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This paper proposes a new adaptive fuzzy neural control to suppress chaos and also to achieve the speed tracking control in a
permanent magnet synchronous motor (PMSM) drive system with unknown parameters and uncertainties. The control scheme
consists of fuzzy neural and compensatory controllers.The fuzzy neural controller with online parameter tuning is used to estimate
the unknown nonlinear models and construct linearization feedback control law, while the compensatory controller is employed
to attenuate the estimation error effects of the fuzzy neural network and ensure the robustness of the controlled system. Moreover,
due to improvement in controller design, the singularity problem is surely avoided. Finally, numerical simulations are carried out
to demonstrate that the proposed control scheme can successfully remove chaotic oscillations and allow the speed to follow the
desired trajectory in a chaotic PMSM despite the existence of unknown models and uncertainties.

1. Introduction

Permanentmagnet synchronousmotors have had a great deal
of attention for industrial applications in the recent years
[1–6]. Due to the compact size, high speed, high efficiency,
high power density, and low inertia, PMSMs are widely used
in many fields of industry. However, the control and the
stabilization for PMSMs still have some challenges as their
high nonlinearity and even chaotic behavior.

In the field of power electronics, chaos in motor drive
systems occurs when parameters fall into a certain area
as defined by Kuroe and Hayashi [7]. Then, the existence
of chaos has been found in several types of motor driver
systems [7–9]. Chaotic phenomenon in PMSMs is completely
studied by Li et al. [10], and this study points out that
the chaotic oscillations appear when the parameters lie in
a certain area. Since the undesired chaotic oscillations can
affect the stabilization of a motor drive system negatively,
causing the drive system’s collapse, it has beenmore andmore
critical to control and eliminate the chaos. Until now, despite
various chaos control methods developed for PMSMs such as

feedback linearization [11], sliding mode control [12], quasi-
sliding mode control [13, 14], adaptive backstepping control
[15], and time-delay feedback control [16], there are some
shortcomings which still exist. Most of the methods require
the exact mathematical models to calculate the control laws.
This leads to implemental difficulties in practical systems
where mathematical models can be dynamic due to unde-
sired uncertainties. Moreover, in the adaptive backstepping
method, a single system parameter is considered as an
unknown and constant parameter, which can be seen as a
restriction.The time-delay feedback control encounters some
problems; for example, the control object is not an equilib-
rium or unstable periodic orbit. Furthermore, determination
of delay time for this controller is quite difficult.

In the past two decades, neural networks (NNs) and
fuzzy logic (FL) have been widely used to model and control
highly uncertain, nonlinear, and complex systems [17–22].
Incorporating the estimation abilities of NNs (or FL) into
adaptive control method, direct and indirect adaptive control
methodswere developed [23]. In the indirect adaptive control
method, the control input 𝑢(𝑡) usually appears in the form of
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𝑢(𝑡) = (1/𝑔(x, 𝑡))(V(𝑡)− ̂
𝑓(x, 𝑡)), where the estimations 𝑔(x, 𝑡)

and ̂
𝑓(x, 𝑡) are calculated by a FL system or NNs, and V(𝑡)

is linearization input. It is well known that these estimations
cannot be guaranteed to be bounded away from zero for all
time 𝑡. In other words, 𝑔(x, 𝑡)may tend to be zero or be close
to zero in some points in time. Such situations lead to very
large control signals which may cause the controlled systems
to lose their controllability or even damage thewhole systems.
This problem was known as the singularity problem which
usually appears in the indirect adaptive controlmethod based
on fuzzy or neural estimation.

Fuzzy neural networks (FNNs) incorporate the advan-
tages of fuzzy inference and neurolearning [24–28]. FNNs
can simulate the merits of human knowledge representation
and thinking of fuzzy theory and associate the learning
ability and computational power of NNs. In harnessing these
tools, numerous researchers have developed fuzzy systems
and neural networks to control PMSMs. For example, a self-
organizing fuzzy slidingmode controller is developed byGuo
and Long [29], while a fuzzy model was built for chaotic
dynamics of PMSM in fuzzy guaranteed cost control [30,
31]. Yu et al. proposed the adaptive fuzzy control method
via backstepping [32]. Despite these control techniques’
advances, some weaknesses still remain. It is difficult to
choose the fuzzy gains scaling factors and parameters of
membership functions in the self-organizing fuzzy sliding
mode controller. Choosing the suitable rules for constructing
chaotic dynamics of PMSM is significantly hard in the fuzzy
guaranteed cost control, while in the adaptive fuzzy control
method via backstepping, the error is impossible to converge
to the origin.

Because the existing control methods for chaotic PMSM
still have shortcomings, we develop a new controller which
is able to operate under the effects of unknown system
parameters anduncertainties.Thedeveloped controller uses a
simple fuzzy neural network to online estimate the unknown
dynamics and uncertainties and then constructs the lin-
earization feedback control law. Due to the learning abil-
ities inherited from fuzzy neural networks, the controller
can work well with fully unknown dynamic model and
uncertainties. Also, the compensatory controller is added
to the controlled system to make the system robust and
contribute to zero convergence of tracking error. As the
proposed controller has the advantages in both linearization
feedback control and fuzzy neural network, it can cancel the
unknown nonlinear terms of the dynamic model and obtain
the advanced tracking performance effectively. Moreover,
with the improved design, the controller not only meets
the control objective but also surely avoids the singularity
problem even with the initial phase. In contrast, many
previous works dealing with chaos control of the PMSMhave
the restriction in that controller design relies on the model
of PMSM [11–16]. In other words, an exact mathematical
model of PMSM is necessary to design the control laws.
This also implies that these controllers cannot work or work
imprecisely when the system parameters or the model of
PMSM is not sufficiently known. On the other hand, some
fuzzy control methods [29–32] can solve the control problem

with unknown model of PMSM, but some disadvantages
still remain. The self-organizing fuzzy sliding mode control
needs much knowledge of specialist to set up the fuzzy
rules. The fuzzy guaranteed cost control may have the awful
performance when the reference point is not the origin.
In the adaptive fuzzy control method via backstepping, the
tracking error is impossible to converge to zero. Therefore,
in comparison with previous methods, the proposed control
shows the improvements in controlling chaotic PMSM.With
the proposed controller, chaotic oscillations in a PMSM are
successfully suppressed and the motor speed is forced to
follow the desired trajectory and the tracking error converges
to zero asymptotically. Finally, the simulations are carried out
to illustrate the effectiveness and robustness of the proposed
controller.

The rest of this paper is organized as follows. The
dynamics of a PMSM and the formulation of the chaos
control problem are outlined in Section 2. The design of
the adaptive controller based on a fuzzy neural network is
described in Section 3. In Section 4, simulation results are
given to confirm the validity of the proposedmethod. Finally,
the conclusion is offered in Section 5.

2. Problem Formulation

2.1. DynamicModel of Chaotic PMSM. Thedynamicmodel of
a PMSM with the smooth air gap can be described as follows
[10]:

𝑑𝜔

𝑑𝑡

= 𝜎 (𝑖𝑞 − 𝜔) +
̃
𝑇𝐿,

𝑑𝑖𝑞

𝑑𝑡

= −𝑖𝑞 − 𝑖𝑑𝜔 + 𝛾𝜔 + 𝑢̃𝑞,

𝑑𝑖𝑑

𝑑𝑡

= −𝑖𝑑 + 𝑖𝑞𝜔 + 𝑢̃𝑑,

(1)

where 𝜔, 𝑖𝑑, and 𝑖𝑞 are state variables, which denote angle
speed and 𝑑-𝑞 axis currents, respectively. The state 𝜔 can be
directly measured, while states 𝑖𝑑 and 𝑖𝑞 can be calculated by
using 𝑑-𝑞 transformation. 𝜎 and 𝛾 are system parameters. ̃𝑇𝐿,
𝑢̃𝑑, and 𝑢̃𝑞 stand for the load torque and 𝑑-𝑞 axis voltages,
respectively.

In system (1), when the external inputs are set to zero,
namely, ̃𝑇𝐿 = 𝑢̃𝑑 = 𝑢̃𝑞 = 0, the system becomes an unforced
system [10] as

𝑑𝜔

𝑑𝑡

= 𝜎 (𝑖𝑞 − 𝜔) ,

𝑑𝑖𝑞

𝑑𝑡

= −𝑖𝑞 − 𝑖𝑑𝜔 + 𝛾𝜔,

𝑑𝑖𝑑

𝑑𝑡

= −𝑖𝑑 + 𝑖𝑞𝜔.

(2)

The theories of bifurcation and chaos have been widely
used to study the stability of PMSM drive systems in [10].
The study showed that a PMSM produces chaotic oscillations
when system parameters 𝜎 and 𝛾 fall into a certain area. For
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Figure 1: (a) Typical chaotic attractor in a PMSM. (b) Chaotic motion on 𝜔-𝑖
𝑑
plane. (c) Chaotic motion on 𝜔-𝑖

𝑞
plane. (d) Chaotic motion

on 𝑖
𝑞
-𝑖
𝑑
plane.

example, the system in (2) displays chaos when the system
parameters are set as 𝜎 = 5.45 and 𝛾 = 20, and the initial
states are given as [𝜔 (0) 𝑖𝑞 (0) 𝑖𝑑(0)]

𝑇
= [1 − 1 0]

𝑇. The
typical chaotic attractor of a PMSM is exhibited in Figure 1
and the bifurcation diagrams of the quadrature current 𝑖𝑞
versus the parameters, 𝜎 and 𝛾, are presented in Figure 2,
respectively.

2.2. Problem Formulation. Since the chaotic oscillations can
destroy the stability of the PMSM drive system, we propose
an adaptive controller, a PMSM, to suppress chaos and
achieve the speed tracking control. Let us consider the
PMSM drive system in (2). We add a control input 𝑢 to
the second differential equation as the manipulated variable,
which is desirable for real applications. And for simplicity,

the following notations are introduced as 𝑥1 = 𝜔, 𝑥2 = 𝑖𝑞, and
𝑥3 = 𝑖𝑑. In this manner, the system in (2) with uncertainties
can be rewritten as follows:

𝑥̇1 = 𝜎 (𝑥2 − 𝑥1) + 𝑑1,

𝑥̇2 = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + 𝑑2 + 𝑢,

𝑥̇3 = −𝑥3 + 𝑥2𝑥1 + 𝑑3,

(3)

where 𝑑𝑖(𝑥, 𝑡) ∈ 𝑅, 𝑖 = 1, 2, 3, is uncertainty applied
to the PMSM due to parameter perturbation and external
uncertainties. 𝜎 and 𝛾 are unknown system parameters and
are also located within the chaotic area.

Assumption 1. The uncertainty, 𝑑𝑖(𝑥, 𝑡) ∈ 𝑅, 𝑖 = 1, 2, 3, is
bounded.
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Figure 2: Bifurcation diagrams of 𝑖
𝑞
versus (a) 𝜎 with 𝛾 = 20 and (b) 𝛾 with 𝜎 = 5.45.

In order to force the speed 𝑥1 of PMSM to follow the
desired trajectory 𝑦𝑑(𝑡) ∈ 𝑅, the system in (3) is expressed
in the standard form of the single input, single output (SISO)
system with output 𝑦(𝑡) = 𝑥1 as

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢,

𝑦 = ℎ (𝑥) ,

(4)

where

𝑥 =
[

[

𝑥1

𝑥2

𝑥3

]

]

, 𝑓 (𝑥) =
[

[

𝜎 (𝑥2 − 𝑥1) + 𝑑1

−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + 𝑑2

−𝑥3 + 𝑥2𝑥1 + 𝑑3

]

]

,

𝑔 (𝑥) =
[

[

0

1

0

]

]

, ℎ (𝑥) = 𝑥1.

(5)

With the control signal 𝑢 inserted into the system above,
the SISO system in (4) has the relative degree 𝑟 = 2. By using
Lie derivatives, we take the transformation as

𝑧1 = 𝑦,

𝑧2 = 𝐿𝑓ℎ (𝑥) = 𝜎 (𝑥2 − 𝑥1) + 𝑑1,

(6)

which leads to

𝑧̇1 = 𝑧2,

𝑧̇2 = 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢,

𝑦 = 𝑧1,

(7)

where

𝑎 (𝑥) = 𝐿
2

𝑓
ℎ (𝑥)

= (−𝜎 +

𝜕𝑑1

𝜕𝑥1

) (𝜎𝑥2 − 𝜎𝑥1 + 𝑑1)

+ (𝜎 +

𝜕𝑑1

𝜕𝑥2

) (−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥1 + 𝑑2)

+

𝜕𝑑1

𝜕𝑥3

(−𝑥3 + 𝑥1𝑥3 + 𝑑3) ,

𝑏 (𝑥) = 𝐿𝑔𝐿𝑓ℎ (𝑥) = 𝜎 +

𝜕𝑑1

𝜕𝑥2

.

(8)

The control goal is to design a controller that can suppress
chaos and allow the output 𝑦(𝑡) ∈ 𝑅 to track the desired
trajectory 𝑦𝑑(𝑡) ∈ 𝑅. Based on linearization feedback control
method [33], the ideal control law 𝑢

∗
(𝑥) is given to reach the

control goal as

𝑢
∗
(𝑥) =

1

𝑏 (𝑥)

(−𝑎 (𝑥) + V (𝑡)) , (9)

where V(𝑡) ∈ 𝑅 is the linearization input and can be computed
as

V (𝑡) = ̈𝑦𝑑 (𝑡) + 𝑒𝑠 (𝑡) + 𝜂𝑒𝑠 (𝑡) , (10)

where 𝜂 is a positive factor. 𝑒𝑠(𝑡) and 𝑒𝑠(𝑡) can be calculated
according to the following equations:

𝑒0 (𝑡) = 𝑦𝑑 (𝑡) − 𝑦 (𝑡) , (11)

𝑒𝑠 (𝑡) =
̇𝑒0 (𝑡) + 𝑘𝑒0 (𝑡) , (12)

𝑒𝑠 (𝑡) =
̇𝑒𝑠 (𝑡) −

̈𝑒0 (𝑡) = 𝑘 ̇𝑒0 (𝑡) , (13)

where 𝑒0(𝑡) is the tracking error and 𝑘 is chosen to ensure that
Δ(𝑠) = 𝑠 + 𝑘 is a Hurwitz polynomial.

In order tomake (9) proper and use 𝑏(𝑥) to determine the
property of the Lyapunov function candidate, the following
assumptions are needed.

Assumption 2. 𝑏(𝑥) is lower bounded by a known positive
constant 𝑏; that is, 0 < 𝑏 ≤ 𝑏(𝑥) < ∞.

Assumption 3. Desired trajectory𝑦𝑑(𝑡) is continuously differ-
entiable and bounded up to the second-order. ̇𝑦𝑑(𝑡) and ̈𝑦𝑑(𝑡)

are measurable.

Substituting (9) into (7), one can get

𝑧̇2 =
̈𝑦 (𝑡) = V (𝑡) = ̈𝑦𝑑 (𝑡) + 𝑒𝑠 (𝑡) + 𝜂𝑒𝑠 (𝑡) . (14)

Using (14) and (11) leads to

̈𝑒0 (𝑡) + 𝑒𝑠 (𝑡) + 𝜂𝑒𝑠 (𝑡) = 0. (15)

The error dynamics can be obtained by substituting (13)
into (15) as

̇𝑒𝑠 (𝑡) + 𝜂𝑒𝑠 (𝑡) = 0. (16)
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Since 𝜂 is assumed to be positive, as mentioned in (10),
and 𝑘 satisfies the Hurwitz polynomial Δ(𝑠) = 𝑠 + 𝑘, the
equation in (16) expresses that both 𝑒𝑠(𝑡) and therefore 𝑒0(𝑡)
converge to zero exponentially. For this reason, the controlled
system is stable and the perfect tracking is achieved.

Moreover, due to the relative degree 𝑟 = 2 and the order
of the system 𝑛 = 3, the zero dynamics is considered. It is
possible to find a function ℎ3(𝑥) such that (𝜕ℎ3(𝑥)/𝜕𝑥)𝑔(𝑥) =
0, and then we define the state 𝑧3 = ℎ3(𝑥) = 𝑥3 to obtain the
additional state equation as

𝑧̇3 = 𝑥̇3 = −𝑧3 +

1

𝜎

𝑧1 (𝑧2 + 𝜎𝑧1 − 𝑑1) + 𝑑3.
(17)

When 𝑧1 = 𝑧2 = 0, (17) can be rewritten as 𝑧̇3 = −𝑧3 +

𝑑3. This equation expresses the stable zero dynamics of the
system. Because the zero dynamics is stable, the system is
a minimum phase system. Thus, the state variable 𝑧3 is also
stable when both state variables 𝑧1 and 𝑧2 are stable.

However, since 𝜎, 𝛾, and 𝑑𝑖, 𝑖 = 1, 2, 3, are unknown,
𝑎(𝑥) and 𝑏(𝑥) cannot be determined exactly.This leads to the
fact that the ideal control law in (9) cannot perform. In order
to overcome this problem, we use fuzzy neural networks to
estimate 𝑎(𝑥) and 𝑏(𝑥).

2.3. Description of Fuzzy Neural Networks. In this section,
a fuzzy neural network (FNN), which is used to estimate
unknown functions 𝑎(𝑥) and 𝑏(𝑥), is described. The FNN
incorporates the advantages of a fuzzy logic system and
a neural network; that is, the FNN possesses the learning
ability of a neural network and the human thinking of a
fuzzy logic system [25]. The basic structure of a fuzzy logic
system consists of fuzzification, rulebase, fuzzy inference, and
defuzzification. The fuzzification is the process of mapping
inputs, state variables 𝑥1, 𝑥2, and 𝑥3, to membership values
in the input universes of discourse. The rulebase consists of
nine antecedent-consequent linguistic rules (IF-THEN rules)
in which the 𝑖th rule is described in the form of

IF (𝑥1 is 𝐴
𝑖

1
AND 𝑥2 is 𝐴

𝑖

2
AND 𝑥3 is 𝐴

𝑖

3
)

THEN (𝑎 is 𝐵𝑖
𝑎
AND ̂

𝑏 is 𝐵𝑖
𝑏
) ,

(18)

where𝐴𝑖
1
,𝐴𝑖
2
,𝐴𝑖
3
,𝐵𝑖
𝑎
, and𝐵𝑖

𝑏
are fuzzy sets which are denoted

by the membership functions 𝜇𝐴𝑖
1

, 𝜇𝐴𝑖
2

, 𝜇𝐴𝑖
3

, 𝜇𝐵𝑖
𝑎

, and 𝜇𝐵
𝑖

𝑏

,
respectively. 𝑎(𝑥) ∈ 𝑅 and ̂𝑏(𝑥) ∈ 𝑅 are outputs of the fuzzy
logic system, which stand for the estimations of 𝑎(𝑥) and
𝑏(𝑥), respectively. 𝜇𝐴𝑖

1

, 𝜇𝐴𝑖
2

, and 𝜇𝐴𝑖
3

use Gaussian functions to
calculate their values, while 𝜇𝐵𝑖

𝑎

and 𝜇𝐵
𝑖

𝑏

are fuzzy singletons.
The fuzzy inference is the process of mapping membership
values from the input windows, through the rulebase, to
the output window. The fuzzy inference employs product
inference for mapping. The defuzzification is the procedure
of mapping from a set of inferred fuzzy signals contained
within a fuzzy output window to a crisp signal. Using
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Figure 3: Structure of a fuzzy neural network.

the center-average defuzzification techniques, the outputs of
a fuzzy logic system can be represented as

𝑎 (𝑥) =

∑
9

𝑖=1
𝑤𝑎𝑖 (∏

3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

∑
9

𝑖=1
(∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

= 𝑊
𝑇

𝑎
𝑆 (𝑥) ,

̂
𝑏 (𝑥) =

∑
9

𝑖=1
𝑤𝑏𝑖 (∏

3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

∑
9

𝑖=1
(∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

= 𝑊
𝑇

𝑏
𝑆 (𝑥) ,

(19)

where 𝑊
𝑇

𝑎
= [𝑤𝑎1 𝑤𝑎2 ⋅ ⋅ ⋅ 𝑤𝑎9] and 𝑊

𝑇

𝑏
=

[𝑤𝑏1 𝑤𝑏2 ⋅ ⋅ ⋅ 𝑤𝑏9] are weighting vectors adjusted
according to adaptive laws. The parameters 𝑤𝑎𝑖 and 𝑤𝑏𝑖 with
𝑖 = 1, 2, . . . , 9 are the points where membership functions
𝜇𝐵𝑖
𝑎

(𝑤𝑎𝑖) and 𝜇𝐵
𝑖

𝑏

(𝑤𝑏𝑖) achieve maximum values; that is,
𝜇𝐵𝑖
𝑎

(𝑤𝑎𝑖) = 𝜇𝐵
𝑖

𝑏

(𝑤𝑏𝑖) = 1. 𝑆𝑇(𝑥) = [𝑠1(𝑥) 𝑠2(𝑥) ⋅ ⋅ ⋅ 𝑠9(𝑥)] is
a fuzzy basic vector where each element 𝑠𝑖(𝑥), 𝑖 = 1, 2, . . . , 9,
is defined as

𝑠𝑖 (𝑥) =

∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥)

∑
9

𝑖=1
(∏
3

𝑗=1
𝜇𝐴
𝑖

𝑗

(𝑥))

. (20)

The fuzzy logic system can be expressed by a neural
network, which is known as a fuzzy neural network [25,
26]. As shown in Figure 3, the fuzzy neural network has
four layers, including the input layer, membership layer, rule
layer, and output layer. At the input layer, each node is an
input representing a state variable. At the membership layer,
the Gaussian functions are used as membership functions
to calculate the membership values. At the rule layer, each
node stands for an element 𝑠𝑖(𝑥), 𝑖 = 1, 2, . . . , 9, of the
fuzzy basis vector 𝑆(𝑥) and performs a fuzzy rule. The links
between the rule layer and output layer are fully connected by
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the components of weighting vectors 𝑊𝑎 and 𝑊𝑏. At the
output layer, two outputs represent the value of 𝑎(𝑥) and̂𝑏(𝑥).

3. Adaptive Fuzzy Neural Controller Design

Because 𝑎(𝑥) and 𝑏(𝑥), as described in (8), cannot be
calculated explicitly, the ideal control law (9) is unable to be
implemented. In order to overcome this impediment, a neural
network, as shown in Figure 3, is proposed to estimate 𝑎(𝑥)
and 𝑏(𝑥). Let 𝑎(𝑥, 𝑡) and ̂𝑏(𝑥, 𝑡) be the estimations of 𝑎(𝑥) and
𝑏(𝑥), respectively. Then, following the certainty equivalent
approach, the fuzzy neural controller 𝑢𝑛𝑛(𝑥) based on the
ideal control law (9) can be obtained as

𝑢𝑛𝑛 (𝑥) =

1

̂
𝑏 (𝑥, 𝑡)

(−𝑎 (𝑥, 𝑡) + V (𝑡)) . (21)

However, the control law in (21) may face the singularity
problem when ̂𝑏(𝑥, 𝑡) closes to zero or even receives the zero
value in some point in time initially, leading to possible large
values for control signal 𝑢𝑛𝑛(𝑥). In such situation, the closed-
loop controlled system may lose controllability. To avoid this
problem, we replace the control law in (21) with

𝑢𝑛𝑛 (𝑥) =

̂
𝑏 (𝑥, 𝑡)

̂
𝑏
2
(𝑥, 𝑡) + 𝜀

(−𝑎 (𝑥, 𝑡) + V (𝑡)) , (22)

where 𝜀 is a nonzero constant. The constant 𝜀 is introduced
to guarantee that the term ̂

𝑏
2
(𝑥, 𝑡) + 𝜀 is always nonzero,

and therefore the singularity problem can be avoided. The
estimations 𝑎(𝑥, 𝑡) and ̂𝑏(𝑥, 𝑡) are calculated by a fuzzy neural
network as

𝑎 (𝑥, 𝑡) = 𝑊
𝑇

𝑎
(𝑡) 𝑆 (𝑥) ,

̂
𝑏 (𝑥, 𝑡) = 𝑊

𝑇

𝑏
(𝑡) 𝑆 (𝑥) ,

(23)

where 𝑊𝑎(𝑡) and 𝑊𝑏(𝑡) are weighting vectors at the output
layer of the neural network in Figure 3, while 𝑆(𝑥) is the
fuzzy basic vector defined in (20). In the adaptivemechanism,
𝑊𝑎(𝑡) and 𝑊𝑏(𝑡) are online tuned so that 𝑎(𝑥, 𝑡) and ̂

𝑏(𝑥, 𝑡)

converge to 𝑎(𝑥) and 𝑏(𝑥), respectively, and reach their
optimal values. The achieved optimal weighting vectors 𝑊∗

𝑎

and𝑊∗
𝑏
are defined by

𝑊
∗

𝑎
= argmin
𝑊𝑎∈Θ𝑎

{sup
𝑥∈Ω

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝑇

𝑎
(𝑡) 𝑆 (𝑥) − 𝑎 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
} ,

𝑊
∗

𝑏
= argmin
𝑊𝑎∈Θ𝑏

{sup
𝑥∈Ω

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝑇

𝑏
(𝑡) 𝑆 (𝑥) − 𝑏 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
} ,

(24)

where Θ𝑎 and Θ𝑏 are sets of acceptable values of vectors
𝑊𝑎(𝑡) and 𝑊𝑏(𝑡), respectively, and Ω is a compact set of
state variable 𝑥. In this paper, we assume that the used fuzzy
neural network does not violate the estimation property on
the compact set Ω, and the compact set Ω is large enough so
that state variables remain withinΩ under the control action.

In adaptive mechanism, the adaptive laws for 𝑊𝑎(𝑡) and
𝑊𝑏(𝑡) are chosen as

𝑊̇𝑎 (𝑡) = −𝑄
−1

𝑎
𝑆 (𝑥) 𝑒𝑠 (𝑡) ,

𝑊̇𝑏 (𝑡) = −𝑄
−1

𝑏
𝑆 (𝑥) 𝑢𝑛𝑛 (𝑥) 𝑒𝑠 (𝑡) ,

(25)

where 𝑄𝑎 and 𝑄𝑏 are positive-definite weighting matrices.
For the ideal situation, when 𝑊𝑎(𝑡) and 𝑊𝑏(𝑡), respec-

tively, approach𝑊
∗

𝑎
and𝑊

∗

𝑏
, 𝑎(𝑥, 𝑡) and ̂𝑏(𝑥, 𝑡), respectively,

approach 𝑎(𝑥) and 𝑏(𝑥). However, there exist the unavoidable
estimation errors because 𝑎(𝑥, 𝑡) and ̂

𝑏(𝑥, 𝑡) are estimated
by a neural network which has a finite number of units in
the hidden layer. Consequently, 𝑎(𝑥, 𝑡) and ̂

𝑏(𝑥, 𝑡) cannot
converge to 𝑎(𝑥) and 𝑏(𝑥) even when 𝑊𝑎(𝑡) and 𝑊𝑏(𝑡)

converge to𝑊∗
𝑎
and𝑊∗

𝑏
, respectively. Let 𝛿𝑎(𝑥) and 𝛿𝑏(𝑥) be

the estimation errors; then, the exact models of 𝑎(𝑥) and 𝑏(𝑥)
can be expressed by

𝑎 (𝑥) = 𝑊
∗

𝑎
𝑆 (𝑥) + 𝛿𝑎 (𝑥) ,

𝑏 (𝑥) = 𝑊
∗

𝑏
𝑆 (𝑥) + 𝛿𝑏 (𝑥) .

(26)

The differences between the estimation models and exact
models can be described by

𝑎 (𝑥, 𝑡) − 𝑎 (𝑥) = (𝑊𝑎 (𝑡) − 𝑊
∗

𝑎
)
𝑇
𝑆 (𝑥) − 𝛿𝑎 (𝑥)

= 𝑊̃
𝑇

𝑎
(𝑡) 𝑆 (𝑥) − 𝛿𝑎 (𝑥) ,

̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥) = (𝑊𝑏 (𝑡) − 𝑊

∗

𝑏
)
𝑇
𝑆 (𝑥) − 𝛿𝑏 (𝑥)

= 𝑊̃
𝑇

𝑏
(𝑡) 𝑆 (𝑥) − 𝛿𝑏 (𝑥) ,

(27)

where 𝑊̃𝑎(𝑡) = 𝑊𝑎(𝑡) − 𝑊
∗

𝑎
and 𝑊̃𝑏(𝑡) = 𝑊𝑏(𝑡) − 𝑊

∗

𝑏
are

parameter errors.
We suppose that the estimation errors of the neural net-

work are bounded, and they can be expressed in the following
assumption.

Assumption 4. The estimation errors are upper bounded by
some known constants 𝛿𝑎 > 0 and 𝛿𝑏 > 0 over the compact
set Ω ⊂ 𝑅

3; that is,

sup
𝑥∈Ω

󵄨
󵄨
󵄨
󵄨
𝛿𝑎 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝛿𝑎,

sup
𝑥∈Ω

󵄨
󵄨
󵄨
󵄨
𝛿𝑏 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝛿𝑏.

(28)

The estimation errors are unavoidable, and sometimes
they can break down the stability of the close-loop controlled
system. In order to keep the system robustness, a compen-
satory controller 𝑢𝑐(𝑥) is used as an additional controller
to compensate for the estimation errors. The compensatory
controller 𝑢𝑐(𝑥) is designed as

𝑢𝑐 (𝑥) =

1

𝑏

(𝛿𝑎 + 𝛿𝑏

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
) sgn (𝑒𝑠 (𝑡)) , (29)

where 𝑢𝑟(𝑥) = (𝜀/(
̂
𝑏
2
(𝑥, 𝑡) + 𝜀))(−𝑎(𝑥, 𝑡) + V(𝑡)).
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â(x, t)

b̂(x, t)

â(x, t) = WT
a (t)S(x)

a(t) = −Q−1
a S(x)es(t)

b(t) = −Q−1
b S(x)unn(x)es(t)

�(t) = (t) + es(t) + 𝜂es(t)
�(t)

S(x)

u(x)+

+

+

x

= a(x) + b(x)u

y(t)

e0(t)

Δ(s) = s + k

es(t)

Compensatory controller

Adaptive controller

Fuzzy neural network

Online tuning

−

Chaotic PMSM

d

ur(x), unn(x)

unn(x)

b̂(x, t) = WT
b (t)S(x)

unn(x) =
b̂(x, t)

b̂
2
(x, t) + 𝜀

(− â(x, t) + �(t))

ur(x) =
𝜀

b̂
2
(x, t) + 𝜀

(− â(x, t) + �(t))

yd(t)

uc(x)

uc(x) =
1

b
(𝛿a + 𝛿b|unn(x)| + |ur(x)|)sgn(es(t))

Figure 4: Overall scheme of the adaptive controller.

Therefore, the controller 𝑢(𝑥) has two control terms:
the fuzzy neural controller 𝑢𝑛𝑛(𝑥) and the compensatory
controller 𝑢𝑐(𝑥). The overall scheme of the controller is
illustrated in Figure 4 and the total control signal is given as

𝑢 (𝑥) = 𝑢𝑛𝑛 (𝑥) + 𝑢𝑐 (𝑥)

= 𝑢𝑛𝑛 (𝑥) +

1

𝑏

(𝛿𝑎 + 𝛿𝑏

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
) sgn (𝑒𝑠 (𝑡))

=

̂
𝑏 (𝑥, 𝑡)

̂
𝑏
2
(𝑥, 𝑡) + 𝜀

(−𝑎 (𝑥, 𝑡) + V (𝑡)) +
𝛿𝑎

𝑏

sgn (𝑒𝑠 (𝑡))

+

𝛿𝑏

𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑏 (𝑥, 𝑡)

̂
𝑏
2
(𝑥, 𝑡) + 𝜀

(−𝑎 (𝑥, 𝑡) + V (𝑡))
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sgn (𝑒𝑠 (𝑡))

+

1

𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

̂
𝑏
2
(𝑥, 𝑡) + 𝜀

(−𝑎 (𝑥, 𝑡) + V (𝑡))
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sgn (𝑒𝑠 (𝑡)) .

(30)

Theorem 5. Consider the system in (3) and that the desired
trajectory 𝑦𝑑(𝑡) satisfies Assumption 3. If Assumptions 1–4

hold, then under the effect of controller (30) with the adaptive
laws (25), chaos in the PMSM can be suppressed and its speed
can asymptotically track the desired trajectory successfully.

Proof. Substituting (30) into (7) and using (22), we can obtain

̈𝑦 (𝑡) = 𝑧̇2 = 𝑎 (𝑥) + 𝑏 (𝑥) (𝑢𝑛𝑛 (𝑥) + 𝑢𝑐 (𝑥))

= 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢𝑛𝑛 (𝑥) + 𝑏 (𝑥) 𝑢𝑐 (𝑥)

= 𝑎 (𝑥) + (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢𝑛𝑛 (𝑥) +

̂
𝑏 (𝑥, 𝑡) 𝑢𝑛𝑛

+ 𝑏 (𝑥) 𝑢𝑐 (𝑥)

= 𝑎 (𝑥) + (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢𝑛𝑛 (𝑥)

+

̂
𝑏
2
(𝑥, 𝑡)

̂
𝑏
2
(𝑥, 𝑡) + 𝜀

(−𝑎 (𝑥, 𝑡) + V (𝑡)) + 𝑏 (𝑥) 𝑢𝑐 (𝑥)

= (𝑎 (𝑥) − 𝑎 (𝑥, 𝑡)) + (𝑏 (𝑥) −
̂
𝑏 (𝑥, 𝑡)) 𝑢𝑛𝑛 (𝑥)

+ V (𝑡) − 𝑢𝑟 (𝑥) + 𝑏 (𝑥) 𝑢𝑐 (𝑥) .

(31)
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Taking the second-order derivative of (11) and then using
(31) and (10), we can get

̈𝑒0 (𝑡) =
̈𝑦𝑑 (𝑡) −

̈𝑦 (𝑡)

= ̈𝑦𝑑 (𝑡) − V (𝑡) + (𝑎 (𝑥, 𝑡) − 𝑎 (𝑥))

+ (
̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥)) 𝑢𝑛𝑛 (𝑥) + 𝑢𝑟 (𝑥) − 𝑏 (𝑥) 𝑢𝑐 (𝑥)

= −𝜂𝑒𝑠 (𝑡) − 𝑒𝑠 (𝑡) + (𝑎 (𝑥, 𝑡) − 𝑎 (𝑥))

+ (
̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥)) 𝑢𝑛𝑛 (𝑥) + 𝑢𝑟 (𝑥) − 𝑏 (𝑥) 𝑢𝑐 (𝑥) .

(32)

From (12), (13), and (32), the error dynamics can be
obtained as

̇𝑒𝑠 (𝑡) = −𝜂𝑒𝑠 (𝑡) + (𝑎 (𝑥, 𝑡) − 𝑎 (𝑥)) + (
̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥)) 𝑢𝑛𝑛 (𝑥)

+ 𝑢𝑟 (𝑥) − 𝑏 (𝑥) 𝑢𝑐 (𝑥) .

(33)

In order to study the system stability, we consider the
following Lyapunov function:

𝑉 (𝑥, 𝑡) =

1

2

𝑒
2

𝑠
(𝑡) +

1

2

𝑊̃
𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̃𝑎 (𝑡) +

1

2

𝑊̃
𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̃𝑏 (𝑡) .

(34)

The time derivative of 𝑉(𝑥, 𝑡) with ̇
𝑊̃𝑎(𝑡) = 𝑊̇𝑎(𝑡) and

̇
𝑊̃𝑏(𝑡) = 𝑊̇𝑏(𝑡) can be computed as

𝑉̇ (𝑥, 𝑡)

= 𝑒𝑠 (𝑡)
̇𝑒𝑠 (𝑡) +

1

2

̇
𝑊̃

𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̃𝑎 (𝑡) +

1

2

𝑊̃
𝑇

𝑎
(𝑡) 𝑄𝑎

̇
𝑊̃𝑎 (𝑡)

+

1

2

̇
𝑊̃

𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̃𝑏 (𝑡) +

1

2

𝑊̃
𝑇

𝑏
(𝑡) 𝑄𝑏

̇
𝑊̃𝑏 (𝑡)

= 𝑒𝑠 (𝑡)
̇𝑒𝑠 (𝑡) + 𝑊̃

𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̇𝑎 (𝑡) + 𝑊̃

𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̇𝑏 (𝑡) .

(35)

Substituting (33) into (35), we can obtain

𝑉̇ (𝑥, 𝑡)

= 𝑒𝑠 (𝑡) (−𝜂𝑒𝑠 (𝑡) + (𝑎 (𝑥, 𝑡) − 𝑎 (𝑥)) + (
̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥))

×𝑢𝑛𝑛 (𝑥) + 𝑢𝑟 (𝑥) − 𝑏 (𝑥) 𝑢𝑐 (𝑥) )

+ 𝑊̃
𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̇𝑎 (𝑡) + 𝑊̃

𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̇𝑏 (𝑡)

= −𝜂𝑒
2

𝑠
(𝑡) + 𝑒𝑠 (𝑡) (𝑎 (𝑥, 𝑡) − 𝑎 (𝑥))

+ 𝑒𝑠 (𝑡) (
̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥)) 𝑢𝑛𝑛 (𝑥)

+ 𝑒𝑠 (𝑡) 𝑢𝑟 (𝑥) − 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥)

+ 𝑊̃
𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̇𝑎 (𝑡) + 𝑊̃

𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̇𝑏 (𝑡) .

(36)

Substituting (27) into (36) yields

𝑉̇ (𝑥, 𝑡) = −𝜂𝑒
2

𝑠
(𝑡) + 𝑒𝑠 (𝑡) (𝑎 (𝑥, 𝑡) − 𝑎 (𝑥))

+ 𝑒𝑠 (𝑡) (
̂
𝑏 (𝑥, 𝑡) − 𝑏 (𝑥)) 𝑢𝑛𝑛 (𝑥)

+ 𝑒𝑠 (𝑡) 𝑢𝑟 (𝑥) − 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥)

+ 𝑊̃
𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̇𝑎 (𝑡) + 𝑊̃

𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̇𝑏 (𝑡)

= −𝜂𝑒
2

𝑠
(𝑡) + 𝑒𝑠 (𝑡) (𝑊̃

𝑇

𝑎
(𝑡) 𝑆 (𝑥) − 𝛿𝑎 (𝑥))

+ 𝑒𝑠 (𝑡) (𝑊̃
𝑇

𝑏
(𝑡) 𝑆 (𝑥) − 𝛿𝑏 (𝑥)) 𝑢𝑛𝑛 (𝑥)

+ 𝑊̃
𝑇

𝑎
(𝑡) 𝑄𝑎𝑊̇𝑎 (𝑡) + 𝑊̃

𝑇

𝑏
(𝑡) 𝑄𝑏𝑊̇𝑏 (𝑡)

+ 𝑒𝑠 (𝑡) 𝑢𝑟 (𝑥) − 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥)

= −𝜂𝑒
2

𝑠
(𝑡) + 𝑊̃

𝑇

𝑎
(𝑡) (𝑒𝑠 (𝑡) 𝑆 (𝑥) + 𝑄𝑎𝑊̇𝑎 (𝑡))

+ 𝑊̃
𝑇

𝑏
(𝑡) (𝑒𝑠 (𝑡) 𝑆 (𝑥) 𝑢𝑛𝑛 (𝑥) + 𝑄𝑏𝑊̇𝑏 (𝑡))

− 𝑒𝑠 (𝑡) 𝛿𝑎 (𝑥) − 𝑒𝑠 (𝑡) 𝛿𝑏 (𝑥) 𝑢𝑛𝑛 (𝑥)

+ 𝑒𝑠 (𝑡) 𝑢𝑟 (𝑥) − 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥) .

(37)

Using the adaptive laws in (25), (37) can be rewritten as

𝑉̇ (𝑥, 𝑡)

= −𝜂𝑒
2

𝑠
(𝑡) − 𝑒𝑠 (𝑡) 𝛿𝑎 (𝑥) − 𝑒𝑠 (𝑡) 𝛿𝑏 (𝑥) 𝑢𝑛𝑛 (𝑥)

+ 𝑒𝑠 (𝑡) 𝑢𝑟 (𝑥) − 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥)

≤ −𝜂𝑒
2

𝑠
(𝑡) +

󵄨
󵄨
󵄨
󵄨
𝑒𝑠 (𝑡)

󵄨
󵄨
󵄨
󵄨
(
󵄨
󵄨
󵄨
󵄨
𝛿𝑎 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝛿𝑏 (𝑥)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
)

− 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥)

≤ −𝜂𝑒
2

𝑠
+
󵄨
󵄨
󵄨
󵄨
𝑒𝑠 (𝑡)

󵄨
󵄨
󵄨
󵄨
(𝛿𝑎 + 𝛿𝑏

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
)

− 𝑒𝑠 (𝑡) 𝑏 (𝑥) 𝑢𝑐 (𝑥) .

(38)

Substituting the compensatory controller in (29) into (38)
and noting that 󵄨󵄨󵄨

󵄨
𝑒𝑠(𝑡)

󵄨
󵄨
󵄨
󵄨
= sgn(𝑒𝑠(𝑡))𝑒𝑠(𝑡), we can obtain

𝑉̇ (𝑥, 𝑡)

≤ −𝜂𝑒
2

𝑠
+
󵄨
󵄨
󵄨
󵄨
𝑒𝑠 (𝑡)

󵄨
󵄨
󵄨
󵄨
(𝛿𝑎 + 𝛿𝑏

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
)

−

𝑏 (𝑥)

𝑏

(𝛿𝑎 + 𝛿𝑏

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
) sgn (𝑒𝑠 (𝑡)) 𝑒𝑠 (𝑡)

≤ −𝜂𝑒
2

𝑠
−
󵄨
󵄨
󵄨
󵄨
𝑒𝑠 (𝑡)

󵄨
󵄨
󵄨
󵄨
(𝛿𝑎 + 𝛿𝑏

󵄨
󵄨
󵄨
󵄨
𝑢𝑛𝑛 (𝑥)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢𝑟 (𝑥)

󵄨
󵄨
󵄨
󵄨
) (

𝑏 (𝑥)

𝑏

− 1)

≤ 0.

(39)

From (34) and (39), 𝑉(𝑥, 𝑡) > 0 and 𝑉̇(𝑥, 𝑡) ≤ 0 can be
found, so the close-loop controlled system is stable. 𝑒𝑠(𝑡) ∈

𝐿∞,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑊̃𝑎(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
∈ 𝐿∞, and

󵄩
󵄩
󵄩
󵄩
󵄩
𝑊̃𝑏(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
∈ 𝐿∞ are also determined.
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Figure 5: Chaotic oscillations of an uncontrolled PMSM.

Furthermore, using inequality in (39), we can get

∫

∞

0

𝜂𝑒
2

𝑠
(𝑡) 𝑑𝑡 ≤ −∫

∞

0

𝑉̇ (𝑥, 𝑡) 𝑑𝑡=𝑉 (𝑥, 0) − 𝑉 (𝑥,∞) < ∞.

(40)

The above inequality, as in (40), implies that 𝑒𝑠(𝑡) ∈ 𝐿2, so
𝑒𝑠(𝑡) ∈ 𝐿2∩𝐿∞ can be concluded. On the other hand, because
𝑒𝑠(𝑠) = Δ(𝑠)𝑒0(𝑠), 𝑒0(𝑡) ∈ 𝐿∞, ̇𝑒0(𝑡) ∈ 𝐿∞, and ̇𝑒𝑠(𝑡) ∈ 𝐿∞

can be obtained. Then, incorporating Barbalat’s lemma [33]
lim𝑡→∞𝑒𝑠(𝑡) = 0 can be obtained, so lim𝑡→∞𝑒0(𝑡) = 0. Thus,
the system stability is ensured and the advanced tracking
performance is achieved.

4. Numerical Simulations

Numerical results are given in this section to verify the pro-
posed method. The system parameters and initial conditions
are maintained as above; that is, 𝜎 = 5.45, 𝛾 = 20, and
[𝑥1(0) 𝑥2(0) 𝑥3(0)]

𝑇
= [1 − 1 0]

𝑇. First, the system
without control action and uncertainties is considered. The
simulation result points out that the state response falls into
chaotic oscillations, as displayed in Figure 5.

Second, proposed controller is used to suppress chaos
in the PMSM and track the desired speed under the effect
of uncertainties. The uncertainties were chosen as 𝑑1 =

1 + cos(𝑡), 𝑑2 = −1, and 𝑑3 = sin(𝑥1) for simulation
while the desired trajectory 𝑦𝑑(𝑡) = sin(𝜋𝑡), which satisfies
Assumption 3, is also chosen for this simulation.On the other
hand, the control parameters are chosen as follows:

𝑘 = 40, 𝜂 = 60, 𝑏 = 1, 𝜀=1, 𝛿𝑎=𝛿𝑏=0.1,

𝑄𝑎 = 40 ∗ eye (9) , 𝑄𝑏 = 20 ∗ eye (9) .
(41)

The input states of the controller are normalized in a range
of [−1, 1] and nine membership functions, which relate to
nine rules, are chosen as

𝜇𝐴1
𝑗

(𝑥) = exp[−(𝑥 + 1)
2

2 ∗ 0.2
2
] ,

𝜇𝐴2
𝑗

(𝑥) = exp[−(𝑥 + 0.75)
2

2 ∗ 0.2
2

] ,

𝜇𝐴
3

𝑗

(𝑥) = exp[−(𝑥 + 0.5)
2

2 ∗ 0.2
2
] ,

𝜇𝐴4
𝑗

(𝑥) = exp[−(𝑥 + 0.25)
2

2 ∗ 0.2
2

] ,

𝜇𝐴
5

𝑗

(𝑥) = exp[−(𝑥 + 0)
2

2 ∗ 0.2
2
] ,

𝜇𝐴
6

𝑗

(𝑥) = exp[−(𝑥 − 0.25)
2

2 ∗ 0.2
2

] ,

𝜇𝐴
7

𝑗

(𝑥) = exp[−(𝑥 − 0.5)
2

2 ∗ 0.2
2
] ,

𝜇𝐴
8

𝑗

(𝑥) = exp[−(𝑥 − 0.75)
2

2 ∗ 0.2
2

] ,

𝜇𝐴
9

𝑗

(𝑥) = exp[−(𝑥 − 1)
2

2 ∗ 0.2
2
] .

(42)

The results, as shown in Figures 6, 7, and 8, illustrate that the
chaotic oscillations are removed and the speed of PMSM
follows the desired trajectory perfectly while the tracking
error converges to zero asymptotically.
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Figure 6: Chaos suppression and speed tracking of the controlled PMSM.
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Figure 7: State response of the controlled PMSM in 𝑥 coordinate.
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Figure 8: State response of the controlled PMSM in 𝑧 coordinate.
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5. Conclusion

In this paper, based on a fuzzy neural network, a new adaptive
controller has been developed to suppress chaos and track the
desired speed in a chaotic permanent magnet synchronous
motor drive system. Derived from Lyapunov function, the
stability of the system is ensured and the controller guarantees
the perfect tracking performance where the tracking error
converges to the origin even if uncertainties are applied
to the system. The robustness and simple neural network
structure can allow the controller to be feasibly applied
to practical systems where the uncertainties are present.
Simulation results are given to illustrate the effectiveness and
robustness of the proposed method.
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