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The purpose of this paper is to introduce and analyze hybrid viscosity methods for a general system of variational inequalities
(GSVI) with hierarchical fixed point problem constraint in the setting of real uniformly convex and 2-uniformly smooth Banach
spaces. Here, the hybrid viscosity methods are based on Korpelevich’s extragradient method, viscosity approximation method, and
hybrid steepest-descent method. We propose and consider hybrid implicit and explicit viscosity iterative algorithms for solving
the GSVI with hierarchical fixed point problem constraint not only for a nonexpansive mapping but also for a countable family of
nonexpansive mappings in X, respectively. We derive some strong convergence theorems under appropriate conditions. Our results

extend, improve, supplement, and develop the recent results announced by many authors.

1. Introduction

Let X be a real Banach space whose dual space is denoted by
X*. LetU = {x € X : |x|| = 1} denote the unit sphere of X.
A Banach space X is said to be uniformly convex if, for each
€ € (0,2], there exists § > 0 such that, forall x, y € U,

||x-y||ze=>""2ﬂg_a M

It is known that a uniformly convex Banach space is reflexive
and strictly convex. The normalized duality mapping J

X — 2% is defined by

J(x) = {x* € X" (x,x") = |x|* = ||x*||2}, Vx € X,
(2)

where (-,-) denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
J(x) is nonempty for each x € X.

Let Cbe a nonempty closed convex subset of a real Banach
space X. A mapping T : C — C is said to be L-Lipschitzian

if there exists a constant L > 0 such that |[Tx — Ty|| <
L|x — y| for all x,y € C. In particular, if L = 1, then T
is said to be nonexpansive. The set of fixed points of T is
denoted by Fix(T). We use the notation — to indicate the
weak convergence and the one — to indicate the strong
convergence. A mapping A : C — X is said to be

(i) accretive if, for each x, y € C, there exists j(x — y) €
J(x — y) such that

(Ax-Ay,j(x-y)) 20, 3)

where ] is the normalized duality mapping of X,
(ii) a-inverse-strongly accretive if, for each x,y € C,
there exists j(x — y) € J(x — y) such that

(Ax - Ay, j(x - y)) = afx - y|’, (4)

for some « € (0, 1),
(iii) pseudocontractive if, for each x, y € C, there exists
j(x = y) € J(x - y) such that

(Ax - Ay, j(x-y)) < |x -y, (5)



(iv) B-strongly pseudocontractive if, for each x,y € C,
there exists j(x — y) € J(x — y) such that

(Ax— Ay, j(x-p)) < Blx- | (6)

for some f3 € (0, 1),
(v) A-strictly pseudocontractive if, for each x,y € C,
there exists j(x — y) € J(x — y) such that

(Ax = Ay, j(x-y)) < |x =y = Ax - y - (Ax - Ay)|*
(7)

for some A € (0, 1).

It is worth emphasizing that the definition of the inverse-
strongly accretive mapping is based on that of the inverse-
strongly monotone mapping, which was studied by so many
authors; see, for example, [1-7].

A Banach space X is said to be smooth if the limit

L e ] )
t—0 t

exists for all x,y € X; in this case, X is also said to
have a Gateaux differentiable norm. Moreover, it is said to
be uniformly smooth if this limit is attained uniformly for
x, ¥ € Us; in this case, X is also said to have a uniformly Fre-
chet differentiable norm. The norm of X is said to be the
Frechet differential if, for each x € U, this limit is attained
uniformly for y € U. In the meantime, we define a function
p:[0,00) — [0,00) called the modulus of smoothness of X
as follows:

1
p)=sup {2 (e +yl+ =) - 1:xmy e X
)
Ixl =1, |ly] = T}.

It is known that X is uniformly smooth if and only if
lim, _, ,p(7)/T = 0. Let g be a fixed real number with 1 < g <
2. Then a Banach space X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(7) < ¢7%, forall T > 0.
As pointed out in [8], no Banach space is g-uniformly smooth
for g > 2. In addition, it is also known that J is single-valued
ifand only if X is smooth, whereas, if X is uniformly smooth,
then the mapping J is norm-to-norm uniformly continuous
on bounded subsets of X.

In a real smooth Banach space X, we say that an operator
A is strongly positive (see [9]), if there exists a constanty > 0
with the property

(Ax,] (x)) = ¥lxI,

lal = bAJl = sup [{(al ~bA)x ] Gl o)
acl0,1], be[-1,1],

where I is the identity mapping.

Proposition CB (see [9, Lemma 2.5]). Let C be a nonempty
closed convex subset of a uniformly smooth Banach space X. Let
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T :C — C be a continuous pseudocontractive mapping with
Fix(T)# 0 and let f : C — C be a fixed Lipschitzian strongly
pseudocontractive mapping with pseudocontractive coefficient
B € (0,1) and Lipschitzian constant L > 0. Let A : C — C
be a strongly positive linear bounded operator with coefficient
Y > 0. Assume that C+ C ¢ Cand 0 < 8 < y. Let {x,} be
defined by

x, = tf (x,) + (I — tA) Tx,. (11)

Then, ast — 0,{x,} converges strongly to some fixed point p
of T such that p is the unique solution in Fix(T) to the VIP:

(A= f)p.J(p-w) <0,

On the other hand, Cai and Bu [10] considered the follo-
wing general system of variational inequalities (GSVI) in
a real smooth Banach space X, which involves finding
(x*, y"™) € C x C such that

Yu € Fix(T). (12)

(wBy" +x" = y",J(x=x")) 20, VxeC,

(Byx" +y" =x" ] (x = y")) 20,

where C is a nonempty, closed, and convex subset of X,
B;,B, : C — X are two nonlinear mappings, and g, and
U, are two positive constants. Here the set of solutions of
GSVI (13) is denoted by GSVI(C, B;, B,). Very recently, Cai
and Bu [10] constructed an iterative algorithm for solving
GSVI (13) and a common fixed point problem of an infinite
family of nonexpansive mappings in a uniformly convex and
2-uniformly smooth Banach space. They proved the strong
convergence of the proposed algorithm by virtue of the
following inequality in a 2-uniformly smooth Banach space
X.

(13)
Vx € C,

Lemma 1 (see [11]). Let X be a 2-uniformly smooth Banach
space. Then, there exists a best smooth constant k > 0 such that

[l + y||2 <lxI*+2{(y,J(x)) +2 ley|, Vx,yeX,
(14)

where ] is the normalized duality mapping from X into X*.

The authors [10] have used the following inequality in a
real smooth and uniform convex Banach space X.

Proposition 2 (see [12]). Let X be a real smooth and uniform
convex Banach space and let v > 0. Then, there exists a strictly
increasing, continuous, and convex function g : [0,2r] — R,
g(0) = 0 such that

g(lx=y) <lxl* =2 (x. T (»)) +|y|*. Vx.y€B,
(15)

where B, = {x € X : ||lx|| < r}.

2. Preliminaries

We list some lemmas that will be used in the sequel. Lemma 3
can be found in [13]. Lemma 4 is an immediate consequence
of the subdifferential inequality of the function (1/2)|| - 1%,
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Lemma 3. Let {a,} be a sequence of nonnegative real numbers
such that

a,, <(1-b)a,+bc, Yn=0, (16)

where {b,} and {c,} are sequences of real numbers satisfying the
following conditions:
(i) {b,} c [0,1] and Y2 b, = c0;

(ii) either lim supc, < 0 or Y72 1b,c,| < co.

n— 00

Then, lim, a, =0.

n— 00
Lemma 4. In a smooth Banach space X, there holds the
inequality

Il +2 (3.7 () < |+ ]

<lxl>+2(y.J(x+y)), VxyeX,

17)
where ] is the normalized duality mapping of X.

Let p be a mean if p is a continuous linear functional on
1% satisfying [|lull = 1 = p(1). Then, we know that ¢ is a mean
on N if and only if

inf {a, :n € N} < p(a) <sup{a, :n e N} (18)

for every a = (a;,a,,...) € I°. According to time and circu-
mstances, we use y,(a,) instead of p(a). A mean y on N is
called a Banach limit if and only if

Hn (an) = Un (anﬂ) (19)

for everya = (a;,a,,...) € I°°. We know that, if ¢ is a Banach

limit, then
liminfa, < u, (a,) < limsupa, (20)
n—oo n— oo

for every a = (a;,a,,...) € 1. So, ifa = (a;,a,,...), b =
(b, by,...) €1®°,anda, — c(resp.,a,~b, — 0),asn — oo,
we have

(resp., u,(a,) =, (b,). (1)

Further, it is well known that there holds the following
result.

py (a,) = p(a) =c

Lemma 5 (see [14]). Let C be a nonempty closed convex subset
of a uniformly smooth Banach space X. Let {x,} be a bounded
sequence of X; let u be a mean on N and let z € C. Then,

% = 2| = ming, | x,, - y|* (22)
n n yEC n n

if and only if
Hn <y - Z’](xn - Z)> <0, Vye G (23)

where ] is the normalized duality mapping of X.

Lemma 6 (see [9, Lemma 2.6]). Let C be a nonempty closed
convex subset of a real Banach space X which has uniformly
Gateaux differentiable norm. Let T : C — C be a continuous
pseudocontractive mapping with Fix(T) #@ and let f : C —
C be a fixed Lipschitzian strongly pseudocontractive mapping
with pseudocontractive coefficient 3 € (0, 1) and Lipschitzian
constant L > 0. Let A : C — C be a y-strongly positive linear
bounded operator with coefficient y > 0. Assume that C + C C
C and that {x,} converges strongly to p € Fix(T) ast — 0,
where x, is defined by x, = tf(x,) + (I — tA)Tx,. Suppose that
{x,} ¢ Cisbounded and that lim, _, |lx,, — Tx,| = 0. Then,
limsup, , ((f —A)p,J(x,—p)) <O0.

Lemma 7. Let C be a nonempty closed convex subset of a real
smooth Banach space X. Let F : C — X be an «-strongly
accretive and A-strictly pseudocontractive with o + A > 1.
Then, I — F is nonexpansive and F is Lipschitz continuous with

constant (1++/(1 — &)/ A). Further, for any fixedt € (0,1), I-
TF is contractive with coefficient 1 — 7(1 — /(1 — a)/A).

Proof. From the A-strictly pseudocontractivity and «-
strongly accretivity of F, we have, for all x, y € C,

MUI-F)x-I-F)y|
<|x=yP = (F)-F(y). ) (x-y) (24
<(1-a) ”x - y||2,

which implies that

lI-F)x--F)y|< \/I‘T"‘ x-y]. @5

Becausea + A > 1 © /(1 —a)/A < 1, we know that I — F is
nonexpansive. Also note that

IFG)=FD <0 -F)x=(T=F) y|+|x-y]

1-a (26)
< <1+ JT“)Hx—)’H.

Now, take a fixed 7 € (0, 1) arbitrarily. Observe that, for all
x,y €C,

It - 7F)x — (I - F) y|

=l0-D(x-y)+ [T -Fx-UT-F)y]|
S(1—T)||x—y||+T||(I—F)x—(I—F)y||

1_
<ol er( 55 ) -

(1o (155 bt

Becausea+ A >1 o /(1 —a)/A < 1, weknow that I — 7F is
contractive with coefficient 1 — 7(1 — /(1 — «)/A). O

(27)




Let D be a subset of C and let IT be a mapping of C into
D. Then, IT is said to be sunny if
IT[IT (x) + ¢t (x = I (x))] = (x), (28)
whenever II(x) + t(x — II(x)) € Cforx € Candt > 0. A
mapping IT of C into itself is called a retraction if I =1L If
a mapping IT of C into itself is a retraction, then Il(z) = z for
every z € R(IT) where R(II) is the range of IT. A subset D of
C is called a sunny nonexpansive retract of C if there exists a
sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma 8 (see [15]). Let C be a nonempty closed convex subset
of a real smooth Banach space X. Let D be a nonempty subset
of C. Let I1 be a retraction of C onto D. Then, the following are
equivalent:

(i) IT is sunny and nonexpansive;

(i) IT(x) = II® < (x = 3, J(T1(x) = TL(y))), for all
x,y€C;

(iii) (x —II(x), J(y —II(x))) <0, forallx € C, y € D.

It is well known that, if X = H is a Hilbert space, then
a sunny nonexpansive retraction Il is coincident with the
metric projection from X onto C; that is, IIo = P.. If C
is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space X and if T : C — Cis
a nonexpansive mapping with the fixed point set Fix(T') 0,
then the set Fix(T') is a sunny nonexpansive retract of C.

Lemma 9. Let C be a nonempty closed convex subset of a
smooth Banach space X. Let I be a sunny nonexpansive
retraction from X onto C and let B, B, : C — X be nonlinear
mappings. For given x*,y* € C, (x*,y") is a solution of
GSVI (13) if and only if x* = Uc(y" — B, y"), where y* =
Mo (x™ — yyByx™).

Proof. We can rewrite GSVI (13) as

(x* = (y" =mBy"), J(x-x")) 20, VxeC, o)
29
(" = (x" —wByx"),J (x=y")) 20, VxeC,
which is obviously equivalent to
x" =T (y" - mBy*),
, . ) (30)
y" =Te(x" - Byx"),
because of Lemma 8. This completes the proof. O

In terms of Lemma 9, define the mapping G: C — C as
follows:

G(x) =TI -wB)c(I-uB,)x, V¥xeC. (31
Then, we observe that

x* = Il [HC (x* - P‘sz’C*) - BIl¢ (x* - yszx*)](, )
32
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which implies that x* is a fixed point of the mapping G.
Throughout this paper, the set of fixed points of the mapping
G is denoted by Q.

Lemma 10 (see [16]). Let C be a nonempty closed convex
subset of a strictly convex Banach space X. Let {T,}>°
be a sequence of nonexpansive mappings on C. Suppose
Mheo Fix(T,) is nonempty. Let {A,} be a sequence of positive
numbers with Y2, A, = 1. Then, a mapping T on C defined
by Tx = Y2, A, T,x for x € C is well-defined, nonexpansive
and Fix(T) = (2, Fix(T;,) holds.

Lemmall (see [17]). Let C be a nonempty closed convex subset
of a Banach space X. Let S,,S,, ... be a sequence of mappings
of C into itself. Suppose that ¥ - sup{[|S,,;x—S,x| : x € C} <
00. Then, foreach y € C,{S, y} converges strongly to some point
of C. Moreover, let S be a mapping of C into itself defined by
Sy = lim,_ .S,y for all y € C. Then, lim sup{[|Sx -
S,xll:xeCl=0.

n— oo

3. GSVI with Hierarchical Fixed
Point Problem Constraint for
a Nonexpansive Mapping

In this section, we introduce our hybrid implicit viscosity
scheme for solving the GSVI (13) with hierarchical fixed point
problem constraint for a nonexpansive mapping and show the
strong convergence theorem. First, we list several useful and
helpful lemmas.

Lemma 12 (see [10, Lemma 2.8]). Let C be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space X.
Let the mapping B; : C — X be «;-inverse-strongly accretive.
Then, one has

”(I —w:B;) x — (I - w;B;) )’"2

< ||x - J’"2 + 24 (W‘z - ‘xi) "Bix - Biy||2, Vx,y €C,
(33)

fori = 1,2, where y; > 0. In particular, if 0 < p; < o;/K>
(where K is the best constant of X as in Lemma 1), then I — u; B
is nonexpansive fori = 1,2.

Lemma 13 (see [10, Lemma 2.9]). Let C be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space X.
Let T1 be a sunny nonexpansive retraction from X onto C. Let
the mapping B; : C — X be a;-inverse-strongly accretive for
i=1,2.LetG:C — C be the mapping defined by

Gx =1Il¢ [Hc (x - yszx) - Bl (x - P‘szx)] > (34)
Vx € C.

IfO < w; < o/’ fori = 1,2, then G : C — C is none-
xpansive.

Lemma 14 (see [18]). Let X be a Banach space, C a nonempty
closed and convex subset of X, and T : C — C a continuous
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and strong pseudocontraction. Then, T has a unique fixed point
in C.

Lemma 15 (see [19]). Assume that A is a strongly positive lin-
ear bounded operator on a smooth Banach space X with coeffi-
cienty >0and0 < p < A" Then, |I - pAII2 <1-py.

We now state and prove our first result.

Theorem 16. Let C be a nonempty closed convex subset of
a uniformly convex and 2-uniformly smooth Banach space X
such that C + C ¢ C. Let Il be a sunny nonexpansive
retraction from X onto C. Let the mapping B, : C — X be
o;-inverse-strongly accretive fori = 1,2. LetT : C — C
be a nonexpansive mapping such that A = Fix(T) N Q+0
where Q is the fixed point set of the mapping G = II-(I —
BT = u,B,) with 0 < p; < oy/” fori = 1,2. Let
f: C — C bea fixed Lipschitzian strongly pseudocontractive
mapping with pseudocontractive coefficient § € (0,1) and
Lipschitzian constant L > 0, let F : C — C be a-strongly
accretive and A-strictly pseudocontractive with o + A > 1, and
let A: C — C beay-strongly positive linear bounded operator
with 0 <y — B < 1. Let {x,} be defined by

x, = tf (x,) + (I - tA) [G (Tx,) - 6,FG (Tx,)], (35)

where {0, : t € (0,1)} c [0,1) with lim,_, ,0,/t = 0. Then, as
t — 0,{x;} converges strongly to a point p € A, which is the
unique solution in A to the VIB,

(A= f)p.J(p-u)) <0, VueA. (36)

Proof. First, let us show that the net {x,} is defined well. As a
matter of fact, define the mapping S, : C — C as follows:

S;x =tf (x) + (I -tA) [G (Tx) - 0,FG(Tx)], VxeC.

(37)

We may assume, without loss of generality, that t < Al
Utilizing Lemmas 7, 13, and 15, we have

(Spx =83, ] (x = y))
=t(f@) - f(»).](x-»))
+{(I -tA)[(I - 6,F)G(Tx) - (I -6,F)G(Ty)],
J(x=y))
< tBlx -y + (1-17)
x |(1 = 6,F) G (Tx) - (I - 6,F) G (Ty)| | x - y|

<tBlx - " +(1 ‘t?)(l _ef(l - \/1_706))

x |G (Tx) = G (Ty)| |x - ]

<tBlx - " + (1 - 7) | Tx - Ty| |x - ¥

<tBlx - y|* + (1 - 17) |x - y|’

=(1-tF-P) x>
(38)

Hence, it is known that S, : C — C is a continuous and
strongly pseudocontractive mapping with pseudocontractive
coefficient 1 —t(y— ) € (0, 1) Thus, by Lemma 14, we deduce
that there exists a unique fixed point in C, denoted by x,,
which uniquely solves the fixed point equation

x, =tf (x,) + (I -tA) [G(Tx,) - 6,FG(Tx,)].  (39)

Let us show the uniqueness of the solution of VIP (36).
Suppose that both p; € A and p, € A are solutions to VIP
(36). Then, we have

(A= f)piT(pr—p2)) <0,

(A= f)ppT(py—p1)) <O.

(40)

Adding up the above two inequalities, we obtain

(A= f)pi = (A= f) po T (P~ p2)) <O. (41)

Note that

(A= f)pi = (A=) p T (p1— P2))
=(A(p1=p.) T (P~ P2))

= (f(p) - f(p2).J (- p2)) (42)
_ 2 2
>¥|p - pal” - Bllpy - £
_ 2
=7-Plp-pl 20
Consequently, we have p; = p,, and the uniqueness is proved.
Next, let us show that, for some a € (0,1), {x, : t € (0,a]}
is bounded. Indeed, since {6, : t € (0,1)} c [0,1) with
lim, ,,(6,/t) = 0, there exists some a € (0,1) such that

0 < 0,/t < 1forallt € (0,a]. Take a fixed p € Fix(A)
arbitrarily. Utilizing Lemma 7, we have

I - oI

= (t(f (x) = f (p)) + U~ tA) [G(Tx,) - 6,FG (Tx,) - p]
~t(Ap - f(p)).J (x. - p))

=t(f (x) = f(p).] (x. - p))
+ (U = tA) [G(Tx,) - 6,FG (Tx,) - p].] (x, = p))
—t{(A=f)p.J (x. - p))
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< tBlx, - p| + (1 - 9) |G (Tx,) - 6,FG (Tx,) - p|
x|lx, = pll + t (A= £) p|l 1% -

< thlx — pl + (1)
x [|(1-6,F)G(Tx,) - (I-6,F)G(Tp)]

+(1 = 6,F)G(Tp) = p|] % - pl
+tf(a-f)pllx - pl

Stﬁ||xt-PI|2+(l—t?)(1_9t<1_ 1;\“))

x |G (Tx,) = G (Tp)| |lx; - pl
+(1-9) 6, |Ep|l |x; - |l +£[(A = £) pll |x: - p

Sf/3||xt—pl|2+(1—t7)<1—et<1_ 1;“))

x |Tx, = Tp| |, — pl

+0, |[Ep| |x. — pll + £ [(A= f) pl | - £l
< tBlx,— pl* + (1= #9) |, - oI’

+6, |Ep] |x. - pll + £ [ (A= £) pll |x. - pl
= (1=t (7= B)) = - plI* + 6, | Fol Ix. - pl

+t (A= 1) pll < - pll.

(43)
and, hence, for all ¢ € (0, a],
1 0
b ol < = (1= 9 2+ 2 1ol
Y-8 t
X (44)
< = A- Fpl|).
<=5 (ICA= 1) pll + IFpl)

Thus, this implies that {x, : t € (0, a]} is bounded and so are
{f(x,):t €(0,a]}, {Tx, : t € (0,al}, and {G(Tx,) : t € (0,a]}.
Let us show that |Tx, - G(Tx,)| — Oast — 0.
Indeed, for simplicity, we putq = II-(I-, B,) p, X, = Tx,,
u, = (I - p,B,)X,, and v, = I1o(I -y, B, )u,. Then, it is clear
that p = [TIo(I-u, B;)gand v, = G(X,) = G(Tx,). Hence, from
(43), it follows that

I~ ol

<tflx, ~ pl + (1 —f?)<1 ‘ef(l i \/I_Ta»

x ”G (Tx,) -G (TP)" "xt - P“
+ (1= 19) 6, |Fp|l |x — pl| + ¢ [I(A = £) pll |x. — Pl

Abstract and Applied Analysis

< fﬁﬂxt - P||2 +(1-ty) "Vt - P” ||xt - P"

+ 6, |Fpl I = pll + £ 1CA = 1) ol % = 2l -
(45)

From Lemma 12, we have
lu = qll* = |Tic (% - ,B,%) - e (p - B p)|°
< |% - p -t (B,%, — Bop)|
<% - oI’ - 20, (o, = °11,) | B, — Bopl,
Ive - pI” = |Tc(u, — i Byuy) - T (q - 1, Byg)|°
< |, - q - (B, - Big)|°

< "”t - ‘1”2 -2 (0‘1 - Kz.ul) ||B1”t - B1‘1||2~
(46)

From the last two inequalities, we obtain
Ive = ol < 1% = 2l = 2082 (o, = s,
x | Byx, = Byp|” - 201y (e — 7y
x||Bu, = Byq|’
< = oI =200, (o, = < 11,) | B, = Bop’

-2 (0‘1 - Kz.“l) “Blut - qu"Z,
(47)

which together with (45) implies that
I ~ I
< 1Bl = pl + (1= 67) v, = pl I, ~ ol + 6; |l
< Jx, — pl + £ (A~ £) pl I, ~ pl
< tBlx, ~ I+ 1A~ 1) pl I~ pll + (1 - 17)
x5 (b= oI + e = £I°) + 6ol I - o
< tBlx - ol + e~ 1) Pl - ol
+(1=17) 3 {lxe - oI + - oI
=24 (0‘2 - Kzﬂz) |B,%, - B,p]
—2u (o =y
< |Buus, - Bual’} + 6, [Pl |, -
= (L=t (7= B) I~ oI + £ (A~ 1) pl -
-(1-ty) [P‘z (‘Xz - KZP‘z) |B,x; — BzP"2

! (0‘1 - KZM) "Blut - 314”2]



Abstract and Applied Analysis

+6, "FP“ “xt - P"
<l ol + (A= £) pl I = o)l - (1 - £7)
X [Mz (“z - Kzl/‘z) |B,%; - BzP"2

+i (“1 - Kzﬂl) ”Blut - 31‘1"2] +6, "FP" "xt - P" .
(48)

So, it immediately follows that
(1-ty) [.”2 (“2 - ’CZMZ) ”322t - BzP"2 T (“1 - Kzlh)
x| By, - 31‘1”2]

<t|(A-f)pll|x: - pll + 6 |Fp |x: - pll-
(49)

Since 0 < y; < a;/x*, for i = 1,2, we have
thir}) |B%; - B,p| = 0, thg%) |B,u, — Byq] = 0. (50)

Utilizing Proposition 2 and Lemma 8, we have that there
exists g; such that

"”: - ‘Z"z = ||Hc (X, — B, X,) =Tl (p - MszP)”2
<X — By X, — (p— :Byp) . T (4, — q))
= (X~ pJ (4, — q)) + i (Byp — By%,, ] (4, — q))
1.
< {15 ol - P
—9 ("ft —u,—(p- ‘1)") ]

+ 2 |Bop = By%i] [, — al
(51)

which implies that
I —al” < 1%~ I = g1 (1%~ = (p - 9)])
+ 24, | Bp = By | |l — g -

In the same way, we derive that there exists g,:
v - P“z = e (= iy Bywy) = T (q - 1/‘131‘1)"2

< (u, — By, - (q -, B19), 7 (v = p))

=(u; = q.J (v, = p)) +t (Big — Byt J (v = p))

1
o
-9 (e = v + (p - 9)|)) ]

+ i ”qu - Bl“t" "Vt - P" >
(53)

7
which implies that
ve - P”2 < Ju, - ‘1"2 = (Jue = v+ (p-a))
(54)
24 [Biq - Bl I - .
Substituting (52) for (54), we get
”Vt - P"2 < ”’?t - P”2 ) (”’A‘t —u—(p- CI)”)
~ 9 (lu = v+ (p-9)|)
+ 24, |B,p = Bx,| |, - 4
+ 244y |B1q - By |[v, - p
(55)

< |x = pl* = g1 (|% - w - (p-q)|)
= g2 (|lu; = v+ (p-9))
+2u, |Bp = BXe| s — 4l
+ 244y |B1q = Byu]| [[v: - pl»
which together with (45) implies that
I - ol
< tBllx. = pl + (1 = 19) [ve - pll Ix. - pll + 6, | Fo|
x |xe = pll + (A= £) plllx: - pl
< tBx, - p|* + (A= £) pl |x: - pl| + (1 - £)
1
x = (I - plI* + Ive = pI”) + 6, [Ep Ix: - pl
< tBlx, - pl + £ (A= £) pll | - pll + (1 - 1)
1
x {llx - pl* + Ix - oI’
) (Hft —u,—(p- Q)“)
— 9 (““t v+ (p- ‘Z)")
+ 24, "sz - Bz’?t” ””t - ‘Z"

+2u "qu - B1”t” ”"t - P“}

+0, "FP“ “xt - P"
= (1=t -B)) = - pI* + £ (A= ) pll | -
- (1-1y)

%> [0y (1% -~ (p-a)])
+ g5 (Jue —ve + (p - @)D + (1 - 19)
[t |Bap = Bo5i] e a

+tiy |Biq = By |[v, = pl]



+6; |Fp| |, - pl
< - pl* + e (A= 1) pll I - ol - (1= 17)
x3 L9y (15— - (p-a)])
+9, (us = vi + (p = a)|))]
+ i |Bop = By%i| e — ql

+ | Byq = By |vi = pl| +6; |Fp] |1x: - ol
(56)

So, it immediately follows that

(1-9)3 o (-~ (p- D))
+95 (s = vi + (p = )]))]
< tla= 1) plllx = ol + s 1Bop = Bz~
+te [Bua = B I, = o + 0, el I - ol

(57)
Hence, from (50), we conclude that
tlif})éh ("’?t —u—(p- ‘1)") =0,
(58)
thjr})gz ("”t ~v+(p- ‘1)“) =0.
Utilizing the properties of g, and g,, we get
tli_% ”5€t —u—(p- Q)” =0,
(59)
tlif}) “”t v+ (p- ‘1)" =0,
which leads to
1% = vl < |1% = u. - (p—9)|
(60)
+u,-v,+(p-q)| — 0 ast—0.
That is,
lim ITx, - G(Tx,)| = lim %, = v =o. (61)

Note that {x, : t € (0,a]} is bounded and so are {f(x,) :
t € (0,al}, {Tx, : t € (0,al}, and {G(Tx,) : t € (0,a]}. Hence,
we have

"xt -G (Txt)”

¢ H F(x,) - AG(Tx,) - % (I - tA) FG (Tx,)

— 0,

(62)
ast — 0. Also, observe that

[, = Tx,|| < ||, = G (Tx,)| + |G (Tx,) - Tx,||.  (63)

Abstract and Applied Analysis
This together with (61) and (62) implies that
tlij}%) [[x; = Tx,|| = 0. (64)

Utilizing the nonexpansivity of G, we obtain

[x; = Gxi|| < ||x, = G (Tx,)| + |G (Tx,) — Gx,|

(65)

< |lx = G (Tx,)|| + || Tx, — x>

which together with (62) and (64) implies that
lim |lx, - Gx,[| = 0. (66)

Now, let {t,} be a sequence in (0, a] that convergesto O ask —
00, and define a function g on C by

g(x) = [,tk%”xtk - x||2, Vx € C, (67)

where y is a Banach limit. Define the set
K:={weC:gw)=min{g(y): yeCl}  (68)

and the mapping
Wx=(1-0)Tx+0Gx, VxeC, (69)

where 0 is a constant in (0, 1). Then, by Lemma 10, we know
that Fix(W) = Fix(T) N Fix(G) = A. We observe that

“xt - Wxt” = "(1 - 0) (x, = Tx,) + 6 (x, - Gxt)”

(70)
<(1=0)|x, - Tx,|| + 0 |x, - Gx, .
So, from (64) and (66), we obtain
Jim [, = Wac,|| = 0. (71)

Since X is a uniformly smooth Banach space, K is a nonempty
bounded closed convex subset of C; for more details, see [14].
We claim that K is also invariant under the nonexpansive
mapping W. Indeed, noticing (71), we have, for w € K,

1 2 1 2

09 = L, ~ il = Lo,
(72)

1 2
L P )

Since every nonempty closed bounded convex subset of a
uniformly smooth Banach space X has the fixed point prop-
erty for nonexpansive mappings and W is a nonexpansive

mapping of K, W has a fixed point in K, say p. Utilizing
Lemma 5, we get

Ui <x —p,](xtk - p)> <0, VxeC. (73)

Putting x = (f — A)p + p € C, we have

w(f-A)p.J(x, -p)) <0, VxeC. (74)
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Since x;, — p = ;(f(x;) = f(p) + (I - 1, A)[G(Tx,) -
FG(Tx, ) - p] — t.(A— f)p, we get
[, - o’
=t (f (%) = £ (P).T (3, ~ P))
+{(I-t,A) (G (Tx,)-p).J (x, - P))
-0, ((I-t,A)FG(Tx, ),] (x, - p))
-1 ((A —f)p,l(xtk -p))
<t ol +1 (- 25 (5, 0)
+(1-1) |6 (Tx,) - p [, - £
+(1=19) 6, [FG (T, )| |, - ]
< tkﬁ| X, - p||2 +t {(f=A) p.J (%, — p))

+ (1-9) |, - p||2 +6, |FG (Tx, )| |x, - 2|
(75)

It follows that

I - o < == [ ((F-2) pT (x, - p))
76)

0
P2 7 (1) s, - £

Since lim;, _, OO(Gtk /t;) = 0, from (74) and the boundedness of
sequences {FG(Txtk)}, {xtk}, it follows that

il ol = = | (= 7 (s, - 9)

0
2 e (s, ), - |

1

=— [ptk ((f=A) p.T (%, - p))

Y
0
(2 e (2, ) s, - )] <0
(77)

Therefore, for the sequence {x,} in {x, t € (0,al},
there exists a subsequence which is still denoted by {x, } that
converges strongly to some fixed point p of W.

Now, we claim that such a p is the unique solution in A to
the VIP (36).

Indeed, from (35), it follows that for allu € A = Fix(T)nQ
2
i = ul
=t(f(x) -
+{(I-tA) [G(Tx,) -

—t{(A-fluJ (x, —u))
= (I -tA)[(I - 6,F)G(Tx,) -

f @), J(x, —u))
0,FG (Tx,) —u] . J (x; - u))

(I-6,F)u
+(I-6,F)u—u],J(x,—u))
+t(f (%) = f @), T (xp —u)) =t (A= fu ] (x, —u))
<(1-)[|(T-6,F)G(Tx,) - (I - 6,F) ul

+(T = 6:F) u-ul]

X ||, = ul| + tB||x, - I/l”Z -t{((A-f)u, ] (x, —u))

<(1-1y) [(1 —et(1 - 1;“)) I, = ]| + 6, | Ful

x [l =l + Bl — i = (A= )T (x, —u))
< (1= 19) [llxe = w] + 6, 1Fual] |, —

 tBlx, —ul* —t (A= f)u ] (x, - u))
< (1=t (7= B)) |x —ul +6,IFul

x e —ul =t (A= f)uT (.~ u))
< e = uf* + 6, NFull |, =] = £ ((A = fuJ (

xt_”»’

(78)

which hence implies that

(A= )] (- ) < D UFul b, ~ul, Ve .
(79)

Since x, — past; — Oandlim,_,((6,/t) = 0, we obtain
from the last inequality that

(A= luJ(p-u)) <0,

Utilizing the well-known Minty-type Lemma, we get

(A= f)p.J(p-uw) <0,

So, p is a solution in A to the VIP (36).

In order to prove that the net {x, : t € (0,a]} converges
strongly to p ast — 0, suppose that there exists another
subsequence {x; } C {x;} such thatx, — qass, — 0
then we also have g € Fix(W) = Fix(T) N Q =: A due to
(71). Repeating the same argument as above, we know that
q is another solution in A to the VIP (36). In terms of the
uniqueness of solutions in A to the VIP (36), we immediately
get p = q. This completes the proof. O

Yu € A. (80)

Yu € A. (81)
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Remark 17. It is worth emphasizing that, in the assertion of

Theorem 16, “as t — 0, {x,} converges strongly to a point

p € A this p depends on no one of the mappings f, A, and

F.Indeed, although {x,} is defined by

x, = tf (x,)+(I - tA) [G(Tx,) - 6,FG (Tx,)], Vte(0,1),
(82)

in the proof of Theorem 16, it can be readily seen that p is first
found out as a fixed point of the nonexpansive self-mapping
W of K. This shows that p depends on no one of the mappings
f>A,and F.

Remark 18. Theorem 16 improves, extends, supplements, and
develops Cai and Bu [9, Lemma 2.5] in the following aspects.

(i) The GSVI (13) with hierarchical fixed point problem
constraint for a nonexpansive mapping is more general and
more subtle than the problem in Cai and Bu [9, Lemma 2.5]
because our problem is to find a point p € A = Fix(T) N Q,
which is the unique solution in A to the VIP:

((A=-NpT(p-u) <0, VueA (83)

(ii) The iterative scheme in [9, Lemma 2.5] is extended
to develop the iterative scheme in Theorem 16 by virtue
of hybrid steepest-descent method. The iterative scheme in
Theorem 16 is more advantageous and more flexible than
the iterative scheme of [9, Lemma 2.5] because our iterative
scheme involves solving two problems: the GSVI (13) and the
fixed point problem of a nonexpansive mapping T.

(iii) The iterative scheme in Theorem 16 is very different
from the iterative scheme in [9, Lemma 2.5] because our
iterative scheme involves hybrid steepest-descent method
(namely, we add a strongly accretive and strictly pseudocon-
tractive mapping F in our iterative scheme) and because the
mapping T in [9, Lemma 2.5] is replaced by the composite
mapping G o T in the iterative scheme of Theorem 16.

(iv) The argument techniques of Theorem 16 are very
different from Cai and Bu’s ones of [9, Lemma 2.5]. Because
the composite mapping G o T appears in the iterative
scheme of Theorem 16, the proof of Theorem 16 depends
on the argument techniques in [I8], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 1), the inequal-
ity in smooth and uniform convex Banach spaces (see
Proposition 2), and the properties of the strongly positive
linear bounded operator (see Lemmas 15), the Banach limit
(see Lemma 5), and the strongly accretive and strictly pseu-
docontractive mapping (see Lemma 7).

4. GSVI with Hierarchical Fixed Point
Problem Constraint for a Countable Family
of Nonexpansive mappings

In this section, we propose our hybrid explicit viscosity
scheme for solving the GSVI (13) with hierarchical fixed point
problem constraint for a countable family of nonexpansive
mappings and show the strong convergence theorem.

Abstract and Applied Analysis

Theorem 19. Let C be a nonempty closed convex subset of
a uniformly convex and 2-uniformly smooth Banach space X
such that C + C < C. Let Il be a sunny nonexpansive
retraction from X onto C. Let the mapping B; : C — X
be o;-inverse-strongly accretive for i = 1,2. Let {S,}2 be an
infinite family of nonexpansive mappings of C into itself such
that A = (5, Fix(S;) N Q#0, where Q is the fixed point
set of the mapping G = (I — uB)I(I - u,B,) with
0 < u; < o/’ fori=1,2.Let f: C — C be a fixed contra-
ctive map with coefficient § € (0,1), let F : C — C be a-
strongly accretive and A-strictly pseudocontractive with o+ A >
1,andlet A: C — C be ay-strongly positive linear bounded
operator with 0 <y — 8 < 1. Given sequences {A,,} oo, {th,} oo
in [0, 1] and {e,},2, {B}oey in (0,11, suppose that there hold
the following conditions:

(1) hmn%ooﬁn =0and 2220 ﬁn =005
(11) hmn—»oo(AnMn)/ﬁn = 0;
(iii) {e,,} C [a,b] for some a,b € (0, 1);

(iV) z;ﬁo(lanﬂ _‘Xn|+|18n+1 _ﬁn|+|)‘n+1 _/\n|+ |Aun+1 _Aunl) <
Q.

Assume that ¥ 2o sup, pllS,.1x — S, x|l < oo for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,,_, .S, x for all x € C and suppose that Fix(S) =
(o2 Fix(S,). Then, for any given point x, € C, the sequence
{x,} generated by

In = Xy, + (1 - 06,,) G (Snxn) >
Xpt1 = ﬂnf (xn) + (I - ﬁnA)

X [G (Snyn) - /\n[’lnFG (Snyn)] >

Vn=>0,

(84)

converges strongly to p € A, which is the unique solution in A
to the VIP:

(A= pT(p-u) <0, Vuel (85)

Proof. First, let us show that {x,} is bounded. Indeed, taking
a fixed u € A arbitrarily, we have

"yn - u“ = "(ann + (1 - (xn)G (Snxn) - u”
<oy ”xn - u“ + (1 - “n) “G (Snxn) - u“
<a,|x, —u| + (1 -a,)|S.x, —u

< @, [y =l + (1= ) [ = ] = [, =]
(86)

So, Iy, — ul < lix, — ul for all n > 0. Taking into account
lim, , (A,u,)/B, = 0, we may assume, without loss of
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generality, that Ay, < B, < |A|™" for all # > 0. Thus, by
Lemma 7 (ii), we have

e = u
=B, (f (x,) = f ) + (1 - B,A)
X [G(Suyn) = AnttaFG (S,y) — ] = B (A= f)u
<Bullf () - f W)
+ (1 = BA) [G (S,70) = AutaFG (Suy) —ul
+Bull(A - f)ul
< BuBllxn = ul + (1 - B¥)
(10T = At F) G (Spyn) = (I = Ayt F) G (S,1)|
+ (T = At F) G (S,2) = uf]] + B, (A = f) u

< BuBlx,—ul + (1-B,7)
(1= (1-55) Jlo s -6 50

+ (1= B7) A, IFull + B, [ (A= ) u

< BB, + (1 —/i,?)(l —wn(l - W_T“))

X 18,7 = Suta]l + At I Fusll + B, (A = f) ]
< BuB oy =l + (1= B¥) |7 — v

+ Aty IFull + B, (A = f)u
< BBl = ull + (1= B,¥) lx, — v

+ By IFull + B, (A = £)ul
=(1-Bu(7~B) lxu—ul

— oy (A= )] +1Ful
+ ﬁn (y ﬁ) ’—/ _ ﬂ
o N )]+ 1Fu) },
gmax{"xn ul, 5= g ,
(87)
By induction,

[, —u| < max {"xo —uf, 4 - ];)_uu; [Fu) ]» , Vnx0.

(88)

Thus, {x,} is bounded and so is {y,}. Because G and S,
are nonexpansive for all n > 0, f is contractive, and F is
Lipschitzian, {S,x,}, {S,»,.}, {G(S,x,)}, {G(S,y,)} {f(x)}

1

and {FG(S, y,)} are bounded. From conditions (i) and (ii) we
have

% = G (Sl
= Bull(f (x4) = AG (S,3,)) + (I = B,A)
% (G (8,9n) = MattnFG (S47) = G (S,3))l
< Bulf (x) = AG(S,2)| (89)
+ (1= B7) bt |IFG (S, 30)
< Bulf (x4) = AG (S,2)|
+ Aty [FG (S,3,)| — 02 as n— co.

Now, we claim that
[%pe1 = %, — 0 as n— oo. (90)

In order to prove (90), we estimate || x,,,.; —x,,| first. From (84),
we have

Vn = 04Xy + (1 - “n) G (Snxn) >
(1)
Yn-1 = ®p1 X1 (1 - an—l) G (Sn—lxn—l) .

Simple calculations show that

Yn= VYn-1= (1 - (xn) (G (Snxn) -G (Sn—l'xn—l))
T, (xn - xn—l) + (xn—l -G (Sn—lxn—l))

X ((Xn - (anl) .
(92)

It follows that

1y = yuesl
< (1-0,) |G (S,x,) = G (S0 + @, [, — x|
1 = G (Span)| e, = 6
< (1= ) IS, = Spa | + @ 6, = 2,4
[y = G (Spmr)| ety = i
< (1= 0) (IS0 = Suxuca |+ [1S%0-1 = Spa )
+ 0ty [, = 2| + 101 = G (S0 ety — |
=Sy 1%1])

+a, "xn - xn—l" + ||xn—1 -G (Sn—lxn—l)" |(xn - “n—1|

< (1 - (xn) ("xn - xn—l” + “Sn'xn—l

< "xn - xn—l“ + ”‘xn—l -G (Sn—lxn—l)“ |“ﬂ - (xn—1|

+ “Snxn—l - Sn—lxn—lll .
(93)
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In the meantime, it follows from (84) that

Xpt1 = ﬁnf (xn) + (I - ﬂnA) [G (Snyn) - An["nFG (Snyn)] >
Xn = ﬂn—lf (xn—l) + (I - ﬁn—lA)

x [G (Sn—lyn—l) - An—ln"in—lFG (sn—lyn—l)] .
(94)

Simple calculations show that

X X

n+l —

= (Ba = But) f (x01) + Bu (f (%) = f (x01))
+ (Bur = Bu) AT = Ay sy 1 F) G (S Y1)
+(I-B,A) [(I = A, F) G (S,3)
~ (= Aprthy 1 F) G (Sy1 nn)]
= (Ba = Bua) f (xaa) + Bu (f (x0) = f (x01))
+ (Bt = Bu) AT = Ayspty 1 F) G (S, 1)
+ (I = B,A) [(I = A1, F) G (S,7)
= (I = Aty F) G (S, -1 Y1)

+ ()Ln—lf"n—l - /\mun) FG (Sn—lyn—l)] .
(95)

n

It follows from Lemma 7 (ii) and (93) that

i1 =l
< By = Buca | I Gen- )l + Ba |l f () = f (-0
1Bt = Bal IA (T = A1ty 1 F) G (S 9|
+ (1= B7) [T = At F) G (S,3)
~(I = Aty F) G (St Y|
+ Aattas = At [FG (Suca )]
< 1By = Buct | I uc) + BB 1% = X |
1Bt = Bal IA (L = A1y F) G (S )|

r-gm) | (1-2m (1-452))

x “G (Snyn) -G (an}’nq)"

+ |/\nﬂn - An—lf’ln—1| “FG (Sn—lyn—l)” ]

= |/3n - ﬁn—ll "f (xn—l)” + Bnﬁ ”xn - xn—l"
+ |/3n—1 - ﬂnl "A (I - /\n—h“n—lF) G (Sn—lyn—l)”
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+ (1= B.7) (18070 = Su-1n |
|ty = Matt | |[FG (Sp )]
< 1By = Bucal If Geuc)l + BB % = x|
+1Buct = Bal A (T = Ayt 1 F) G (St yc)|
+ (1= B) Sn7n = Syl + 180 7n1 = Suc1vna |
bt = st | [FG (S,1 9]
< By = Bt If Geuc)ll + BB 1% = x|
1Bt = Bal IA (= A1 F) G (S 2|
+ (1= B Uy = vl + 191 = Suc1 |
+ Antty = Attty | |1FG (Spa y)|]
< 1By = Baca | I1f Gene ) + BB 16 = x|
+1But = Bal IA (T = A1y 1 F) G (S 9|
+ (1= B2 [l = x| + [0y = G (S,
X Jog, = oty | + X1 = St X |
+ 80Vt = St Y |
+ | Anttn = Aa bt | |FG (Spvaa)|]
< (1= Bu (¥ = B 2 = sl + By = B
< (If Geu)Il + 1A (T = Aty s F) G (S vt
%t = G (Spcr )l ot = @+ [Atty = Ayt |
X EG (Sya )l + 81 = Sua |
+ 8 Yt = St Y
< (1= Bu (7= B) s = xcall + B = Bucs| Mo
+ Mo o, = 0ty
Aty = Aoty | Mo + S0 = S X |
18Vt = St Y
= (1= B, (7= B)) % = x|
+M (Jot, = s | + B = Bucal + [ty = Aot ])
181 = Sur X | + 1803t = Sucr Il
<(1=Bu (7= B) s = xal
+ Mo (ot = oty |+ By = Baca| + Ay = Ay
[ty = thacr]) + [Su%n1 = Sucr |

+ ”Snynfl - Snflynflll >
(96)
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where sup, o {ll f(x )I+IAUI-A, 1, F)G(S, y +IFGS, y) I+
lx,, — G(S,x, )} < M, for some M, > 0. Since it follows from
conditions (i) and (iv) that }7° ) 8,(y — B) = co and

ZMO (l‘xn - (xn—1| + |:8n - ﬁn—l|
= (97)
+ |/\n - An—1| + |Mn - /’ln—l|) <00,

applying Lemma 3 to (96), we obtain from the assumption on
{S,} that

Jim [lx,,,, - x,[ =0. (98)
By condition (iii) and (84), we have
1y = xall = (1 = ) |G (S,%,) = x|
< (1= a) (|G (S,x4) = G (S
+1G (Suyn) = Xt | + %041 = x4l)
< (1=a) (|, = yull + G (Spy) = X |

+ "xn+1 - xn") >
(99)

which implies that

l1-a
“yn - xn“ < a ("G (Snyn) - xn+1|| + "xn+1 - xn") .
(100)
This together with (89)-(90) implies that
Jim_x, - y,[ =0. (101)
So, we obtain
”xn -G (Snxn)” < ||xn - yn" + "yn -G (Snxn)"
< I = yull + 0 [Ix, = G (Syx,)| - (102)
< ”xn - yn" +b “xn -G (Snxn)" ’
which implies that
1
“xn -G (Snxn)" < I_—b "xn - yn" ’ (103)
and hence
Jim [, = G(S,x,)| = o. (104)

Let u € A. Now, we show that lim
lim,, _, . llx, — Gx,| = 0.

Indeed, for simplicity, put v = I[1-(u — y, B,u), X,, = S, %,
u, = (X, - u,B,%,), and v, = Il(u, — pyByu,). Then,
u =II(v-puB,v) and v, = GX, = G(S,x,,) foralln > 0. It is
clear from (84) that

x,—Sx,| = 0and

n—»oo"

v, - u||2 <a,|x, - u"2 +(1-a,)|G(S,x,) - u"2
(105)

= cxn“xn - u"2 +(1-ap) ||vn - u||2.
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Utilizing Lemma 12, we have
e, - ""2 = |0 (%, - 42B,X,,) = T (u ~ /4232“)"2
< ||%, - v~ p, (Bo%, - Bz“)"2

< "’?n - ”"2 -2, (“2 - Kz#z) "BZ‘;En - Bzu"z,
(106)

”Vn - ”"2 = "HC (u, = Byu,) =T (v - M131V)"2
< "”n V-4 (Blun - Bl")”2

< ||u,, - v“z -2 (oc1 - szl) ||Blun - Blv||2.

(107)
Substituting (106) for (107), we obtain
v =il < 1% =l - 200, (e, - 1)
x| ByX,, = By - 20 (00, - 67y
x ||Byu, - B,v|”
(108)
< ey =il = 20 (0, - P
x| ByX, = Byu* ~2py (o) — %)
x || Byu,, - B1v||2,
which together with (105) implies that
1 =l < @yl =l + (1= @) v, = ]
<, —ul + (1- )
[l 200 (e~ )
x ||B,%, - Byul®
(109)
—2py (g =2, ) | By, — Byv][’]
=y —ul* -2 (1-a,)
x [ty (ay = K11y) | B,X,, = Byu|®
+py (o) = &°py) | By, - Byv|*] -
It immediately follows that
2(1-a,) [Mz (0‘2 - Kzl‘z) IB,x,, — Bz“"2
2
+uy (o =Py ) | By, — Byv|'] o)

2 2
< e = ul” =y = i

< (e = 2l + 11y = 2l e = 3l -
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Since {x,} and {,} are bounded and 0 < y; < «;/x* fori =
1,2, we deduce from (101) and condition (iii) that

lim ||B,%, — By =0, lim |Bju, - B,v] = 0.

(111)

Utilizing Proposition 2 and Lemma 8, we have that there
exists g; such that

“”n - "”2 = "HC (’?n - Mszfn) -1l (“ - Hszu)"2
< (X, — B, X, — (u— w,Byu), ] (u, —v))
= <5C\n - u’](un - V))

+ iy (Byu — B,X,,, ] (1, = v))

(112)
1y~ 2 2
< > (17— ull + - v
g1 (1%, = u, = (= w)|)]
+ i | Byt = By, | |, = v
which implies that
ot = A < 12 =l = 91 (I%0 = s = = W)])
(113)

+ 24, |Byu = Byx, | lu, — V|-

In the same way, we derive that there exists g, such that

o~ = I (s, g Bo,) - T - B
< (ty By, ~ (v~ By). ] (v, )
= (u, = J (v, = 1))+ (Byv - By, J (v, — 1))
[T i T

=95 (Ju = v + (= W)|)]

+ iy [|Byv = Byuay || [[v,, = uf],
(114)

which implies that

v =l < s, = 1P~ (s = v, + @ = W]}
(115)
+ 2, ||B1v - Blun“ ”vn - u|| .

Abstract and Applied Analysis
Substituting (113) for (115), we get

v, =l
<%0~ ul® - g1 (1%~ w, = @ = W)])

= g5 ([t = v, + @ =)
+2u, ||B2u - B25€n" "”n - V“

+ 24y |Byv = By, | [|v,, — u (116)
< e = ull* = g1 (|12, — 4, = @ = )])
= 2 (= v + =)
+ 24, | Byu = By, | |, - |
+ 244y |Byv = Byuy | [lv, — ],
which together with (105) implies that
o = ull® < el = ull* + (1 = @) v, = uf*
<a,fx, - uf’ +(1-a,)
x [l = ul” = g, (1%, = = @ =)
=9 (g = v+ (=)
+ 24, | Byu = By, | [, - ]
+2¢1y | Byv = Byuay | [[v,, = ] (117)
=l = ul* - (1 - )
x (g1 (|12, = up = @ = w)])
+ (|, = v + (=) +2(1 - )
x (i3 | Bout = By, |4, = v]|
+ty | Byv — By, | v, — 1))
It immediately follows that
(1-a,) [g1 (%, — v, = (w=W)])
+ ([ttn = v, + @ =)|)]
< Joeu = ull* = Iyl +2(1 - )
x (4 |Byu = By, | u, - | )

iy || By = By | v, — ul))
< (e = vl + Iy = 2]} 16 = 3
+ 244 | Byu = By |, = v]

+ 24 [|Byv = By | v, = u
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Since {x,}, {y,}, {u,,}, and {v,,} are bounded, we deduce from
(101), (111), and condition (iii) that

Jim g, (%, —u, - -w)]) =0,
' (119)
1im g, (lu, = v, + w-v)]) = 0.
Utilizing the properties of g, and g,, we get
Jim [|%, —u, - (w-v)| =0,
(120)
nh—{%o l, = v, + (w=w) =0,
which hence yields
“’?n - Vn" = “k\n —thy — (U~ 1/)"
+u, v, + w-v)| —0 (121)
asn — 00.
That is,
Jim [[S,x, - G (S,x,)| = lim [|%, -v,[ =0 (122)
Note that

[, = Suxul| < 1%, = G (Sux )| + |G (Suxs) = S| - (123)
So, from (104) and (122), we have
nli—vn})o ”xn - Snxn" =0, (124)

which together with (104) and the assumption on {S,} implies
that

||xn - an” < ||xn - S,,x,," + ||Snxn - an“ — 0

as n — 00,

[ = Gl < [ — G (S, + 16 (S, - G| (125)

< = G (Sl + 8,5, - — 0

as n — 0o.

That is,
Jim [[x, = Sx,|| =0, Jim |x, — Gx,|| =0.  (126)
Define a mapping

Wx =(1-0)Sx +0Gx, VxeC, (127)

where 6 is a constant in (0, 1). Then, by Lemma 10, we know
that Fix(W) = Fix(S) N Fix(G) = A. We observe that

[x, = Wx,| = |(1 = 6) (x, — Sx,) + 6 (x,, - Gx,,)|

(128)
< (1-0) |x, = Sx,| + |6, - Gx,| -
So, from (126), we get
nango |x, — Wx,| = 0, (129)
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where p is defined below. Now, we claim that
li;rlsot;p«f - A)p,J (x, - p)) 0. (130)
Indeed, let {x,} be defined by
x, = tf (x;) + (I - tA) Wx,. (131)

Then, ast — 0, {x,} converges strongly to p € Fix(W) = A,
which by Proposition CB is the unique solution in A to the
VIP:

(A= f)pJ(p-u)) <0, VueA (132)

In terms of Lemma 6, we conclude from (129) that (130) holds.
It is clear that

lir{risol;p ((f=A)p.J (x40 = p)) < 0. (133)

Finally, let us show that x, — pasn — co. We observe
that

Iy = 2l < aallxs = oI + (1= @) |G (Spx) - oI
< allx, = pl* + (1 =) |5, = I (134)
= llx. - ol
and hence
BT
= (1B, (f (xa) = f (p)) + (1 - B,A)
X [G(Suyn) = AattnFG (S,3) = p] + B, (f = A) pl”
<8, (f (x) = f (p)) + (1 - B,A)
% [G(Su3) = AuttnFG (S,3) - pII
+2B,((f = A) p.J (X1 — P))
< [Bullf (x) = f (D) + (1= B7)
% G (Su3) = AuttnFG (S,3) - pIlI*
+2B,((f = A) p.J (X1 = P))
= [Bullf (%) = f (P + (1= B,7)
X (T = At F) G (S,3n)
= (I = A, F) p = Ao Fp|| )
+2B,((f = A) p.J (X1 — P))
< [BullBx — Pl + (1= B7)
x (I(T = Xt F) G (S,.3) = (I = AiF) p|

+An1”n "Fp")]2 + zﬁn <(f - A) p’] (xn+1 - P)>
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) [/sn/s 5o pll+ (1- B.3)

(-2 57))

he6,) -l I

2

+2B,((f = A) p. ] (X1 = P))
[B.B 1% = pl
+(1=B.7) (I = Il + Aot [ ER DT
+2B,((f = A) p. ] (X1 = P))
[B.Blx = Pl + (1= B¥) % = pll+ Mgt | FRIT?
+2B,((f = A) p. ] (X1 = P))
= [(1= B (7= B) % = ol + At [P
+ 2B, ((f = A) p. ] (xXp1 = P))
= (1= B, (7= B) I = £l + Auttn | P
< [2(1= B, (7= B) [x. = ol + Austa | ]
+2B,((f = A) p.] (X1 = P))
<(1-B.G-P) .- pl’
+ At | FPl (21, = Pl + At [ F])
+2B,((f = A) p. ] (X1 — P))

=(1=B,F-P)x. - pI" +B. (- B)-

IA

IN

7

n[’ln

||Fp|| (2], = ol + Aatsn | EP])

+2((f = A) p.J (Xp1 = P))
(135)

Taking into account (133) and conditions (i) and (ii), we
obtain that Y .2, (¥ — B)3, = co and

. 1 n n
lim sup=— | =25 [Ep] (2]}, = pl + Aot [
(136)
2= 4) T (i - ) | <0
Therefore, applying Lemma 3 to (135), we infer that
lim [, - p = (137)

n— oo

This completes the proof. O

Abstract and Applied Analysis

Remark 20. It is worth pointing out that the sequences {1, },
{u,}, and {f8,} can be taken, which satisfy the conditions in

Theorem 19. As a matter of fact, put A, = (1 +n) /%, u, =
l,and B, = (1 + n)_z/3 0. Then, there hold the

following statements:
(i) lim,, oo, = 0 and 3% B, = 0o
(i) lim,, _, oo (A, 14,,)/ B, = 05

(iii) ZZ.%O |Bn+1 - /-’)nl < 00, ZZZO |An+1
n=0 |.”n+1 - ‘unl < 0.

foralln >

- A, < o0, and

By the careful analysis of the proof of Theorem 19, we can
obtain the following result. Because its proof is much simpler
than that of Theorem 19, we omit its proof.

Theorem 21. Let C be a nonempty closed convex subset of
a uniformly convex and 2-uniformly smooth Banach space X
such that C + C ¢ C. Let Il be a sunny nonexpansive
retraction from X onto C. Let the mapping B; : C — X
be o;-inverse-strongly accretive for i = 1,2. Let {S,}2, be an
infinite family of nonexpansive mappings of C into itself such
that A = (5, Fix(S;) N Q+#0, where Q is the fixed point
set of the mapping G = IIo(I — uB))IIo(I — u,B,) with
0 < w < g/’ fori = 1,2. Let f : C — C be a fixed
contractive map with coefficient 5 € (0,1),let F : C — C
be a-strongly accretive and A-strictly pseudocontractive with
a+A>1,andlet A: C — C beay-strongly positive linear
bounded operator with 0 < ? B < 1. Given sequences {A,},2,
in [0, 1] and {o,}2 0, {B,} e, i (0, 1], suppose that there hold
the following conditions:

(1) hmn—>ooﬂn =0and Z;“;O ﬂn =005

(ii) hmn—»oo/\n/ﬁn =0and ZEZO |An+1
(iii) {e,,} < [a,b] for some a,b € (0, 1);
(iV) ZZZO |(xn+1 - (an < c0 and zzio |ﬁn+1
Assume that ¥ 20 sup,pllS,.1x = S,x|l < co for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,, , .S, x for all x € C and suppose that Fix(S) =

Moo Fix(S,). Then, for any given point x, € C, the sequence
{x,} generated by

- A, < oo;

- Bl < co.

yﬂ = (xnxn + (1 - “H)G(Snxn) >

Xne1 = ﬁnf (xn) + (I - ﬁnA) [yn - AnF (yn)] » Vnz0,

(138)

converges strongly to p € A, which is the unique solution in A
to the VIP (85).

Remark 22. Theorems 19 and 21 improve, extend, supplement
and develop Cai and Bu [10, Theorem 3.1] and Cai and Bu [9,
Theorems 3.1] in the following aspects.

(i) The GSVI (13) with hierarchical fixed point problem
constraint for a countable family of nonexpansive mappings
is more general and more subtle than every problem in Cai
and Bu [10, Theorems 3.1] and Cai and Bu [9, Theorem 3.1]
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because our problem is to find a point p € A =), Fix(S,)N<Q,
which is the unique solution in A to the VIP:

(A= f)p.T(p-u)) <0,

(ii) The iterative scheme in [10, Theorem 3.1] is extended
to develop the iterative schemes in Theorems 19 and 21
by virtue of hybrid steepest-descent method. The iterative
schemes in Theorems 19 and 21 are more advantageous and
more flexible than the iterative scheme of [9, Theorem 3.1]
because the iterative scheme of [9, Theorem 3.1] is implicit
and our iterative schemes involve solving two problems: the
GSVI (13) and the fixed point problem of a countable family
of nonexpansive mappings {S,}.

(iii) The iterative schemes in Theorems 19 and 21 are very
different from everyone in both [10, Theorem 3.1] and [9,
Theorem 3.1] because our iterative schemes involve hybrid
steepest-descent method (namely, we add a strongly accretive
and strictly pseudocontractive mapping F in our iterative
schemes) and because the mappings G and S, in [10, Theorem
3.1] and the mapping S,, in [9, Theorem 3.1] are replaced by
the same composite mapping G o S, in the iterative schemes
of Theorems 19 and 21.

(iv) Cai and Bu’s proof in [10, Theorem 3.1] depends
on the argument techniques in [20], the inequality in 2-
uniformly smooth Banach spaces (see Lemmal), and the
inequality in smooth and uniform convex Banach spaces (see
Proposition 2). Because the composite mapping GeS,, appears
in the iterative schemes in Theorems 19 and 21, the proof
of Theorems 19 and 21 depends on the argument techniques
in [20], the inequality in 2-uniformly smooth Banach spaces
(see Lemma 1), the inequality in smooth and uniform convex
Banach spaces (see Proposition 2), and the properties of the
strongly positive linear bounded operator (see Lemmas 15),
the Banach limit (see Lemma 5), and the strongly accretive
and strictly pseudocontractive mapping (see Lemma 7).

Yu € A. (139)

Remark 23. Theorems 19 and 21 extend and improve
Theorem 16 of Yao et al. [21] to a great extent in the following
aspects:

(i) the u is replaced by a fixed contractive mapping;

(ii) one continuous pseudocontractive mapping (includ-
ing nonexpansive mapping) is replaced by a countable
family of nonexpansive mappings;

(iii) we add a strongly positive linear bounded operator A
and a strongly accretive and strictly pseudocontrac-
tive mapping F in our iterative algorithms.
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