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This paper considers the estimation of the common probability density of independent and identically distributed variables
observed with additive measurement errors. The self-consistent estimator of the density function is constructed when the error
distribution is known, and a modification of the self-consistent estimation is proposed when the error distribution is unknown.
The consistency properties of the proposed estimators and the upper bounds of the mean square error and mean integrated square
error are investigated under some suitable conditions. Simulation studies are carried out to assess the performance of our proposed
method and compare with the usual deconvolution kernel method. Two real datasets are analyzed for further illustration.

1. Introduction

The statistical methodology of density estimation has been
widely studied in the literature (see [1–5]) and still is a hot
issue in nonparametric statistics. For example, Park et al. [6]
studied the kernel-based local likelihood density estimation.
Jones and Henderson [7] proposed a Gaussian copula kernel
estimator. Botev et al. [8] introduced an adaptive kernel
density estimation method based on the smoothing proper-
ties of linear diffusion processes. The most commonly used
nonparametric method is kernel density estimation. Usually,
the choice of kernel function is not crucial, whereas the band-
width parameter, which controls the degree of smoothing,
must be chosen carefully. However, it is well known that
the choice of bandwidth is difficult. Cross-validation tech-
niques have been previously applied for this, but they are
computationally expensive. Furthermore, it becomes difficult
to estimate the density and choose the bandwidth when there
exists the measurement error.

In this paper, we consider the density estimation in the
presence of additive measurement error. Suppose we have 𝑛
i.i.d. available observations 𝑌

1
, . . . , 𝑌

𝑛
which have the same

distribution as that of 𝑌, to estimate the unknown density
𝑓(𝑥) of a random variable𝑋, where

𝑌 = 𝑋 + 𝜀, (1)

with a measurement error 𝜀, and 𝜀 is independent of 𝑋. The
density function of 𝜀 is denoted as 𝑓

𝜀
.

When the distribution of 𝜀 is known, the statistical
methodology for estimating the unknown density 𝑓(𝑥) has
been extensively discussed in the literature. For instance, Car-
roll and Hall [2] and Fan [9, 10] discussed the optimal rates
of convergence over a class of functions whose derivatives are
Lipschitz continuous using kernelmethod. Zhang [11] studied
the deconvolution kernel density estimation of the mixing
densities and distributions and derived the optimal rates of
convergence. See also Koo [12], Pensky and Vidakovic [13],
Fan andKoo [14], andComte et al. [15], among others, for ear-
lier contributions. Recently, Butucea [4] andButucea andTsy-
bakov [5] evaluated the minimax rate of convergence of the
pointwise risk using the kernel method and computed upper
bounds for the 𝐿2 risk of the estimator. However, most of
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those papers deal only with theoretical aspects of the estima-
tion, and very few focus attention on the yet important issue
of choosing the bandwidth in practice. Delaigle and Gijbels
[16] proposed a bandwidth selection procedure based on
bootstrap techniques and proved that the mean integrated
squared error (MISE) of the bootstrap estimator for the
density function converges to the exact mean integrated
squared error. However, the algorithm is complex and the
quality of the estimator of the density depends strongly on the
choice of the pilot bandwidth which must be chosen before
the bootstrap procedure.

Indeed, in most practical applications, the distribution
of 𝜀 cannot be perfectly known. Meister [17] studied the
effect of the misspecification of the error density on the
MISE of the deconvolution estimator. He pointed out that the
limit of MISE can be infinite in some cases. Sometimes, this
problem can be solved by repeated observations of the same
variable of interest, each time with an independent error; see,
for example, Li and Vuong [18], Delaigle et al. [19], or Neu-
mann [20] and references therein. However, there are also
many application fields where it is not possible to do
repeated measurements of the same variable. In that case, the
information of the error distribution can be drawn from an
additional experiment; this means that knowledge of 𝑓

𝜀
can

be replaced by observations 𝜀
−1
, . . . , 𝜀

−𝑀
, which is a noise

sample with distribution 𝑓
𝜀
, and is independent of 𝑌

1
, . . . , 𝑌

𝑛
.

Neumann [21] and Kerkyacharian et al. [22] replaced the
characteristic function of the error by its empirical ver-
sion. Johannes [23] studied the density deconvolution with
unknown (but observed) noise and showed that the proposed
estimators are asymptotically optimal in a minimax sense
over a Sobolev space.The resulting estimators depend on two
bandwidth-type parameters, but the data-driven selection of
these bandwidths was not done. Recently, Comte and Lacour
[24] proposed an adaptive estimator of the density based
on a data-driven model selection strategy and discussed the
convergence rates of the estimator. In addition, they studied
the link between 𝑀 and 𝑛 if one wants to preserve the rate
that is found in the case where the distribution of 𝜀 is known.

In the present paper, we study model (1), completed with
a known or unknown distribution of error 𝜀, and construct
the self-consistent estimators of the density𝑓(𝑥) by searching
for the optimal kernel when the error distribution is ordinary
smooth or super smooth. The method of constructing the
estimator of density function by optimal kernel was first
proposed by Watson and Leadbetter [25]. But the result can
not be used directly, since the Fourier transform of the true
density function is unknown. Bernacchia and Pigolotti [26]
derived the exact expression of the density estimator based on
optimal kernel and defined it as self-consistent estimate.They
showed that the self-consistent method has better perfor-
mance than existing methods for all examples that they
studied. But the data in their paper did not include measure-
ment errors. The self-consistent method shares some desired
features: the choice of the bandwidth-type parameter is more
convenient than that of kernel or spline method; thus the
computing speed can be improved significantly; the resulting
estimators are consistent; the proposed method is preferable
for applications, especially for the large datasets. Thus, it is

of great significance to extend the self-consistent estimate
method to more general case.

The paper is organized as follows. In Section 2, we
propose the self-consistent method for density estimation
with the known distribution of 𝜀, or with the noise sample
𝜀
−1
, . . . , 𝜀

−𝑀
when 𝑓

𝜀
is unknown, and give the asymptotic

properties. In Section 3, some simulations are carried out to
illustrate the efficacy of the proposed method. Two real data
examples are used for illustration in Section 4. The proofs of
the main results are included in Appendix.

2. Methodology and the Main Results

2.1. Error Distribution Is Known. For the sake of descriptive
convenience, we first introduce some notations. For two real
numbers 𝑎 and 𝑏, we denote 𝑎 ∧ 𝑏 = min(𝑎, 𝑏) and 𝑎

+
=

max(𝑎, 0). Let 𝑧 be a complex number, let 𝑧 denote its con-
jugate, and let |𝑧| denote its modulus. Let ‖𝑔‖ be the 𝐿2-norm
of 𝑔; that is, ‖𝑔‖ = ∫

R
|𝑔(𝑥)|

2
𝑑𝑥. The Fourier transform of 𝑔

is defined by

𝜙
𝑔
(𝑡) = ∫ exp (i𝑡𝑥) 𝑔 (𝑥) 𝑑𝑥. (2)

Similarly, we denote the characteristic function as 𝜙
𝜀
(𝑡) for

the known density function 𝑓
𝜀
of 𝜀.

The smoothness of 𝑓
𝜀
is described by the following

assumption.There exist some positive constants𝑑
0
, 𝑑

1
,𝛽, and

𝑏 and constants 𝛽
0
∈ R (𝛽

0
> 0 if 𝛽 = 0), such that the

characteristic function 𝜙
𝜀
(𝑡) of the error distribution satisfies

𝑑
0
(𝑡
2
+ 1)

−𝛽0/2 exp (−𝑏 |𝑡|𝛽)

≤




𝜙
𝜀
(𝑡)




≤ 𝑑

1
(𝑡
2
+ 1)

−𝛽0/2 exp (−𝑏 |𝑡|𝛽) as 𝑡 → ∞.

(3)

When 𝛽 > 0 we call the distribution of 𝜀 as super smooth of
order 𝛽. For example, standard normal and Cauchy distribu-
tions are super smooth with 𝛽 = 2 and 1, respectively. When
𝛽 = 0we call the distribution of 𝜀 as ordinary smooth of order
𝛽
0
. For example, gamma distribution 𝐺𝑎(𝛼, 𝜆) and double

exponential distribution are ordinary smooth with 𝛽
0
= 𝛼

and 2, respectively.
Assume that the density function𝑓(𝑥) of𝑋 belongs to the

following type of smoothness spaces:

F
𝑟,𝑎,𝛿

(𝑚)

= {𝑓 density : ∫ 




𝜙
𝑓
(𝑥)







2

(𝑥
2
+ 1)

𝛿

exp (2𝑎 |𝑥|𝑟) 𝑑𝑥 ≤ 𝑚} ,

(4)

where 𝑚 > 0, 𝑟 ≥ 0, 𝑎 > 0, 𝛿 ∈ R, and 𝛿 > 1/2 if 𝑟 = 0. If
𝑟 > 0, the density function 𝑓(𝑥) is called super smooth and
ordinary smooth otherwise.

Let 𝑓
𝑌
denote the common density of the 𝑌

𝑗
’s. By (1) and

the independence assumption between𝑋 and 𝜀, we have

𝑓
𝑌
= 𝑓 ∗ 𝑓

𝜀
, 𝜙

𝑌
= 𝜙

𝑓
𝜙
𝜀
, (5)
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where ∗ denotes the convolution and 𝜙
𝑌
denotes the charac-

teristic function of 𝑌. Let

̂
𝑓
𝑌
(𝑦) =

1

𝑛

𝑛

∑

𝑗=1

𝐾(𝑦 − 𝑌
𝑗
) (6)

be a kernel estimator of 𝑓
𝑌
with the kernel function 𝐾(⋅).

Then, the Fourier transform of ̂
𝑓
𝑌
is defined by ̂

𝜙
𝑌
(𝑡) =

𝜙
𝐾
(𝑡)Δ(𝑡), where Δ(𝑡) = (1/𝑛)∑

𝑛

𝑗=1
exp(i𝑡𝑌

𝑗
) is the empirical

characteristic function of 𝑌. Therefore, under the classical
assumption 𝜙

𝜀
(𝑡) ̸= 0, for any 𝑡 ∈ R, we can obtain an

estimator of 𝜙
𝑓
as follows:

̂
𝜙
𝑓
(𝑡) =

𝜙
𝐾
(𝑡) Δ (𝑡)

𝜙
𝜀
(𝑡)

. (7)

By the inverse Fourier transform, we have

̂
𝑓 (𝑥) =

1

2𝜋

∫

+∞

−∞

exp (−i𝑡𝑥)
𝜙
𝐾
(𝑡) Δ (𝑡)

𝜙
𝜀
(𝑡)

𝑑𝑡. (8)

Note that (8) does not depend on any bandwidth ℎ, compared
to the deconvolution kernel density estimation methods in
the literature. Instead of looking for an arbitrary shape for the
kernel 𝐾(⋅) and choosing an optimal bandwidth (see [1]), we
rather look for an optimal shape of the kernel 𝐾(⋅) such that
the estimator ̂

𝑓(𝑥) minimizes the mean integrated square
error

MISE = 𝐸(∫

+∞

−∞

(
̂
𝑓 (𝑥) − 𝑓 (𝑥))

2

𝑑𝑥) . (9)

By means of Parseval’s theorem and (7), we have

MISE =

1

2𝜋

𝐸(∫

+∞

−∞







̂
𝜙
𝑓
(𝑡) − 𝜙

𝑓
(𝑡)







2

𝑑𝑡)

=

1

2𝜋

𝐸(∫

+∞

−∞










𝜙
𝐾
(𝑡) Δ (𝑡)

𝜙
𝜀
(𝑡)

− 𝜙
𝑓
(𝑡)










2

𝑑𝑡)

=

1

2𝜋

𝐸(∫

+∞

−∞







̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡) .

(10)

Note that 𝐸(Δ(𝑡)) = 𝜙
𝑌
(𝑡) and 𝐸(|Δ(𝑡)|2) = |𝜙

𝑌
(𝑡)|

2
+ 𝑛

−1
(1 −

|𝜙
𝑌
(𝑡)|

2
), and the MISE can be rewritten as

MISE

=

1

2𝜋

∫

+∞

−∞

( (𝑛
−1 



𝜙
𝐾
(𝑡)





2

(1 −




𝜙
𝑌
(𝑡)





2

) +




𝜙
𝑌
(𝑡)





2

×




1 − 𝜙

𝐾
(𝑡)





2

) × (




𝜙
𝜀
(𝑡)





2

)

−1

)𝑑𝑡

=

1

2𝜋

∫

+∞

−∞

1 + (𝑛 − 1)




𝜙
𝑌
(𝑡)





2

𝑛




𝜙
𝜀
(𝑡)





2

×












𝜙
𝐾
(𝑡) −

𝑛




𝜙
𝑌
(𝑡)





2

1 + (𝑛 − 1)




𝜙
𝑌
(𝑡)





2












2

𝑑𝑡

+

1

2𝜋

∫

+∞

−∞





𝜙
𝑌
(𝑡)





2

(1 −




𝜙
𝑌
(𝑡)





2

)





𝜙
𝜀
(𝑡)





2

(1 + (𝑛 − 1)




𝜙
𝑌
(𝑡)





2

)

𝑑𝑡.

(11)

Then we get the optimal kernel, which in Fourier space reads

𝜙
𝐾opt

(𝑡) =

𝑛

𝑛 − 1 +




𝜙
𝑌
(𝑡)





−2
. (12)

Replacing 𝜙
𝐾
(𝑡) in (7) by the optimal kernel (12), we have

̂
𝜙
𝑓
(𝑡) =

𝜙
𝐾opt

(𝑡) Δ (𝑡)

𝜙
𝜀
(𝑡)

=

𝑛Δ (𝑡)

(𝑛 − 1 +




𝜙
𝑌
(𝑡)





−2

) 𝜙
𝜀
(𝑡)

=

𝑛Δ (𝑡)

(𝑛 − 1 +






𝜙
𝑓
(𝑡) 𝜙

𝜀
(𝑡)







−2

) 𝜙
𝜀
(𝑡)

.

(13)

Similar to the discussion of Bernacchia and Pigolotti [26],
the self-consistent estimator of 𝜙

𝑓
is equivalent to solving the

equation

̂
𝜙
𝑓sc
(𝑡) =

𝑛Δ (𝑡)

(𝑛 − 1 +







̂
𝜙
𝑓sc
(𝑡) 𝜙

𝜀
(𝑡)







−2

) 𝜙
𝜀
(𝑡)

. (14)

Simple calculation yields

̂
𝜙
𝑓sc
(𝑡) =

𝑛Δ (𝑡)

2 (𝑛 − 1) 𝜙
𝜀
(𝑡)

(1 + √1 −

4 (𝑛 − 1)

𝑛
2
|Δ (𝑡)|

2
)𝐼

𝐴
(𝑡) ,

(15)

where 𝐼
𝐴
(⋅) is the indicator function (𝐼

𝐴
(𝑡) = 1 if 𝑡 ∈ 𝐴;

𝐼
𝐴
(𝑡) = 0 if 𝑡 ∉ 𝐴) and 𝐴 ⊆ 𝐵, 𝐵 = {𝑡 : |Δ(𝑡)|

2
≥ 4(𝑛 − 1)/𝑛

2
},

is a set of accepted frequencies (i.e., the frequencies giving a
nonzero contribution to the estimate). In practical applica-
tions, when the sample 𝑌

1
, . . . , 𝑌

𝑛
has been observed, we can

choose a bounded interval

𝐴 = 𝐵 ∩ [−�̃�, �̃�] , (16)

where �̃� is a truncation parameter and �̃� can be chosen as
follows.

Step 1. Give an initial value �̃�
0
. In our simulation, we take the

initial value �̃�
0
= 𝜋/(𝑌

(𝑛)
− 𝑌

(1)
), where 𝑌

(1)
and 𝑌

(𝑛)
are the

minimum and maximum sample quantiles of {𝑌
1
, . . . , 𝑌

𝑛
}.

Step 2. Set �̃� = �̃�
𝑘
, if the inequality condition |Δ(�̃�)|2 ≥ 4(𝑛 −

1)/𝑛
2 holds in one half of the interval [−�̃�

𝑘
, �̃�
𝑘
]. Otherwise, set

�̃�
𝑘+1

= 𝑐�̃�
𝑘
, where 𝑐 > 1 is a positive constant, in our simu-

lation we take 𝑐 = 1.2.
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Step 3. Repeat Step 2 until �̃�
𝑘
satisfies the inequality condi-

tion.

From the simulation studies in Section 3, we can see
that the choice of �̃� is convenient and fast, and the density
estimator is not sensitive to the choice of �̃�.

By (15) and the inverse Fourier transform, the self-
consistent estimate of 𝑓(𝑥) is defined by

̂
𝑓sc (𝑥) =

1

2𝜋

∫

+∞

−∞

exp (−i𝑡𝑥) ̂𝜙
𝑓sc
(𝑡) 𝑑𝑡. (17)

Let

𝐾
∗
(𝑢) =

1

2𝜋

∫

+∞

−∞

exp (−i𝑡𝑢) 𝑛

2 (𝑛 − 1) 𝜙
𝜀
(𝑡)

× (1 + √1 −

4 (𝑛 − 1)

𝑛
2
|Δ (𝑡)|

2
)𝐼

𝐴
(𝑡) 𝑑𝑡.

(18)

Then, ̂𝑓sc(𝑥) can be rewritten in the kernel form

̂
𝑓sc (𝑥) =

1

𝑛

𝑛

∑

𝑗=1

𝐾
∗
(𝑥 − 𝑌

𝑗
) . (19)

We state the asymptotic behavior of the self-consistent
estimator in the following theorem.

Theorem 1. In addition to the regularity conditions (A1)–(A3)
listed in the Appendix, assume that either of the following
conditions holds.

(a) The error distribution is super smooth and �̃� = 𝑜{((1/

2𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}.

(b) The error distribution is ordinary smooth and �̃� =

𝑜(𝑛
1/2(𝛽0+1)

),

where 𝛾 = (1 + 2𝛽
0
− 𝛽)

+
/𝛽.

Then the self-consistent density estimator ̂
𝑓sc(𝑥) defined by

(17) is consistent; that is, ̂𝑓sc(𝑥)
𝑃

→ 𝑓(𝑥), as 𝑛 → ∞.

Remark 2. As many other methods, for example, higher-
order kernel estimators, spline estimators, wavelet estimators,
orthogonal expansion estimators, and so forth, the resulting
self-consistent estimators are not nonnegative, but those can
be correctedwithout any error cost by translating the estimate
downwards until the positive part is normalized to 1 and
setting to 0 the negative part. For example, the modified
estimator is defined by ̌

𝑓sc(𝑥) = max{ ̂𝑓sc(𝑥) − 𝑑, 0}, where 𝑑
is chosen in such a way that ∫+∞

−∞

̌
𝑓sc(𝑥)𝑑𝑥 = 1; see more

details in Efromovich [27], Glad et al. [28], and so on.

Theorem 3. Assume that conditions (A1)–(A3) hold and 𝑓 ∈

F
𝑟,𝑎,𝛿

(𝑚).

(a) When the error distribution is super smooth and �̃� =

𝑂{((2/5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, one has

𝐸







̂
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂(�̃�
1−𝑟−2𝛿 exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) ,

𝐸







̂
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) .
(20)

(b) When the error distribution is ordinary smooth and �̃� =
𝑂(𝑛

3/5(2𝛽0+1)
), one has

𝐸







̂
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂 (�̃�
1−𝑟−2𝛿 exp (−2𝑎�̃�𝑟) + 𝑛−2/5) ,

𝐸







̂
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−2/5) .

(21)

2.2. Error Distribution Is Unknown. Suppose that, in addition
to a sample 𝑌

1
, . . . , 𝑌

𝑛
from 𝑓

𝑌
, we observe a noise sample

𝜀
−1
, . . . , 𝜀

−𝑀
from the unknown distribution 𝑓

𝜀
. We assume

that information about 𝑓
𝜀
is obtained by the preliminary

calibration measures before the work or is provided by an
independent experiment.

When the characteristic function 𝜙
𝜀
in (15) is unknown,

we then cannot estimate the density function using (17)
directly.Thus, we need to estimate the characteristic function
𝜙
𝜀
. Here, we can estimate 𝜙

𝜀
based on the preliminary noise

sample as follows:

̂
𝜙
𝜀
(𝑡) =

1

𝑀

𝑀

∑

𝑗=1

exp (i𝑡𝜀
−𝑗
) . (22)

Similar to Neumann [21], we introduce the following trun-
cated estimator:

1

̃
𝜙
𝜀
(𝑡)

=

1
{|𝜙𝜀(𝑡)|≥𝑀

−1/2
}

̂
𝜙
𝜀
(𝑡)

=

{

{

{

1

̂
𝜙
𝜀
(𝑡)

, if 


̂
𝜙
𝜀
(𝑡)






≥ 𝑀

−1/2
,

0, otherwise.

(23)

Then we can obtain the self-consistent estimator of the den-
sity function

̃
𝑓sc (𝑥) =

1

2𝜋

∫

+∞

−∞

exp (−i𝑡𝑥) ̃𝜙
𝑓sc
(𝑡) 𝑑𝑡, (24)

where ̃
𝜙
𝑓sc
(𝑡) = (𝑛Δ(𝑡)/2(𝑛 − 1)

̃
𝜙
𝜀
(𝑡))(1 +

√1 − (4(𝑛 − 1)/𝑛
2
|Δ(𝑡)|

2
))𝐼

𝐴
(𝑡).
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Theorem4. In addition to the regularity conditions (A1)–(A3)
listed in the Appendix, assume that either of the following con-
ditions holds.

(a) The error distribution is super smooth, 𝛽 ≥ 𝑟,
𝑀 ≥ 𝑛(log(𝑛))−(1+2(𝛽0∧𝛿)−𝛽)+/𝛽, and �̃� = 𝑜{((1/

2𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}.
(b) Theerror distribution is super smooth,𝛽 < 𝑟,𝑀 → ∞

as 𝑛 → ∞, and �̃� = 𝑜{((1/2𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}.
(c) The error distribution is ordinary smooth, 𝛽

0
> 𝛿,𝑀 ≥

𝑛
2(𝛽0−𝛿)/(2𝛽0+1), and �̃� = 𝑜(𝑛

1/(2𝛽0+1)
).

(d) The error distribution is ordinary smooth, 𝛽
0
≤ 𝛿,

𝑀 → ∞ as 𝑛 → ∞, and �̃� = 𝑜(𝑛
1/(2𝛽0+1)

).

Then the self-consistent density estimator ̃𝑓
𝑠𝑐
(𝑥) defined by (24)

is consistent; that is, ̃𝑓
𝑠𝑐
(𝑥)

𝑃

→ 𝑓(𝑥), as 𝑛 → ∞.

Remark 5. In the cases 0 < 𝛽 < 𝑟 or 𝛽
0
≤ 𝛿 and 𝛽 = 0,

from the proof of theorem in Appendix, one can check that
the estimator defined by (24) is consistent as long as the noise
sample size𝑀 tends to infinity as 𝑛 increases, while the rate of
𝑀 tending to infinity is not restricted. Therefore, in practice,
the noise sample size𝑀does not need to be very large in these
cases.

Theorem 6. Assume that conditions (A1)–(A3) hold and 𝑓 ∈

F
𝑟,𝑎,𝛿

(𝑚).

(a) When the error distribution is super smooth, 𝛽 ≥ 𝑟,
𝑀 ≥ 𝑛(log(𝑛))−(1+2(𝛽0∧𝛿)−𝛽)+/𝛽, and �̃� = 𝑂{((2/

5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, then one has

𝐸







̃
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) .
(25)

(b) When the error distribution is super smooth, 𝛽 <

𝑟, 𝑀 ≥ 𝑛
1/5
(log(𝑛))−𝛾/5, and �̃� = 𝑂{((2/

5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, then one has

𝐸







̃
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) .
(26)

(c) The error distribution is ordinary smooth, 𝑀 ≥

𝑛
(2/5)+(6(𝛽0−𝛿)+/5(2𝛽0+1)), and �̃� = 𝑂(𝑛

3/5(2𝛽0+1)
); then one

has

𝐸







̃
𝑓
𝑠𝑐
(𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−2/5) .
(27)

3. Simulation Studies

In this section, we report on the simulation studies to
illustrate the finite sample performances of the proposed self-
consistent (SC) estimation method and compare it with the
kernel (KN) method. For comparison, we compute the
estimators for different signal densities and different types of
noise. The following densities are considered:

(a) gamma distribution 𝑓(𝑥) = 10.125𝑥
4
𝑒
−3𝑥 with shape

parameter 𝛼 = 5 and scale parameter 𝜆 = 3;
(b) standard normal distribution 𝑓(𝑥) = (1/√2𝜋)

exp(−𝑥2/2).

Two kinds of error distributions are considered to study
their effects on the MISE of the estimators.

(c) Double exponential error: the density of 𝜀 is given by

𝑓
𝜀
(𝑥) = (√2𝜎

0
)

−1

exp(−
√2 |𝑥|

𝜎
0

) for 𝜎2
0
=

1

16

. (28)

(d) Normal error: the density of 𝜀 is given by

𝑓
𝜀
(𝑥) =

1

√2𝜋𝜎
0

exp(−𝑥
2

2𝜎
2

0

) for 𝜎2
0
=

1

16

. (29)

For kernel method, we choose the Gaussian kernel for
double exponential error, and for normal error we suppose
that the kernel has a Fourier transform 𝜙

𝐾
(𝑡) = (1 − 𝑡

2
)
2

+
. For

the unknown error distributions, we suppose that the noise
sample 𝜀

−1
, . . . , 𝜀

−𝑀
comes from the above two error distribu-

tions. Throughout the simulations, we set 𝑛 = 100, 200, 400

and 𝑀 = 50, 100. The MISE of the estimators are
computed with 1000 random samples, and the results are
reported in Tables 1 and 2. When 𝑓

𝜀
is known or unknown,

the gamma density estimator through the double exponential
noise and the normal density estimator through the normal
noise are shown in Figures 1 and 2, respectively.

Tables 1 and 2 indicate the following simulation results.

(1) When the error distribution is unknown, we can see
that the estimator of the characteristic function of
the error does not spoil the procedure so much. It
even happens that the estimationwith unknown error
distributionworks better, which is probably due to the
truncation (23).

(2) For the same observation sample, the self-consistent
method performs slightly better than the kernel
method. It is worth mentioning that the self-
consistentmethod can savemore time than the kernel
method, because the truncation parameter �̃� can be
chosen conveniently.

(3) The MISE obtained by self-consistent and kernel
methods decrease as 𝑛 increases whether the error
distribution is known or unknown.

Figures 1 and 2 clearly show that the self-consistent
estimators perform well, no matter whether the error distri-
bution is known or unknown. Moreover, for 𝑀 = 10, the
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Table 1: MISE for the self-consistent estimator and the kernel
estimator when the error distribution is double exponential.

𝑛 Case Gamma Normal
SC KN SC KN

100
𝑓
𝜀
known 0.0021 0.0036 0.0105 0.0102

𝑀 = 50 0.0022 0.0041 0.0105 0.0106
𝑀 = 100 0.0021 0.0039 0.0102 0.0103

200
𝑓
𝜀
known 0.0011 0.0019 0.0056 0.0065

𝑀 = 50 0.0011 0.0025 0.0063 0.0068
𝑀 = 100 0.0013 0.0021 0.0057 0.0067

400
𝑓
𝜀
known 0.0006 0.0011 0.0031 0.0037

𝑀 = 50 0.0007 0.0012 0.0036 0.0035
𝑀 = 100 0.0006 0.0012 0.0032 0.0033

Table 2: MISE for the self-consistent estimator and the kernel
estimator when the error distribution is normal.

𝑛 Case Gamma Normal
SC KN SC KN

100
𝑓
𝜀
known 0.0028 0.0039 0.0102 0.0109

𝑀 = 50 0.0030 0.0042 0.0106 0.0111
𝑀 = 100 0.0029 0.0038 0.0106 0.0110

200
𝑓
𝜀
known 0.0012 0.0023 0.0061 0.0073

𝑀 = 50 0.0015 0.0023 0.0069 0.0075
𝑀 = 100 0.0012 0.0024 0.0059 0.0071

400
𝑓
𝜀
known 0.0007 0.0012 0.0035 0.0039

𝑀 = 50 0.0007 0.0013 0.0038 0.0039
𝑀 = 100 0.0007 0.0011 0.0036 0.0038

results show that ourmethod is still very satisfactory for small
noise sample size.

Next, we evaluate the sensitivity of the self-consistent
density estimation procedure on the choice of truncation
parameter �̃�. In this simulation, we only consider the case
when the error distribution is double exponential, and the
value of �̃� is fixed at �̃� = �̃�

∗, �̃�∗/1.25, and 1.25�̃�∗, respectively,
where �̃�

∗ is obtained by the iterative algorithm given in
Section 2.1. The MISE of the self-consistent estimator is
reported in Table 3. From Table 3 we can see that, for given
𝑛, the performance of the proposed method does not depend
sensitively on the choice of the value of �̃�.

4. Application to Real Data

We now use two real datasets to illustrate the proposed
method.The first dataset is the density of direction chosen by
an ant to an evenly illuminated black target. The experiment
with 100 ants was described by Fisher [29], who concluded
that the ants tend to run toward the target with some moder-
ate variation. For this particular example, 𝑌, a point where an
ant intersects a circle, can be treated as indirect observation
of the direction 𝑋 chosen by an ant. The estimation method
of (17) is used to analyze the dataset. In Figure 3, the solid
line denotes the estimate based on the assumption that the
data can be accurately measured (i.e., 𝑌 = 𝑋), and the

Density and estimates

0 5 10 15 20 25 30 35 40

0.01

0

0.02

0.03

0.04

0.05

0.06

0.07

−0.01

Figure 1: Estimates of gamma density through double exponential
noise for 𝑛 = 400. The thick solid line is the true density, the thin
solid line and the dashed line are the kernel estimator and the SC
estimator when 𝑓

𝜀
is known, respectively, and the dot-dashed line

and the dotted line are the SC estimators when the noise sample sizes
𝑀 = 50 and𝑀 = 10, respectively.

Density and estimates

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

−0.05
−3 −2 −1 0 1 2 3

Figure 2: Estimates of normal density through normal noise for 𝑛 =
400.The thick solid line is the true density, the thin solid line and the
dashed line are the kernel estimator and the SC estimator when 𝑓

𝜀
is

known, respectively, and the dot-dashed line and the dotted line are
the SC estimators when the noise sample sizes𝑀 = 50 and𝑀 = 10,
respectively.

dashed and dot-dashed lines denote the case of 𝑁(0, 𝜎
2
)

measurement errors with 𝜎 = 0.3 and 𝜎 = 0.5, respectively.
We compare our results with Efromovich [30] who already
used the orthogonal series approach to estimate the density.

From Figure 3, we find that when the data are accurately
measured (𝜎 = 0), the corresponding density estimate is
rather smooth and has a pronounced mode (direction of the
target) with a relatively large deviation. When the standard
deviation 𝜎 increases, it makes the density more picky
interestingly andmakes two additional local modesmore sig-
nificant.Therefore, the assumption about measurement error
reveals the presence of three distinct groups (strata) of ants.
A majority clearly tends to move toward the target with a
rather small variation, and a minority tends to move in two
other directions about the target also with small variation.
These findings basically agree with those that were discovered
by Efromovich [30]. But the two directions are not symmetric
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Table 3: MISE for the self-consistent estimator with different values
of �̃� when the error distribution is double exponential.

𝑛 Case Gamma Normal
�̃�
∗

�̃�
∗
/1.25 1.25�̃�

∗
�̃�
∗

�̃�
∗
/1.25 1.25�̃�

∗

100
𝑓
𝜀
known 0.0020 0.0021 0.0020 0.0105 0.0105 0.0107

𝑀 = 50 0.0022 0.0024 0.0020 0.0108 0.0106 0.0106
𝑀 = 100 0.0021 0.0022 0.0022 0.0104 0.0103 0.0108

200
𝑓
𝜀
known 0.0011 0.0014 0.0012 0.0057 0.0054 0.0057

𝑀 = 50 0.0013 0.0015 0.0013 0.0060 0.0059 0.0058
𝑀 = 100 0.0012 0.0014 0.0012 0.0059 0.0058 0.0062

400
𝑓
𝜀
known 0.0006 0.0007 0.0007 0.0032 0.0034 0.0032

𝑀 = 50 0.0007 0.0008 0.0007 0.0035 0.0034 0.0033
𝑀 = 100 0.0006 0.0006 0.0007 0.0032 0.0035 0.0032
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Direction, X (rad)

Figure 3: Estimates of density of movement of ants. The solid line
is the estimate based on direct data, and the dashed and dot-dashed
lines are the estimates under assumption on normal error with zero
mean and standard deviations 𝜎 = 0.3 and 𝜎 = 0.5, respectively.

here, and the variation of the right side is slightly less than that
of the left side.

The second example involves estimating density of the
magnitudes of Alaskan earthquakes for the period from 1969
to 1978. The data comes from the National Oceanic and
Atmospheric Administration’s Hypocenter Data File [31]. In
this dataset, 𝑌 denotes the logarithm of the seismogram
amplitude of longitudinal body waves for 62 Alaskan earth-
quakes. There is a measurement error associated with the
observations, which includes errors made in determining the
amplitude of ground motion arising from such things as the
orientation of a limited number of observation stations to
the fault plane of the earthquake. In Figure 4, the solid line
denotes the estimate based on assumption that the body
waves are accurately measured (i.e., 𝑌 = 𝑋), and the dashed
and dot-dashed lines denote the case of Laplacemeasurement
errors with position parameter 𝛼 = 0 and scale parameters
𝜆 = 0.3 and 𝜆 = 0.5, respectively.

Figure 4 clearly shows the nature of the indirect data.
Under the assumption that the data are accurately measured
(𝜆 = 0), the corresponding density estimate is smooth and

4 4.5 5 5.5 6 6.5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Body waves

Es
tim

at
es

Figure 4: Estimates of density of body waves. The solid line is the
estimate based on direct data, and the dashed and dot-dashed lines
are the estimates under assumption on Laplace error with position
parameter 𝛼 = 0 and scale parameters 𝜆 = 0.3 and 𝜆 = 0.5,
respectively.

has two pronouncedmodes. For the case of 𝜆 ̸= 0, the distinc-
tions between the density estimates become more noticeable.
It makes the data become a unimodal distribution with 𝜆

increasing. It is clear that the presence of the measurement
error allows one to gain some insight into the data.

Appendix

Proofs of Theorems

We begin this section by listing the regularity conditions
needed in the proofs of all the theorems:

(A1) 𝑓(𝑥) is square integrable and its Fourier transform is
integrable;

(A2) 𝜙
𝜀
(𝑡) ̸= 0 for any 𝑡 ∈ R;

(A3) �̃� → ∞ as 𝑛 → ∞.

In the following text, we use 𝐶 to represent any positive
constant. The proofs of theorems rely on the following
lemma.

Lemma A.1. Let 𝐷(𝑡) = (1/
̃
𝜙
𝜀
(𝑡)) − (1/𝜙

𝜀
(𝑡)); then there is a

positive constant 𝐶 such that

𝐸 {|𝐷 (𝑡)|
2
} ≤ 𝐶min{ 1





𝜙
𝜀
(𝑡)





2
,

𝑀
−1





𝜙
𝜀
(𝑡)





4
} . (A.1)

Proof. Lemma A.1 is from Lemma 2.1 in Neumann [21]; the
proof is omitted.
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Proof ofTheorem 1. By (15), note that ̂𝜙
𝑓sc
(𝑡) =̂

̂
𝜙
𝑌
(𝑡)/𝜙

𝜀
(𝑡) and

̂
𝜙
𝑓sc
(𝑡) = 0 for |𝑡| > �̃�. Then, we have







̂
𝑓sc (𝑥) − 𝑓 (𝑥)







=










1

2𝜋

∫

+∞

−∞

exp (−i𝑡𝑥) { ̂𝜙
𝑓sc
(𝑡) − 𝜙

𝑓
(𝑡)} 𝑑𝑡










≤

1

2𝜋

∫

+∞

−∞





exp (−i𝑡𝑥)









̂
𝜙
𝑓sc
(𝑡) − 𝜙

𝑓
(𝑡)






𝑑𝑡

=

1

2𝜋

∫

+∞

−∞







̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)











𝜙
𝜀
(𝑡)





𝑑𝑡

=

1

2𝜋

∫

�̃�

−�̃�







̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)











𝜙
𝜀
(𝑡)





𝑑𝑡

+

1

2𝜋

∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)






𝑑𝑡

≤

1

2𝜋

∫

�̃�

−�̃�







̂
𝜙
𝑌
(𝑡) − Δ (𝑡)











𝜙
𝜀
(𝑡)





𝑑𝑡 +

1

2𝜋

∫

�̃�

−�̃�





Δ (𝑡) − 𝜙

𝑌
(𝑡)









𝜙
𝜀
(𝑡)





𝑑𝑡

+

1

2𝜋

∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)






𝑑𝑡

=̂ 𝐽
1
+ 𝐽

2
+ 𝐽

3
.

(A.2)

By conditions (A1) and (A3), as 𝑛 → ∞, it is easy to show
that 𝐽

3
→ 0. To finish the proof of Theorem 1, we need to

show that 𝐽
1

𝑃

→ 0 and 𝐽
2

𝑃

→ 0.
We first consider the case that the error distribution is

super smooth (𝛽 > 0). For 𝐽
2
, by (3), we have

𝐽
2
≤ 𝐶∫

�̃�

−�̃�





Δ (𝑡) − 𝜙

𝑌
(𝑡)




exp (𝑏 |𝑡|𝛽) (𝑡2 + 1)

𝛽0/2

𝑑𝑡 =̂ 𝐶𝑉
1
.

(A.3)

ByCauchy-Schwarz inequality and Jensen inequality, it is easy
to verify that

𝐸 (𝑉
2

1
) ≤ ∫

�̃�

−�̃�

𝐸




Δ (𝑡) − 𝜙

𝑌
(𝑡)





2

𝑑𝑡

× ∫

�̃�

−�̃�

exp (2𝑏 |𝑡|𝛽) (𝑡2 + 1)
𝛽0
𝑑𝑡

≤

1

𝑛

∫

�̃�

−�̃�

exp (2𝑏 |𝑡|𝛽) (𝑡2 + 1)
𝛽0
𝑑𝑡

=

2

𝑛

∫

�̃�

0

exp (2𝑏𝑡𝛽) (𝑡2 + 1)
𝛽0
𝑑𝑡.

(A.4)

By Lemma 2 in Butucea and Tsybakov [5] and a simple
calculation, we have

𝐸𝑉
2

1
→ 0 if �̃� = 𝑜 {(

1

2𝑏

log (𝑛 (log (𝑛))−𝛾))
1/𝛽

} , (A.5)

where 𝛾 = (1 + 2𝛽
0
− 𝛽)

+
/𝛽. Hence, we show that 𝐽

2

𝑃

→ 0.

Now we consider 𝐽
1
. Let Δ

+
= {𝑡 : |Δ(𝑡)|

2
≥ 4(𝑛 − 1)/𝑛

2
}

and Δ
−
= {𝑡 : |Δ(𝑡)|

2
< 4(𝑛 − 1)/𝑛

2
}; we have

𝐽
1
=

1

2𝜋

∫

(−�̃�,̃𝑡)∩Δ+

|Δ (𝑡)|





𝜙
𝜀
(𝑡)





× (1 −

𝑛

2 (𝑛 − 1)

[1 + √1 −

4 (𝑛 − 1)

𝑛
2
|Δ (𝑡)|

2
])𝑑𝑡

+

1

2𝜋

∫

(−�̃�,̃𝑡)∩Δ−

|Δ (𝑡)|





𝜙
𝜀
(𝑡)





𝑑𝑡.

(A.6)

By (3) and the inequality √1 − 𝑥 ≥ 1 − √𝑥 for 𝑥 ∈ (0, 1), we
have

𝐽
1
≤

1

2𝜋

∫

(−�̃�,̃𝑡)∩Δ+

(

1

√𝑛 − 1

−

|Δ (𝑡)|

𝑛 − 1

)

1





𝜙
𝜀
(𝑡)





𝑑𝑡

+

𝐶√𝑛 − 1

𝑛

∫

(−�̃�,̃𝑡)∩Δ−

1





𝜙
𝜀
(𝑡)





𝑑𝑡

≤ 𝐶(

1

√𝑛 − 1

+

1

𝑛 − 1

)∫

(−�̃�,̃𝑡)∩Δ+

1





𝜙
𝜀
(𝑡)





𝑑𝑡

+

𝐶√𝑛 − 1

𝑛

∫

(−�̃�,̃𝑡)∩Δ−

1





𝜙
𝜀
(𝑡)





𝑑𝑡.

(A.7)

As �̃� = 𝑜{((1/2𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, similar to the proof of
(A.3), it is easy to show that 𝐽

1

𝑃

→ 0. Thus, we finish the proof
of super smooth case inTheorem 1.

Next we consider the case that the error distribution is
ordinary smooth (𝛽 = 0, 𝛽

0
> 0). By (3), we can derive that

𝐽
2
≤ 𝐶∫

�̃�

−�̃�





Δ (𝑡) − 𝜙

𝑌
(𝑡)




(𝑡
2
+ 1)

𝛽0/2

𝑑𝑡 =̂ 𝐶𝑉
2
. (A.8)

Again using Cauchy-Schwarz inequality and Jensen inequal-
ity, we have

𝐸 (𝑉
2

2
) ≤ ∫

�̃�

−�̃�

𝐸




Δ (𝑡) − 𝜙

𝑌
(𝑡)





2

𝑑𝑡∫

�̃�

−�̃�

(𝑡
2
+ 1)

𝛽0
𝑑𝑡

≤

2

𝑛

∫

�̃�

0

(𝑡
2
+ 1)

𝛽0
𝑑𝑡 =

𝐶

𝑛

�̃�
2𝛽0+1

(1 + 𝑜 (1)) ,

(A.9)

which implies that𝐸(𝑉2

2
) → 0 if 𝑛�̃�−(2𝛽0+1) → ∞. Hence, we

obtain that 𝐽
2

𝑃

→ 0.
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For 𝐽
1
, using the same arguments, we can obtain that

𝐽
1
≤ 𝐶(

1

√𝑛 − 1

+

1

𝑛 − 1

)∫

(−�̃�,̃𝑡)∩Δ+

1





𝜙
𝜀
(𝑡)





𝑑𝑡

+

𝐶√𝑛 − 1

𝑛

∫

(−�̃�,̃𝑡)∩Δ−

1





𝜙
𝜀
(𝑡)





𝑑𝑡

≤ 𝐶(

1

√𝑛 − 1

+

1

𝑛 − 1

)∫

(−�̃�,̃𝑡)∩Δ+

(𝑡
2
+ 1)

𝛽0/2

𝑑𝑡

+

𝐶√𝑛 − 1

𝑛

∫

(−�̃�,̃𝑡)∩Δ−

(𝑡
2
+ 1)

𝛽0/2

𝑑𝑡

≤ 𝐶(

1

√𝑛 − 1

+

1

𝑛 − 1

+

√𝑛 − 1

𝑛

) �̃�
𝛽0+1

(1 + 𝑜 (1)) .

(A.10)

Similar to the proof of (A.8) we can show that 𝐽
1
→ 0 as

𝑛�̃�
−(2𝛽0+1)

→ ∞ and 𝑛 → ∞. This finishes the proof of
Theorem 1.

Proof of Theorem 3. From (19), by Lemma 2 in Butucea and
Tsybakov [5] and Cauchy-Schwarz inequality, we have






𝐸
̂
𝑓sc (𝑥) − 𝑓 (𝑥)







≤











1

2𝜋

𝑛

𝑛 − 1

∫

�̃�

−�̃�

exp (−i𝑡𝑥) 𝜙
𝑓
(𝑡) 𝑑𝑡 − 𝑓 (𝑥)











=










1

𝑛 − 1

𝑓 (𝑥) +

1

2𝜋

𝑛

𝑛 − 1

∫

|𝑡|>�̃�

exp (−i𝑡𝑥) 𝜙
𝑓
(𝑡) 𝑑𝑡










≤

1

𝑛 − 1

𝑓 (𝑥) +

1

2𝜋

𝑛

𝑛 − 1

∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)






𝑑𝑡

=

1

𝑛 − 1

𝑓 (𝑥) +

1

2𝜋

𝑛

𝑛 − 1

× ∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)






exp (𝑎 |𝑡|𝑟) (𝑡2 + 1)

𝛿/2

× exp (−𝑎 |𝑡|𝑟) (𝑡2 + 1)
−𝛿/2

𝑑𝑡

≤

1

𝑛 − 1

𝑓 (𝑥) +

1

2𝜋

𝑛√𝑚

𝑛 − 1

× (∫

|𝑡|>�̃�

exp (−2𝑎 |𝑡|𝑟) (𝑡2 + 1)
−𝛿

𝑑𝑡)

1/2

=

1

𝑛 − 1

𝑓 (𝑥) +

1

2𝜋

𝑛√𝑚

𝑛 − 1

× (∫

|𝑢|<�̃�
−1

exp (−2𝑎 |𝑢|−𝑟) (𝑢−2 + 1)
−𝛿

𝑢
−2
𝑑𝑢)

1/2

≤

1

𝑛 − 1

𝑓 (𝑥)

+

1

2𝜋

𝑛√𝑚

(𝑛 − 1)√𝑎𝑟

�̃�
(1−𝑟−2𝛿)/2 exp (−𝑎�̃�𝑟) (1 + 𝑜 (1)) .

(A.11)

Now we compute the variance of ̂𝑓sc(𝑥) as follows:

Var ( ̂𝑓sc (𝑥)) =
1

𝑛

Var (𝐾∗
(𝑥 − 𝑌))

≤

1

𝑛

𝐸 (𝐾
∗
(𝑥 − 𝑌))

2

≤

1

2𝑛𝜋
2
𝐸∫

+∞

−∞

𝑛
2

(𝑛 − 1)
2 


𝜙
𝜀






2
𝐼
𝐴
(𝑡) 𝑑𝑡

≤ 𝐶

𝑛

(𝑛 − 1)
2
∫

�̃�

0

1





𝜙
𝜀






2
𝑑𝑡.

(A.12)

When the error distribution is super smooth (𝛽 > 0), by
(3), we have

Var ( ̂𝑓sc (𝑥)) ≤ 𝐶

𝑛

(𝑛 − 1)
2
∫

�̃�

0

exp (2𝑏𝑡𝛽) (𝑡2 + 1)
𝛽0
𝑑𝑡.

(A.13)

If �̃� = 𝑂{((2/5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, we can obtain that

Var ( ̂𝑓sc (𝑥)) ≤ 𝑂(𝑛
−1/5

(log (𝑛))𝛾/5) . (A.14)

Therefore, 𝐸| ̂𝑓sc(𝑥) − 𝑓(𝑥)|
2

≤ 𝑂(�̃�
1−𝑟−2𝛿 exp(−2𝑎�̃�𝑟) +

𝑛
−1/5

(log(𝑛))𝛾/5).
When the error distribution is ordinary smooth (𝛽 =

0, 𝛽
0
> 0), by (3), we have

Var ( ̂𝑓sc (𝑥)) ≤ 𝐶

𝑛

(𝑛 − 1)
2
∫

�̃�

0

(𝑡
2
+ 1)

𝛽0
𝑑𝑡

= 𝐶

𝑛

(𝑛 − 1)
2
�̃�
2𝛽0+1

.

(A.15)

If �̃� = 𝑂(𝑛
3/5(2𝛽0+1)

), we can obtain that Var( ̂𝑓sc(𝑥)) ≤

𝑂(𝑛
−2/5

). Therefore,

𝐸







̂
𝑓sc (𝑥) − 𝑓 (𝑥)







2

≤ 𝑂 (�̃�
1−𝑟−2𝛿 exp (−2𝑎�̃�𝑟) + 𝑛−2/5) .

(A.16)

Next, we consider the MISE of the estimator ̂
𝑓sc(𝑥). By

Parseval theorem, we have

𝐸







̂
𝑓sc(𝑥) − 𝑓(𝑥)







2

= 𝐸∫

+∞

−∞

[
̃
𝑓sc (𝑥) − 𝑓 (𝑥)]

2

𝑑𝑥

=

1

2𝜋

𝐸∫

+∞

−∞







̂
𝜙sc (𝑡) − 𝜙𝑡







2

𝑑𝑡

=

1

2𝜋

𝐸∫

+∞

−∞











̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)

𝜙
𝜀
(𝑡)











2

𝑑𝑡

=

1

2𝜋

∫

�̃�

−�̃�

𝐸











̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)

𝜙
𝜀
(𝑡)











2

𝑑𝑡

+

1

2𝜋

∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)







2

𝑑𝑡

=̂ 𝐽
4
+ 𝐽

5
.

(A.17)
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For 𝐽
5
, by (4), we have

𝐽
5
=

1

2𝜋

∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)







2

exp (2𝑎 |𝑡|𝑟) (𝑡2 + 1)
𝛿

× exp (−2𝑎 |𝑡|𝑟) (𝑡2 + 1)
−𝛿

𝑑𝑡

≤

𝑚

2𝜋

exp (−2𝑎 

�̃�





𝑟

) (�̃�
2
+ 1)

−𝛿

.

(A.18)

We now consider 𝐽
4
. By some simple calculations, we can

drive that

𝐽
4
≤

1

𝜋

∫

�̃�

−�̃�

𝐸







̂
𝜙
𝑌
(𝑡) − Δ (𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡

+

1

𝜋

∫

�̃�

−�̃�

𝐸




Δ (𝑡) − 𝜙

𝑌
(𝑡)





2





𝜙
𝜀
(𝑡)





2
𝑑𝑡

≤

1

𝜋

∫

(−�̃�,̃𝑡)∩Δ+

𝐸







̂
𝜙
𝑌
(𝑡) − Δ (𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡

+

1

𝜋

∫

(−�̃�,̃𝑡)∩Δ−

𝐸







̂
𝜙
𝑌
(𝑡) − Δ (𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡

+

1

𝑛𝜋

∫

�̃�

−�̃�

1





𝜙
𝜀
(𝑡)





2
𝑑𝑡

≤

1

𝜋

(

1

𝑛 − 1

+

1

(𝑛 − 1)
2
+

2

(𝑛 − 1)
3/2

)∫

(−�̃�,̃𝑡)∩Δ+

1





𝜙
𝜀
(𝑡)





2
𝑑𝑡

+

1

𝜋

4 (𝑛 − 1)

𝑛
2

∫

(−�̃�,̃𝑡)∩Δ−

1





𝜙
𝜀
(𝑡)





2
𝑑𝑡

+

1

𝑛𝜋

∫

�̃�

−�̃�

1





𝜙
𝜀
(𝑡)





2
𝑑𝑡 ≤

𝐶

𝑛

∫

�̃�

−�̃�

1





𝜙
𝜀
(𝑡)





2
𝑑𝑡.

(A.19)

Therefore, when the error distribution is super smooth (𝛽 >

0), we have

𝐽
4
≤

2𝐶

𝑛

∫

�̃�

0

exp (2𝑏𝑡𝛽) (𝑡2 + 1)
𝛽0
𝑑𝑡. (A.20)

Choosing �̃� = 𝑂{((2/5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, we have

𝐸







̂
𝑓sc (𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) .
(A.21)

When the error distribution is ordinary smooth (𝛽 = 0,
𝛽
0
> 0), we have

𝐽
4
≤

2𝐶

𝑛

∫

�̃�

0

(𝑡
2
+ 1)

𝛽0
𝑑𝑡 =

2𝐶

𝑛

�̃�
2𝛽0+1

(1 + 𝑜 (1)) . (A.22)

Choosing �̃� = 𝑂(𝑛
3/5(2𝛽0+1)

), we have

𝐸







̂
𝑓sc (𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−2/5) .
(A.23)

The proof of Theorem 3 is completed.

Proof of Theorem 4. The proof of Theorem 4 can easily be
derived byTheorem 6, we hence omit the details, and we only
need to proveTheorem 6.

Proof of Theorem 6. By (24) and Parseval theorem, we have

𝐸∫

+∞

−∞

[
̃
𝑓sc (𝑥) − 𝑓 (𝑥)]

2

𝑑𝑥

=

1

2𝜋

𝐸∫

+∞

−∞











̂
𝜙
𝑌
(𝑡)

̃
𝜙
𝜀
(𝑡)

−

𝜙
𝑌
(𝑡)

𝜙
𝜀
(𝑡)











2

𝑑𝑡

=

1

2𝜋

𝐸∫

+∞

−∞











̂
𝜙
𝑌
(𝑡)

̃
𝜙
𝜀
(𝑡)

−

̂
𝜙
𝑌
(𝑡)

𝜙
𝜀
(𝑡)

+

̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)

𝜙
𝜀
(𝑡)











2

𝑑𝑡

≤

1

𝜋

∫

+∞

−∞

𝐸







̂
𝜙
𝑌
(𝑡)







2

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡

+

1

𝜋

∫

∞

−∞

𝐸







̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡

=

1

𝜋

∫

+∞

−∞

𝐸







̂
𝜙
𝑌
(𝑡)







2

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡

+

1

𝜋

∫

�̃�

−�̃�

𝐸







̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡

+

1

𝜋

∫

|𝑡|>�̃�






𝜙
𝑓
(𝑡)







2

𝑑𝑡

=̂ 𝐽
6
+ 2𝐽

4
+ 2𝐽

5
.

(A.24)

Therefore, we only need to deal with 𝐽
6
. Invoking

Lemma A.1, it is easy to show that

𝐽
6
=

1

𝜋

∫

�̃�

−�̃�

𝐸







̂
𝜙
𝑌
(𝑡)







2

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡

≤

2

𝜋

∫

�̃�

−�̃�

𝐸







̂
𝜙
𝑌
(𝑡) − 𝜙

𝑌
(𝑡)







2

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡

+

2

𝜋

∫

�̃�

−�̃�





𝜙
𝑌
(𝑡)





2

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡

≤

2

𝑛𝜋

∫

�̃�

−�̃�

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡
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+

2

𝜋

∫

�̃�

−�̃�






𝜙
𝑓
(𝑡)







2 



𝜙
𝜀






2

𝐸 |𝐷 (𝑡)|
2
𝑑𝑡

≤

2

𝑛𝜋

∫

�̃�

−�̃�

1





𝜙
𝜀
(𝑡)





2
𝑑𝑡 +

2

𝑀𝜋

∫

�̃�

−�̃�






𝜙
𝑓
(𝑡)







2





𝜙
𝜀
(𝑡)





2
𝑑𝑡.

(A.25)

Then, when the error distribution is super smooth (𝛽 > 0),
by (4), we have

𝐽
6
≤

𝐶

𝑛

∫

�̃�

0

exp (2𝑏𝑡𝛽) (𝑡2 + 1)
𝛽0
𝑑𝑡

+

𝑚𝐶

𝑀

sup
𝑡∈[0,̃𝑡]

(𝑡
2
+ 1)

𝛽0−𝛿 exp {2𝑏𝑡𝛽 − 2𝑎𝑡𝑟} .
(A.26)

If 𝛽 ≥ 𝑟, it is easy to show that

𝐽
6
≤

𝐶

𝑛

exp (2𝑏�̃�𝛽) �̃�1+2𝛽0−𝛽 (1 + 𝑜 (1))

+

𝑚𝐶

𝑀

�̃�
2(𝛽0−𝛿)+ exp (2𝑏�̃�𝛽) (1 + 𝑜 (1)) .

(A.27)

Hence, by choosing 𝑀 ≥ 𝑛(log(𝑛))−(1+2(𝛽0∧𝛿)−𝛽)+/𝛽 and
�̃� = 𝑂{((2/5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, together with (A.18) and
(A.20), we can drive that

𝐸







̃
𝑓sc (𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) .
(A.28)

If 𝛽 < 𝑟, we have

𝐽
6
≤

𝐶

𝑛

exp (2𝑏�̃�𝛽) �̃�1+2𝛽0−𝛽 (1 + 𝑜 (1)) + 𝑚𝐶

𝑀

. (A.29)

Hence, by choosing 𝑀 ≥ 𝑛
1/5
(log(𝑛))−𝛾/5 and �̃� =

𝑂{((2/5𝑏) log(𝑛(log(𝑛))−𝛾))1/𝛽}, together with (A.18) and
(A.20), we can drive that

𝐸







̃
𝑓sc (𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−1/5 (log (𝑛))𝛾/5) .
(A.30)

When the error distribution is ordinary smooth (𝛽 =

0, 𝛽
0
> 0), we have

𝐽
6
≤

𝐶

𝑛

∫

�̃�

0

(𝑡
2
+ 1)

𝛽0
𝑑𝑡

+

𝑚𝐶

𝑀

sup
𝑡∈[0,̃𝑡]

(𝑡
2
+ 1)

𝛽0−𝛿 exp {−2𝑎𝑡𝑟}

≤

𝐶

𝑛

�̃�
2𝛽0+1

(1 + 𝑜 (1)) +

𝑚𝐶

𝑀

�̃�
2(𝛽0−𝛿)+

.

(A.31)

Then, by choosing 𝑀 ≥ 𝑛
(2/5)+(6(𝛽0−𝛿)+/5(2𝛽0+1)) and �̃� =

𝑂(𝑛
3/5(2𝛽0+1)

), together with (A.18) and (A.22), we can drive
that

𝐸







̃
𝑓sc (𝑥) − 𝑓 (𝑥)







2

≤ 𝑂((�̃�
2
+ 1)

−𝛿

exp (−2𝑎�̃�𝑟) + 𝑛−2/5) .
(A.32)

Thus, we finish the proof of Theorem 6.
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