 ̸= 0 and (ii) 𝐵 = 0.

First we consider case (i); that is,𝐵2 > 0; we choose 𝑏
1
= 𝛾,

𝑏
3
= 𝑏/2𝑎,𝐶 = (|𝐵|/3𝜇𝜖(2𝜇+𝜖+𝛾))+((8𝑎𝑏𝜖𝛾(𝜇+𝛿+𝑑)(𝜇+𝜖)−

𝜖(2𝑎𝛾𝛿+𝑏𝜖)
2
)/24𝛾𝑎

2
|𝐵|(𝜇+𝜖)), and𝐷 = ((2𝑎𝛾𝛿+𝑏𝜖)/6𝑎𝛾(𝜇+

𝜖))+((2𝜇𝜖
2
𝑏(𝜇+𝛿+𝑑)(2𝜇+𝜖+𝛾)−𝑎𝐵

2
)/3𝜇𝜖
2
(2𝑎𝛾𝛿+𝑏𝜖)(2𝜇+

𝜖 + 𝛾)), where 𝑎 = 𝜇𝜖
4
(2𝜇 + 𝜖 + 𝛾) and 𝑏 = 2𝜇𝛾𝜖

2
(2𝜇 + 𝜖 +

𝛾)[2(𝜇+𝜖)(𝜇+𝑑)+2𝜇𝛿+𝜖𝛿] (The choice of parameters𝐶 and𝐷
can be seen in Remark 5.). Then the quantities in the brackets
of (42) are positive. For convenience sake, we introduce 𝜌

1
=

(2𝜇𝜖(2𝜇+ 𝜖+ 𝛾)𝐶− |𝐵|)/2𝐶 > 0, 𝜌
2
= (4𝑎𝛾(𝜇+ 𝜖)𝐷− (2𝑎𝛾𝛿+

𝑏𝜖))/4𝑎𝐷 > 0, and 𝜌
3
= (2𝜖𝑏(𝜇+𝛿+𝑑)−2𝑎𝐶|𝐵|− 𝜖𝐷(2𝑎𝛾𝛿+

𝑏𝜖))/4𝑎𝜖 > 0. Then, from (42), we have

𝐿𝑉 (𝑥) ≤ − 𝜌
1
(𝑆 − 𝑆

∗
)
2
− 𝜌
2
(𝐸 − 𝐸

∗
)
2
− 𝜌
3
(𝐼 − 𝐼

∗
)
2

+
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
𝑆
2
+
𝛾

2
𝜎
2

2
𝐸
2
+

𝑏

4𝑎
𝜎
2

3
𝐼
2

= − (𝜌
1
−
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
) 𝑆
2
+ 2𝜌
1
𝑆
∗
𝑆 − 𝜌
1
𝑆
∗2

− (𝜌
2
−
𝛾

2
𝜎
2

2
)𝐸
2
+ 2𝜌
2
𝐸
∗
𝐸 − 𝜌
2
𝐸
∗2

+ (𝜌
3
−

𝑏

4𝑎
𝜎
2

3
) 𝐼
2
+ 2𝜌
3
𝐼
∗
𝐼 − 𝜌
3
𝐼
∗2

= − (𝜌
1
−
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
)

× (𝑆 −
2𝜌
1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗
)

2

− (𝜌
2
−
𝛾

2
𝜎
2

2
)(𝐸 −

2𝜌
2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗
)

2

− (𝜌
3
−

𝑏

4𝑎
𝜎
2

3
)(𝐼 −

4𝑎𝜌
3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗
)

2

+
𝜌
1
(2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗2
+

𝜌
2
𝛾𝜎
2

2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗2

+
𝜌
3
𝑏𝜎
2

3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗2
.

(43)
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Figure 1: 𝑆(0) = 0.7, 𝐸(0) = 0.2, 𝐼(0) = 0.1, Λ = 0.6, 𝛽 = 0.4, 𝜇 = 0.2, 𝛿 = 0.1, 𝛾 = 0.2, 𝜖 = 0.15, 𝑑 = 0.1, and Δ𝑡 = 0.002. Group (a) 𝜎
1
= 0.04,

𝜎
2
= 0.03, and 𝜎

3
= 0.03. Group (b) 𝜎

1
= 0.01, 𝜎

2
= 0.02, and 𝜎

3
= 0.02.

Thus

𝑑𝑉 (𝑥) = 𝐿𝑉𝑑𝑡

+ [𝛾 (𝑆 − 𝑆
∗
+ 𝐸 − 𝐸

∗
) + (2𝜇 + 𝜖) (𝑆 − 𝑆

∗
)]

× 𝜎
1
𝑆𝑑𝐵
1 (𝑡)

+ 𝛾𝜎
1
𝐸 (𝑆 − 𝑆

∗
+ 𝐸 − 𝐸

∗
) 𝑑𝐵
2
(𝑡)

+ 𝜎
3
𝐼 [𝑏
1
(𝐼 − 𝐼

∗
) + (𝐸 − 𝐸

∗
)] 𝑑𝐵
3
(𝑡) .

(44)

Integrating both sides of (44) from 0 to 𝑡 and then taking
expectation yield

0 ≤ 𝐸𝑉 (𝑥 (𝑡))

≤ 𝑉 (𝑥 (0))

− 𝐸∫

𝑡

0

[(𝜌
1
−
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
)

× (𝑆 (𝑟) −
2𝜌
1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗
)

2

+ (𝜌
2
−
𝛾

2
𝜎
2

2
) × (𝐸 (𝑟) −

2𝜌
2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗
)

2

+(𝜌
3
−

𝑏

4𝑎
𝜎
2

3
)(𝐼 (𝑟) −

4𝑎𝜌
3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟

+ 𝐾
𝜎
𝑡,

(45)



10 Abstract and Applied Analysis

0 50 100
0.5

1

1.5

2

2.5

3

3.5

4

t

0 50 100
0

0.2

0.4

0.6

0.8

1

t

0 50 100
0

0.2

0.4

0.6

0.8

1

t

I(t)E(t)S(t)

(a)

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5

t

0 50 100
0

0.2

0.4

0.6

0.8

1

t

0 50 100
0

0.2

0.4

0.6

0.8

1

t

I(t)E(t)S(t)

(b)

Figure 2: 𝑆(0) = 0.7, 𝐸(0) = 0.2, 𝐼(0) = 0.1,Λ = 0.6, 𝛽 = 0.4, 𝜇 = 0.2, 𝛿 = 0.1, 𝛾 = 0.2, 𝜖 = 0.15, 𝑑 = 0.1, and Δ𝑡 = 0.002. Group (a) 𝜎
1
= 0.04,

𝜎
2
= 0.1, and 𝜎

3
= 0.2. Group (b) 𝜎

1
= 0, 𝜎

2
= 0.1, and 𝜎

3
= 0.2.

where

𝐾
𝜎
=

𝜌
1
(2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗2
+

𝜌
2
𝛾𝜎
2

2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗2

+
𝜌
3
𝑏𝜎
2

3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗2
,

(46)

which implies

𝐸∫

𝑡

0

[(𝜌
1
−
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
)

× (𝑆 (𝑟) −
2𝜌
1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗
)

2

+ (𝜌
2
−
𝛾

2
𝜎
2

2
)

× (𝐸 (𝑟) −
2𝜌
2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗
)

2

+(𝜌
3
−

𝑏

4𝑎
𝜎
2

3
)(𝐼 (𝑟) −

4𝑎𝜌
3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟

≤ 𝑉 (𝑥 (0)) + 𝐾
𝜎
𝑡.

(47)
Dividing both sides by 𝑡 and letting 𝑡 → ∞, we get

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝜌
1
−
2𝜇 + 𝜖 + 𝛾

2
𝜎
2

1
)

× (𝑆 (𝑟) −
2𝜌
1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗
)

2
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Figure 3: 𝑆(0) = 0.7, 𝐸(0) = 0.2, 𝐼(0) = 0.1, Λ = 0.6, 𝛽 = 0.6, 𝜇 = 0.2, 𝛿 = 0.1, 𝛾 = 0.2, 𝜖 = 0.15, 𝑑 = 0.1, and Δ𝑡 = 0.002. Group (a) 𝜎
1
= 0.04,

𝜎
2
= 0.03, and 𝜎

3
= 0.02. Group (b) 𝜎

1
= 0.01, 𝜎

2
= 0.02, and 𝜎

3
= 0.01.

+ (𝜌
2
−
𝛾

2
𝜎
2

2
)

× (𝐸 (𝑟) −
2𝜌
2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗
)

2

+(𝜌
3
−

𝑏

4𝑎
𝜎
2

3
)(𝐼 (𝑟) −

4𝑎𝜌
3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟

≤ 𝐾
𝜎
.

(48)

Introduce𝑀 = min{𝜌
1
− ((2𝜇+𝜖+𝛾)/2)𝜎

2

1
, 𝜌
2
− (𝛾/2)𝜎

2

2
, 𝜌
3
−

(𝑏/4𝑎)𝜎
2

3
}; then

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆 (𝑟) −
2𝜌
1

2𝜌
1
− (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝑆
∗
)

2

+ (𝐸 (𝑟) −
2𝜌
2

2𝜌
2
− 𝛾𝜎
2

2

𝐸
∗
)

2

+(𝐼(𝑟) −
4𝑎𝜌
3

4𝑎𝜌
3
− 𝑏𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟 ≤
𝐾
𝜎

𝑀
.

(49)

For case (ii), we can choose 𝑏
1
= 𝜖, 𝑏
3
= 𝛿, and𝐷 = 𝛿/𝜖; then

from (42), we can obtain

𝐿𝑉 (𝑥) ≤ −
𝜇𝜖 (2𝜇 + 𝜖 + 𝛾)

𝛾
(𝑆 − 𝑆

∗
)
2

− 𝜖 (𝜇 + 𝜖) (𝐸 − 𝐸
∗
)
2
− 𝛿 (𝜇 + 𝛿 + 𝑑) (𝐼 − 𝐼

∗
)
2
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Figure 4: 𝑆(0) = 0.7, 𝐸(0) = 0.2, 𝐼(0) = 0.1, Λ = 0.4, 𝛽 = 0.8, 𝜇 = 0.1, 𝛿 = 0.3, 𝛾 = 0.6, 𝜖 = 0.2, 𝑑 = 0.1, and Δ𝑡 = 0.002. Group (a) 𝜎
1
= 0.04,

𝜎
2
= 0.03, and 𝜎

3
= 0.02. Group (b) 𝜎

1
= 0.01, 𝜎

2
= 0.02, and 𝜎

3
= 0.01.

+ 2𝜖𝛿 (𝐸 − 𝐸
∗
) (𝐼 − 𝐼

∗
) +

𝜖 (2𝜇 + 𝜖 + 𝛾)

2𝛾
𝜎
2

1
𝑆
2

+
𝜖

2
𝜎
2

2
𝐸
2
+
𝛿

2
𝜎
2

3
𝐼
2

≤ −
𝜇𝜖 (2𝜇 + 𝜖 + 𝛾)

𝛾
(𝑆 − 𝑆

∗
)
2
− 𝜇𝜖(𝐸 − 𝐸

∗
)
2

− 𝛿 (𝜇 + 𝑑) (𝐼 − 𝐼
∗
)
2
+
𝜖 (2𝜇 + 𝜖 + 𝛾)

2𝛾
𝜎
2

1
𝑆
2

+
𝜖

2
𝜎
2

2
𝐸
2
+
𝛿

2
𝜎
2

3
𝐼
2

= −

𝜖 (2𝜇 + 𝜖 + 𝛾) (2𝜇 − 𝜎
2

1
)

2𝛾
(𝑆 (𝑠) −

2𝜇

2𝜇 − 𝜎
2

1

𝑆
∗
)

2

−

𝜖 (2𝜇 − 𝜎
2

2
)

2
(𝐸 (𝑠) −

2𝜇

2𝜇 − 𝜎
2

2

𝐸
∗
)

2

−

𝛿 [2 (𝜇 + 𝑑) − 𝜎
2

3
]

2
(𝐼 (𝑠) −

2 (𝜇 + 𝑑)

2 (𝜇 + 𝑑) − 𝜎
2

3

𝐼
∗
)

2

+ 𝐾
󸀠

𝜎
,

(50)

where

𝐾
󸀠

𝜎
=
𝜇𝜖 (2𝜇 + 𝜖 + 𝛾) 𝜎

2

1

𝛾 (2𝜇 − 𝜎
2

1
)

𝑆
∗2
+

𝜇𝜖𝜎
2

2

2𝜇 − 𝜎
2

2

𝐸
∗2

+
𝛿 (𝜇 + 𝑑) 𝜎

2

3

2 (𝜇 + 𝑑) − 𝜎
2

3

𝐼
∗2
.

(51)
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Figure 5: 𝑆(0) = 0.7, 𝐸(0) = 0.2, 𝐼(0) = 0.1, Λ = 0.8, 𝛽 = 0.6, 𝜇 = 0.2, 𝛿 = 0.2, 𝛾 = 0.3, 𝜖 = 0.3, and 𝑑 = 0.4. Group (a) 𝜎
1
= 0.04, 𝜎

2
= 0.03,

and 𝜎
3
= 0.02. Group (b) 𝜎

1
= 0.01, 𝜎

2
= 0.02, and 𝜎

3
= 0.01.

In a similar way, we can get

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[

𝜖 (2𝜇 + 𝜖 + 𝛾) (2𝜇 − 𝜎
2

1
)

2𝛾

×(𝑆 (𝑟) −
2𝜇

2𝜇 − 𝜎
2

1

𝑆
∗
)

2

+

𝜖 (2𝜇 − 𝜎
2

2
)

2
(𝐸 (𝑟) × −

2𝜇

2𝜇 − 𝜎
2

2

𝐸
∗
)

2

+

𝛿 [2 (𝜇 + 𝑑) − 𝜎
2

3
]

2

× (𝐼 (𝑟) −
2 (𝜇 + 𝑑)

2 (𝜇 + 𝑑) − 𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟 ≤ 𝐾
󸀠

𝜎
.

(52)

Set𝑀󸀠 = min{𝜖(2𝜇+𝜖+𝛾)(2𝜇−𝜎2
1
)/2𝛾, 𝜖(2𝜇−𝜎

2

2
)/2, 𝛿[2(𝜇+

𝑑) − 𝜎
2

3
]/2}; then

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆 (𝑟) −
2𝜇

2𝜇 − 𝜎
2

1

𝑆
∗
)

2

+ (𝐸 (𝑟) −
2𝜇

2𝜇 − 𝜎
2

2

𝐸
∗
)

2

+(𝐼(𝑟) −
2(𝜇 + 𝑑)

2(𝜇 + 𝑑) − 𝜎
2

3

𝐼
∗
)

2

]𝑑𝑟 ≤
𝐾
󸀠

𝜎

𝑀󸀠
.

(53)

This completes the theorem.
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Remark 5 (the choice of parameters 𝐶 and 𝐷). In order to
ensure that the quantities in the brackets of (42) are positive,
𝐶 and𝐷must satisfy the following three inequalities:

𝐶 >
|𝐵|

2𝜇𝜖 (2𝜇 + 𝜖 + 𝛾)
,

𝐷 >
𝛾𝛿 + 𝑏

3
𝜖

2𝛾 (𝜇 + 𝜖)
,

𝐶 |𝐵|

2𝜖
+
𝐷 (𝛾𝛿 + 𝑏

3
𝜖)

2
< 𝑏
3
(𝜇 + 𝛿 + 𝑑) .

(54)

In order to guarantee the existence of positive constants𝐶 and
𝐷, from (54), the following inequality must be satisfied:

𝐵
2

4𝜇𝜖2 (2𝜇 + 𝜖 + 𝛾)
+
(𝛾𝛿 + 𝑏

3
𝜖)
2

4𝛾 (𝜇 + 𝜖)
< 𝑏
3
(𝜇 + 𝛿 + 𝑑) . (55)

If we introduce 𝑦 = 𝑏
3
, then the above inequality is equivalent

to the following form:

ℎ (𝑦) := 𝑎𝑦
2
− 𝑏𝑦 + 𝑐 < 0, (56)

where 𝑎 = 𝜇𝜖4(2𝜇+𝜖+𝛾) > 0, 𝑏 = 2𝜇𝛾𝜖2(2𝜇+𝜖+𝛾)[2(𝜇+𝜖)(𝜇+
𝑑)+2𝜇𝛿+𝜖𝛿] > 0, and 𝑐 = 𝛾(𝜇+𝜖)𝐵2+𝜇𝜖2𝛾2𝛿2(2𝜇+𝜖+𝛾) > 0.
Furthermore, ℎ(0) = 𝑐 > 0. To ensure that inequality (56)
holds, there exists a positive solution; the constants 𝑎, 𝑏, and
𝑐must satisfy the following condition:

𝑏
2
− 4𝑎𝑐 = 4𝜇𝛾𝜖

4
(2𝜇 + 𝜖 + 𝛾) (𝜇 + 𝜖)

× {4𝜇𝛾 (2𝜇 + 𝜖 + 𝛾) (𝜇 + 𝛿 + 𝑑)

× [(𝜇 + 𝜖) (𝜇 + 𝑑) + 𝜇𝛿] − 𝐵
2
}

> 0.

(57)

By condition (29), inequality (57) holds; then we choose 𝑦 =

𝑏/2𝑎; that is 𝑏
3
= 𝑏/2𝑎; therefore, (54) can be written in the

following form;

𝐶 >
|𝐵|

2𝜇𝜖 (2𝜇 + 𝜖 + 𝛾)
,

𝐷 >
2𝑎𝛾𝛿 + 𝑏𝜖

4𝑎𝛾 (𝜇 + 𝜖)
,

2𝑎 |𝐵| 𝐶 + (2𝑎𝛾𝛿 + 𝑏𝜖) 𝜖𝐷 < 2𝜖𝑏 (𝜇 + 𝛿 + 𝑑) .

(58)

The corresponding equalities of the above inequalities give
three straight lines. The feasible region of 𝐶 and 𝐷 is a
triangle area surrounded by these three straight lines. The
third straight line can be written as follows:

𝑙: 2𝑎 |𝐵| 𝐶 + (2𝑎𝛾𝛿 + 𝑏𝜖) 𝜖𝐷 = 2𝜖𝑏 (𝜇 + 𝛿 + 𝑑) . (59)

For convenience sake, we denote 𝐶
∗
= |𝐵|/2𝜇𝜖(2𝜇 + 𝜖 + 𝛾)

and 𝐷
∗
= (2𝑎𝛾𝛿 + 𝑏𝜖)/4𝑎𝛾(𝜇 + 𝜖). Substituting 𝐶 = 𝐶

∗
into

(59) gets𝐷 = (2𝜖𝑏(𝜇 + 𝛿 + 𝑑) − 2𝑎|𝐵|𝐶
∗
)/𝜖(2𝑎𝛾𝛿 + 𝑏𝜖) := 𝐷

∗,
and by substituting 𝐷 = 𝐷

∗
into it, we obtain 𝐶 = (2𝜖𝑏(𝜇 +

𝛿 + 𝑑) − (2𝑎𝛾𝛿 + 𝑏𝜖)𝜖𝐷
∗
)/2𝑎|𝐵| := 𝐶

∗. We choose 𝐶 = 𝐶
∗

+ (1/3)(𝐶∗ − 𝐶
∗
) = (|𝐵|/3𝜇𝜖(2𝜇 + 𝜖 + 𝛾)) + ((8𝑎𝑏𝜖𝛾(𝜇 + 𝛿 +

𝑑)(𝜇 + 𝜖) − 𝜖(2𝑎𝛾𝛿 + 𝑏𝜖)
2
)/24𝛾𝑎

2
|𝐵|(𝜇 + 𝜖)) and 𝐷 = 𝐷

∗
+

(1/3)(𝐷
∗
−𝐷
∗
) = ((2𝑎𝛾𝛿 + 𝑏𝜖)/6𝑎𝛾(𝜇 + 𝜖)) + ((2𝜇𝜖2𝑏(𝜇 + 𝛿 +

𝑑)(2𝜇 + 𝜖 + 𝛾) − 𝑎𝐵
2
)/3𝜇𝜖
2
(2𝑎𝛾𝛿 + 𝑏𝜖)(2𝜇 + 𝜖 + 𝛾)), which are

easily satisfied the inequalities (54); that is, the quantities in
the brackets of (42) are positive.

Remark 6. Theorem 4 shows that if 0 < 𝐵
2
< 4𝜇𝛾(2𝜇 + 𝜖 +

𝛾)(𝜇 + 𝛿 + 𝑑)[(𝜇 + 𝜖)(𝜇 + 𝛿) + 𝜇𝛿], the solution of model (3)
fluctuates around a certain level which is relevant to 𝑃∗ and
𝜎
𝑖
, where 𝑃∗ = ((2𝜌

1
/(2𝜌
1
− (2𝜇 + 𝜖 + 𝛾)𝜎

2

1
))𝑆
∗
, (2𝜌
2
/(2𝜌
2
−

𝛾𝜎
2

2
))𝐸
∗
, (4𝑎𝜌
3
/(4𝑎𝜌
3
− 𝑏𝜎
2

3
))𝐼
∗
), 𝑖 = 1, 2, 3. With the value

of 𝜎
𝑖
decreasing, 𝑃∗ will be close to 𝐹

∗ and the difference
between 𝑋 and 𝑃∗ will also decrease, where 𝑋 denotes the
solution of system (3). If 𝐵 = 0, we have similar results.

Remark 7. As the limitation of method, whether or not the
solutions of model (3) have similar results is unknown to us
provided that𝐵2 ≥ 4𝜇𝛾(2𝜇+𝜖+𝛾)(𝜇+𝛿+𝑑)[(𝜇+𝜖)(𝜇+𝛿)+𝜇𝛿].
This is our further research work.

5. Conclusion and Numerical Simulations

As mentioned in the Introduction, on one hand, determinis-
tic system (2) always has a disease-free equilibrium 𝐹

0
and

it is globally asymptotically stable if 𝑅
0
= 𝛽Λ𝜖/𝜇(𝜇 + 𝜖 +

𝛾)(𝜇 + 𝛿 + 𝑑) ≤ 1. For the stochastic system (3), the
expectations of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) are bounded in time average
when condition (15) holds. And the smaller the value of 𝜎

1

is, the less the boundedness is. In addition, if 𝜎
1
is reducing

to zero, then 𝐹
0
is stochastically asymptotically stable in the

large provided that (1/2)𝜎2
2
< 𝜇 and (1/2)𝜎2

3
< 𝐴. On the

other hand, if 𝑅
0
> 1, then the disease-free equilibrium

of deterministic system (2) becomes unstable and there
exists a unique endemic equilibrium 𝐹

∗, which is globally
asymptotically stable in the interior of the feasible region.
For the stochastic system (3), the solution of system (3)
spirals around the endemic equilibrium of the corresponding
deterministic system under some conditions. Furthermore,
the fluctuation becomes weaker with intensities decreasing.

In order to conform the results above, we numerically
simulate the solution of system (3). Using Milsteins higher
order method [26], we obtain the following discretization
equation:

𝑆
𝑘+1

= 𝑆
𝑘
+ (Λ − 𝛽𝑆

𝑘
𝐼
𝑘
− 𝜇𝑆
𝑘
+ 𝛿𝐼
𝑘
+ 𝛾𝐸
𝑘
) Δ𝑡

+ 𝜎
1
𝑆
𝑘
√Δ𝑡𝜉
1,𝑘
+
𝜎
2

1

2
𝑆
𝑘
Δ𝑡 (𝜉
2

1,𝑘
− 1) ,

𝐸
𝑘+1

= 𝐸
𝑘
+ (𝛽𝑆

𝑘
𝐼
𝑘
− (𝜇 + 𝜖 + 𝛾) 𝐸

𝑘
) Δ𝑡 + 𝜎

2
𝐸
𝑘
√Δ𝑡𝜉
2,𝑘

+
𝜎
2

2

2
𝐸
𝑘
Δ𝑡 (𝜉
2

2,𝑘
− 1) ,

𝐼
𝑘+1

= 𝐼
𝑘
+ (𝜇𝐸

𝑘
− (𝜇 + 𝛿 + 𝑑) 𝐼

𝑘
) Δ𝑡 + 𝜎

3
𝐼
𝑘
√Δ𝑡𝜉
3,𝑘

+
𝜎
2

3

2
𝐼
𝑘
Δ𝑡 (𝜉
2

3,𝑘
− 1) ,

(60)
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where time increment Δ𝑡 > 0 and 𝜉
1,𝑘
, 𝜉
2,𝑘
, and 𝜉

3,𝑘

(𝑘 = 1, 2, . . . , 𝑛) are 𝑁(0, 1)-distributed mutually indepen-
dent random variables which can be generated numerically
by pseudorandom number generators.

In the following figures, the blue lines and the red lines
represent solutions of the deterministic system (2) and the
stochastic system (3), respectively, and initial values are
always 𝑆(0) = 0.7, 𝐸(0) = 0.2, and 𝐼(0) = 0.1. In Figures 1
and 2, we fix Λ = 0.6, 𝛽 = 0.4, 𝜇 = 0.2, 𝛿 = 0.1, 𝛾 = 0.2,
𝜖 = 0.15, and 𝑑 = 0.1 with different intensities of white noise
which satisfy condition (15) inTheorem 2.We can easily com-
pute that 𝑅

0
= 0.8182 < 1, 𝐹

0
= (Λ/𝜇, 0, 0) = (3, 0, 0).

By MATLAB software, we simulate the solutions of model
(3) with different values of 𝜎

𝑖
, 𝑖 = 1, 2, 3, and the solution

of model (2). In Figure 1 Group (a), we choose 𝜎
1
= 0.04,

𝜎
2
= 0.03, and 𝜎

3
= 0.03 and in Figure 1 Group (b), we

fix 𝜎
1
= 0.01, 𝜎

2
= 0.02, and 𝜎

3
= 0.02. We can see from

Figure 1 that the solution ofmodel (3)will oscillate around the
disease-free equilibrium in time, and comparisons of Group
(a) and Group (b) suggest that the fluctuations reduce as the
noise level decreases.

Furthermore, in Figure 2 Group (a), the intensities are
much larger than those in Figure 1 Group (a), but 𝜎

1
keeps

the same. We can conclude from the comparison of Figure 2
Group (a) and Figure 1 Group (a) that the intensities of 𝜎

2
and

𝜎
3
have little effect on the fluctuation. For 𝜎

1
= 0, Figure 2

Group (b) shows that the fluctuation for 𝑆(𝑡) almost cannot
be seen.Thus we can believe that the solution is stochastically
asymptotically stable in the large.

In the following, we consider the long behavior of model
(3) in the case of 𝑅

0
> 1. Let 𝛽 = 0.6 and fix the other

parameter values as those in Figure 1; we can obtain that
𝑅
0
= 1.2273 > 1, 𝐹∗ = (2.4444, 0.3556, 0.1333), and 0.0043 =

𝐵
2
< 4𝜇𝛾(2𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑)[(𝜇 + 𝜖)(𝜇 + 𝛿) + 𝜇𝛿] = 0.006,

implying that condition (29) inTheorem 4 holds. In Figure 3
Group (a), we fix 𝜎

1
= 0.04, 𝜎

2
= 0.03, and 𝜎

3
= 0.02. And

it is easy to verify that condition (30) holds. Figure 3 Group
(a) shows that the solution of system (3) fluctuates around
the solution of system (2), which supports the conclusion
of Theorem 4. Furthermore, with intensities of white noise
decreasing, the fluctuation becomes weaker, which is shown
in Figure 3 Group (b).

On the other hand, take Λ = 0.4, 𝛽 = 0.8, 𝜇 = 0.1,
𝛿 = 0.3, 𝛾 = 0.6, 𝜖 = 0.2, and 𝑑 = 0.1. By calculating, we
have 𝑅

0
= 1.4222 > 1, 𝐹∗ = (2.8125, 0.6597, 0.2639), and

𝐵 = 0, which satisfy condition (34) in Theorem 4. Choosing
different intensities of white noise, we have similar results as
above. The specific time sequence diagram to compare the
fluctuation is shown in Figure 4 Groups (a) and (b).

Finally, we choose Λ = 0.8, 𝛽 = 0.6, 𝜇 = 0.2, 𝛿 = 0.2,
𝛾 = 0.3, 𝜖 = 0.3, and 𝑑 = 0.4. By calculating, we have 𝑅

0
=

1.125 > 1, 𝐹∗ = (3.5556, 0.2092, 0.0784), and 0.0484 = 𝐵
2
>

4𝜇𝛾(2𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑)[(𝜇 + 𝜖)(𝜇 + 𝛿) + 𝜇𝛿] = 0.0461;
that is, the conditions in Theorem 4 do not hold. From the
numerical simulations (see Figure 5 Groups (a) and (b)), it
is clear that the solutions of system (3) still fluctuate around
the solution of system (2) and the fluctuation becomesweaker
with intensities reducing.Therefore, we guess: the solutions of

system (3)may fluctutate around the solution of system (2) by
removing the condition 𝐵2 ≤ 4𝜇𝛾(2𝜇 + 𝜖 + 𝛾)(𝜇 + 𝛿 + 𝑑)[(𝜇 +
𝜖)(𝜇 + 𝛿) + 𝜇𝛿]. This will be an open problem to be studied in
the future work.
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