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We introduce generalized (𝛼, 𝜓)-contractive mappings of integral type in the context of generalized metric spaces. The results of
this paper generalize and improve several results on the topic in literature.

1. Introduction and Preliminaries

In fixed point theory, one of the interesting research trends is
to investigate the existence and uniqueness of certain map-
pings in the various abstract spaces. As a result of this
approach, the notion of metric has been extended in several
ways to get distinct abstract spaces. Among all, we mention
the concept of generalized metric space that was introduced
by Branciari [1] in 2001. The notion of generalized metric
can be considered as a natural extension of the concept of
a metric since it is obtained by replacing the the triangle
inequality condition by a weaker condition, namely, quadri-
lateral inequality. Branciari [1] proved Banach’s fixed point
theorem in such a space. Formore details, the reader can refer
to [2–21].

At this point, we emphasize why the generalized metric
space is interesting. Although the definitions of metric and
generalized metric are very close to each other, the topology
of the corresponding spaces is very different. In particular,
a generalized metric may or may not be continuous. Fur-
thermore, a convergent sequence in generalizedmetric spaces
need not be Cauchy. Besides them, we cannot guarantee that
a generalized metric space is Hausdorff, and hence the uni-
queness of limits cannot be provided easily.

On the other hand, a notion of 𝛼-admissible mappings
was defined by Samet et al. [22]. By using this notion, the
authors introduced 𝛼 − 𝜓 contractive mappings and inves-
tigated the existence and uniqueness of a fixed point of

such mappings in the context of metric space. Their results
have attracted several authors since they are very interest-
ing and that several existing fixed point theorems listed as
consequences of the main result of this paper [22]. The
approaches used in this paper have been extended and
improved by a number of authors to get similar results in
different settings; see, for example, [13, 15, 23–26].

The aim of this paper is to examine the existence and
uniqueness of fixed points of 𝛼-admissible mappings of
integral type in the setting of generalized metric spaces. We
also underline that the phrase “a generalizedmetric” has been
used for distinct notions since all such concepts generalize
the notion of metric. For this reason, when we mention a
“generalized metric” we mean the distance function intro-
duced by Branciari [1]. It is evident that any metric space is
a generalized metric space but the converse is not true [1].

For the sake of completeness, we recall some basic defi-
nitions and notations and fundamental results that will be
used in the sequel.

N andR+ denote the set of positive integers and the set of
nonnegative reals, respectively. Let Ψ be the family of func-
tions 𝜓 : [0,∞) → [0,∞) satisfying the following condi-
tions:

(i) 𝜓 is upper semicontinuous;

(ii) (𝜓𝑛(𝑡))
𝑛∈N converges to 0 as 𝑛 → ∞ for all 𝑡 > 0;

(iii) 𝜓(𝑡) < 𝑡, for any 𝑡 > 0.
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In the following,we recall the notion of a generalizedmet-
ric space.

Definition 1 (see [1]). Let 𝑋 be a nonempty set and let as 𝑑 :
𝑋×𝑋 → [0,∞] satisfy the following conditions for all 𝑥, 𝑦 ∈
𝑋 and all distinct 𝑢, V ∈ 𝑋 each of which is different from 𝑥
and 𝑦. Consider

(GMS1) 𝑑 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦

(GMS2) 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥)

(GMS3) 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑢) + 𝑑 (𝑢, V) + 𝑑 (V, 𝑦) .

(1)

Then, themap𝑑 is called a generalizedmetric and abbreviated
as GMS. Here, the pair (𝑋, 𝑑) is called a generalized metric
space.

In the above definition, if 𝑑 satisfies only (GMS1) and
(GMS2), then it is called a semimetric (see, e.g., [27]).

The concepts of convergence, Cauchy sequence, com-
pleteness, and continuity on a GMS are defined below.

Definition 2.

(1) A sequence {𝑥
𝑛
} in a GMS (𝑋, 𝑑) is GMS convergent

to a limit 𝑥 if and only if 𝑑(𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞.

(2) A sequence {𝑥
𝑛
} in a GMS (𝑋, 𝑑) is GMS Cauchy if

and only if for every 𝜀 > 0 there exists positive integer
𝑁(𝜀) such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) < 𝜀 for all 𝑛 > 𝑚 > 𝑁(𝜀).

(3) AGMS (𝑋, 𝑑) is called complete if everyGMSCauchy
sequence in𝑋 is GMS convergent.

(4) A mapping 𝑇 : (𝑋, 𝑑) → (𝑋, 𝑑) is continuous if for
any sequence {𝑥

𝑛
} in 𝑋 for which lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥) =

0, we have lim
𝑛→∞

𝑑(𝑇𝑥
𝑛
, 𝑇𝑥) = 0.

The following assumption was suggested by Wilson [27]
to replace the triangle inequality with the weakened condi-
tion.

(W): for each pair of (distinct) points𝑢, V, there is a number
𝑟
𝑢,V > 0 such that for every 𝑧 ∈ 𝑋

𝑟
𝑢,V < 𝑑 (𝑢, 𝑧) + 𝑑 (𝑧, V) . (2)

Proposition 3 (see [28]). In a semimetric space, the assump-
tion (𝑊) is equivalent to the assertion that limits are unique.

Proposition 4 (see [28]). Suppose that {𝑥
𝑛
} is a Cauchy

sequence in a GMS (𝑋, 𝑑) with lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑢) = 0, where

𝑢 ∈ 𝑋. Then lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑧) = 𝑑(𝑢, 𝑧) for all 𝑧 ∈ 𝑋. In

particular, the sequence {𝑥
𝑛
} does not converge to 𝑧 if 𝑧 ̸= 𝑢.

The following concepts were defined by Samet et al. [22].

Definition 5 (see [22]). For a nonempty set𝑋, let𝑇 : 𝑋 → 𝑋

and 𝛼 : 𝑋 × 𝑋 → [0,∞) be mappings. We say that 𝑇 is 𝛼-
admissible if for all 𝑥, 𝑦 ∈ 𝑋, one has

𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (3)

In what follows we recall the notion of a 𝛼−𝜓 contractive
mapping.

Definition 6 (see [22]). Let (𝑋, 𝑑) be a metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. One says that 𝑇 is a 𝛼 − 𝜓
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →
[0,∞) and a certain 𝜓 such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (4)

Notice that any contractive mapping, that is a mapping
satisfying the Banach contraction, is a 𝛼 − 𝜓 contractive
mapping with 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡,
𝑘 ∈ (0, 1).

Inspired by the results of Samet et al. [22], Karapınar [13]
gave the analog of the notion of a 𝛼 − 𝜓 contractive mapping
in the context of generalized metric spaces as follows.

Definition 7. Let (𝑋, 𝑑) be a generalized metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. One says that 𝑇 is a 𝛼 − 𝜓
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →
[0,∞) and a certain 𝜓 such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (5)

Let (𝑋, 𝑑) be a generalized metric space. A sequence
{𝑥
𝑛
} is called regular if {𝑥

𝑛
} is a sequence in 𝑋 such that

𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞;

then 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛.

Karapınar [13] also stated the following fixed point theo-
rems.

Theorem 8. Let (𝑋, 𝑑) be a complete generalized metric space
and let 𝑇 : 𝑋 → 𝑋 be a 𝛼 − 𝜓 contractive mapping. Suppose
that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and 𝛼(𝑥

0
,

𝑇2𝑥
0
) ≥ 1;

(iii) either 𝑇 is continuous or {𝑥
𝑛
} is regular.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

For the uniqueness, an additional condition was consid-
ered.

(𝑈): for all𝑥, 𝑦 ∈ Fix(𝑇), one has𝛼(𝑥, 𝑦) ≥ 1, where Fix(𝑇)
denotes the set of fixed points of 𝑇.

Theorem 9. Adding condition (𝑈) to the hypotheses of
Theorem 8, one obtains that 𝑢 is the unique fixed point of 𝑇.

As an alternative condition for the uniqueness of a fixed
point of a 𝛼 − 𝜓 contractive mapping, one will consider the
following hypothesis.

(H): for all 𝑥, 𝑦 ∈ Fix(𝑇), there exists 𝑧 ∈ 𝑋 such that
𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1.

Theorem 10. Adding conditions (𝐻) and (𝑊) to the hypothe-
ses ofTheorem 8, one obtains that 𝑢 is the unique fixed point of
𝑇.
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Corollary 11. Adding condition (𝐻) to the hypotheses of
Theorem 8 and assuming that (𝑋, 𝑑) is Hausdorff, one obtains
that 𝑢 is the unique fixed point of 𝑇.

2. Main Results

In this section, we will present our main results. For this pur-
pose, we first define the following class of functions:Φ = {𝜑 :
𝜑 : R+ → R} such that𝜑 is nonnegative, Lebesgue integrable
and satisfies

∫
𝜖

0

𝜑 (𝑡) 𝑑𝑡 > 0 for each 𝜖 > 0. (6)

Definition 12 (see [29]). One says that 𝜙 ∈ Φ is an integral
subadditive if for each 𝑎, 𝑏 > 0, one has

∫
𝑎+𝑏

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫
𝑎

0

𝜙 (𝑡) 𝑑𝑡 + ∫
𝑏

0

𝜙 (𝑡) 𝑑𝑡. (7)

One denotes by Φ
𝑠
the class of all integral subadditive

functions 𝜙 ∈ Φ.

Example 13 (see [29]). Let 𝜙
1
(𝑡) = (1/2)(𝑡+1)

−1/2 for all 𝑡 ≥ 0,
𝜙
2
(𝑡) = (2/3)(𝑡 + 1)

−1/3 for all 𝑡 ≥ 0, and 𝜙
3
(𝑡) = 𝑒−𝑡 for all

𝑡 ≥ 0. Then 𝜙
𝑖
∈ Φ
𝑠
, where 𝑖 = 1, 2, 3.

In what followswe introduce notions of generalized𝛼−𝜓-
contractive type mappings of integral type I and type II.

Definition 14. Let (𝑋, 𝑑) be a generalized metric space and let
𝑇 : 𝑋 → 𝑋 be a given mapping. One says that 𝑇 is genera-
lized𝛼−𝜓-contractive typemappings of integral type I if there
exist two functions 𝛼 : 𝑋 × 𝑋 → [0, +∞) and 𝜓 ∈ Ψ such
that for each 𝑥, 𝑦 ∈ 𝑋

𝛼 (𝑥, 𝑦) ∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑀(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡) , (8)

where 𝜑 ∈ Φ
𝑠
and

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} . (9)

Definition 15. Let (𝑋, 𝑑) be a generalized metric space and
let 𝑇 : 𝑋 → 𝑋 be a given mapping. One says that 𝑇 is
generalized 𝛼 − 𝜓-contractive type mappings of integral type
II if there exist two functions 𝛼 : 𝑋 × 𝑋 → [0, +∞) and
𝜓 ∈ Ψ such that for each 𝑥, 𝑦 ∈ 𝑋

𝛼 (𝑥, 𝑦) ∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑁(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡) , (10)

where 𝜑 ∈ Φ
𝑠
and

𝑁(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
} . (11)

Now, we state our first fixed point result.

Theorem 16. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be a generalized 𝛼 − 𝜓-contractive type
mappings of integral type I. Suppose that

(i) 𝑇 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.
Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Regarding assumption (ii), we guarantee that there
exists a point 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and 𝛼(𝑥

0
,

𝑇2𝑥
0
) ≥ 1. Starting this initial value 𝑥

0
∈ 𝑋, we define an

iterative sequence {𝑥
𝑛
} in𝑋 as follows:

𝑥
𝑛+1
= 𝑇𝑥
𝑛
= 𝑇
𝑛+1

𝑥
0
∀𝑛 ≥ 0. (12)

Notice that if 𝑥
𝑛0
= 𝑥
𝑛0+1

for some 𝑛
0
, then the proof is

completed in this case. Indeed, we have 𝑢 = 𝑥
𝑛0
= 𝑥
𝑛0+1

=

𝑇𝑥
𝑛0
= 𝑇𝑢. As a consequence of this observation, throughout

the proof, we assume that

𝑥
𝑛
̸= 𝑥
𝑛+1

∀𝑛. (13)

It is evident that
𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑇𝑥
0
) ≥ 1

⇒ 𝛼 (𝑇𝑥
0
, 𝑇𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1,

(14)

since 𝑇 is 𝛼-admissible. Recursively, we find that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1, ∀𝑛 = 0, 1, . . . . (15)

By repeating the same arguments, used above, we also derive
that

𝛼 (𝑥
0
, 𝑥
2
) = 𝛼 (𝑥

0
, 𝑇
2

𝑥
0
) ≥ 1

⇒ 𝛼 (𝑇𝑥
0
, 𝑇𝑥
2
) = 𝛼 (𝑥

1
, 𝑥
3
) ≥ 1.

(16)

From the previous inequalities, we conclude that

𝛼 (𝑥
𝑛
, 𝑥
𝑛+2
) ≥ 1, ∀𝑛 = 0, 1, . . . . (17)

We divide the proofs into 4 steps.

Step 1.We show that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = 0. (18)

By taking (8) and (15) into account, we obtain that

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑇𝑥𝑛−1 ,𝑇𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑥
𝑛−1
, 𝑥
𝑛
) ∫
𝑑(𝑇𝑥𝑛−1 ,𝑇𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑥𝑛−1,𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡) ,

(19)

for all 𝑛 ≥ 1, where
𝑀(𝑥
𝑛−1
, 𝑥
𝑛
)

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
)}

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)}

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)} .

(20)
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If we have𝑀(𝑥
𝑛−1
, 𝑥
𝑛
) = 𝑑(𝑥

𝑛
, 𝑥
𝑛+1
) for some 𝑛 ∈ N, then

inequality (19) turns into

∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑀(𝑥𝑛−1 ,𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡)

< ∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡,

(21)

by regarding the property (iii) of the auxiliary function 𝜓.
This is a contradiction. Consequently, we have𝑀(𝑥

𝑛−1
, 𝑥
𝑛
) =

𝑑(𝑥
𝑛−1
, 𝑥
𝑛
) for all 𝑛 ∈ N and (19) becomes

∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑑(𝑥𝑛−1 ,𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡) ∀𝑛 ∈ N. (22)

This yields that

∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 < ∫
𝑑(𝑥𝑛−1,𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡 ∀𝑛 ∈ N, (23)

by recalling the property (iii) of the auxiliary function𝜓. Due
to (22), we find that

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓
𝑛

(∫
𝑑(𝑥0 ,𝑥1)

0

𝜑 (𝑡) 𝑑𝑡) , ∀𝑛 ∈ N.

(24)

By property of 𝜓 again, we deduce that

lim
𝑛→∞

∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = 0, (25)

and hence

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = 0. (26)

Step 2.We show that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+2
) = 0. (27)

Combining (8) and (17), we conclude that

∫
𝑑(𝑥𝑛 ,𝑥𝑛+2)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑇𝑥𝑛−1 ,𝑇𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑥
𝑛−1
, 𝑥
𝑛+1
) ∫
𝑑(𝑇𝑥𝑛−1 ,𝑇𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑥𝑛−1,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡) ,

(28)

for all 𝑛 ≥ 1, where

𝑀(𝑥
𝑛−1
, 𝑥
𝑛+1
)

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1
) , 𝑑 (𝑥

𝑛+1
, 𝑇𝑥
𝑛+1
)}

= max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
)} .

(29)

By (23), we have

𝑀(𝑥
𝑛−1
, 𝑥
𝑛+1
) = max {𝑑 (𝑥

𝑛−1
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)}

= max {𝑒
𝑛
, 𝑑
𝑛
} ,

(30)

where 𝑒
𝑛
= 𝑑(𝑥

𝑛
, 𝑥
𝑛+2
) and 𝑑

𝑛
= 𝑑(𝑥

𝑛
, 𝑥
𝑛+1
). Thus, inequality

(28) can be considered as

∫
𝑒𝑛

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑥𝑛,𝑥𝑛+2)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑀(𝑥𝑛−1 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
max{𝑒𝑛−1 ,𝑑𝑛−1}

0

𝜑 (𝑡) 𝑑𝑡) ∀𝑛 ∈ N.

(31)

On the other hand, by (23)

∫
𝑑𝑛

0

𝜑 (𝑡) 𝑑𝑡 ≤ ∫
𝑑𝑛−1

0

𝜑 (𝑡) 𝑑𝑡 ≤ ∫
max{𝑒𝑛−1,𝑑𝑛−1}

0

𝜑 (𝑡) 𝑑𝑡. (32)

Therefore,

∫
max{𝑒𝑛 ,𝑑𝑛}

0

𝜑 (𝑡) 𝑑𝑡 ≤ ∫
max{𝑒𝑛−1 ,𝑑𝑛−1}

0

𝜑 (𝑡) 𝑑𝑡 ∀𝑛 ∈ N. (33)

Then, the sequence {∫max{𝑒𝑛 ,𝑑𝑛}
0

𝜑(𝑡)𝑑𝑡} is monotone nonin-
creasing, so it converges to some 𝑡 ≥ 0. Assume that 𝐿 > 0.
Now, by (18)

lim sup
𝑛→∞

∫
𝑒𝑛

0

𝜑 (𝑡) 𝑑𝑡 = lim sup
𝑛→∞

∫
max{𝑒𝑛 ,𝑑𝑛}

0

𝜑 (𝑡) 𝑑𝑡

= lim
𝑛→∞

∫
max{𝑒𝑛,𝑑𝑛}

0

𝜑 (𝑡) 𝑑𝑡 = 𝐿.

(34)

Taking 𝑛 → ∞ in (31)

𝐿 = lim sup
𝑛→∞

∫
𝑒𝑛

0

𝜑 (𝑡) 𝑑𝑡

≤ lim sup
𝑛→∞

𝜓(∫
max{𝑒𝑛−1,𝑑𝑛−1}

0

𝜑 (𝑡) 𝑑𝑡)

≤ 𝜓( lim
𝑛→∞

∫
max{𝑒𝑛−1,𝑑𝑛−1}

0

𝜑 (𝑡) 𝑑𝑡) = 𝜓 (𝐿) < 𝐿,

(35)

which is a contradiction; that is, (27) is proved.

Step 3.We will prove that

𝑥
𝑛
̸= 𝑥
𝑚
∀𝑛 ̸= 𝑚. (36)

We argue by contradiction. Suppose that 𝑥
𝑛
= 𝑥
𝑚
for some

𝑚, 𝑛 ∈ N with 𝑚 ̸= 𝑛. Since 𝑑(𝑥
𝑝
, 𝑥
𝑝+1
) > 0 for each 𝑝 ∈ N,
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so without loss of generality, assume that𝑚 > 𝑛+1. Consider
now

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑥𝑛 ,𝑇𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑥𝑚 ,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑇𝑥𝑚−1 ,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑥
𝑚−1
, 𝑥
𝑚
) ∫
𝑑(𝑇𝑥𝑚−1,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑥𝑚−1 ,𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡) ,

(37)

where

𝑀(𝑥
𝑚−1
, 𝑥
𝑚
)

= max {𝑑 (𝑥
𝑚−1
, 𝑥
𝑚
) , 𝑑 (𝑥

𝑚−1
, 𝑇𝑥
𝑚−1
) , 𝑑 (𝑥

𝑚
, 𝑇𝑥
𝑚
)}

= max {𝑑 (𝑥
𝑚−1
, 𝑥
𝑚
) , 𝑑 (𝑥

𝑚−1
, 𝑥
𝑚
) , 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1
)}

= max {𝑑 (𝑥
𝑚−1
, 𝑥
𝑚
) , 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1
)} .

(38)

If𝑀(𝑥
𝑚−1
, 𝑥
𝑚
) = 𝑑(𝑥

𝑚−1
, 𝑥
𝑚
), then from (37) we get that

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑥𝑛 ,𝑇𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑥𝑚 ,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑥𝑚 ,𝑥𝑚+1)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑥
𝑚
, 𝑥
𝑚+1
) ∫
𝑑(𝑇𝑥𝑚−1,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑥𝑚−1 ,𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝑥𝑚−1 ,𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡)

≤ 𝜓
𝑚−𝑛

(∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡) .

(39)

If𝑀(𝑥
𝑚−1
, 𝑥
𝑚
) = 𝑑(𝑥

𝑚
, 𝑥
𝑚+1
), inequality (37) becomes

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑥𝑛 ,𝑇𝑥𝑛)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑥𝑚 ,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑇𝑥𝑚−1 ,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑥
𝑚−1
, 𝑥
𝑚
) ∫
𝑑(𝑇𝑥𝑚−1,𝑇𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑥𝑚−1,𝑥𝑚)

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝑥𝑚 ,𝑥𝑚+1)

0

𝜑 (𝑡) 𝑑𝑡)

≤ 𝜓
𝑚−𝑛+1

(∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡) .

(40)

Due to a property of 𝜓, inequalities (39) and (40) together
yield that

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓
𝑚−𝑛

(∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡)

< ∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡,

(41)

∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓
𝑚−𝑛+1

(∫
𝑑(𝑥𝑛,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡)

< ∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡,

(42)

respectively. In each case, there is a contradiction.

Step 4.We will prove that {𝑥
𝑛
} is a Cauchy sequence; that is,

Lim
𝑛→∞

∫
𝑑(𝑥𝑛 ,𝑥𝑛+𝑘)

0

𝜑 (𝑡) 𝑑𝑡 = 0 ∀𝑘 ∈ N. (43)

The cases 𝑘 = 1 and 𝑘 = 2 are proved, respectively, by (18)
and (27). Now, take 𝑘 ≥ 3 arbitrary. It is sufficient to examine
two cases.

Case (I). Suppose that 𝑘 = 2𝑚+1where𝑚 ≥ 1.Then, by using
step 3 and the quadrilateral inequality together with (24), we
find

∫
𝑑(𝑥𝑛,𝑥𝑛+𝑘)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑥𝑛,𝑥𝑛+2𝑚+1)

0

𝜑 (𝑡) 𝑑𝑡

≤ ∫
𝑑(𝑥𝑛,𝑥𝑛+1)+𝑑(𝑥𝑛+1 ,𝑥𝑛+2)+⋅⋅⋅+𝑑(𝑥𝑛+2𝑚 ,𝑥𝑛+2𝑚+1)

0

𝜑 (𝑡) 𝑑𝑡
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≤ ∫
𝑑(𝑥𝑛 ,𝑥𝑛+1)

0

𝜑 (𝑡) + ∫
𝑑(𝑥𝑛+1,𝑥𝑛+2)

0

𝜑 (𝑡)

+ ⋅ ⋅ ⋅ + ∫
𝑑(𝑥𝑛+2𝑚 ,𝑥𝑛+2𝑚+1)

0

𝜑 (𝑡) 𝑑𝑡

≤

𝑛+2𝑚

∑
𝑝=𝑛

𝜓
𝑝

(∫
𝑑(𝑥0 ,𝑥1)

0

𝜑 (𝑡) 𝑑𝑡)

≤

+∞

∑
𝑝=𝑛

𝜓
𝑝

(∫
𝑑(𝑥0 ,𝑥1)

0

𝜑 (𝑡) 𝑑𝑡) → 0 as 𝑛 → ∞.

(44)

Case (II). Suppose that 𝑘 = 2𝑚 where 𝑚 ≥ 2. Again, by
applying the quadrilateral inequality and step 3 together with
(24), we find

∫
𝑑(𝑥𝑛 ,𝑥𝑛+𝑘)

0

𝜑 (𝑡) 𝑑𝑡

= ∫
𝑑(𝑥𝑛 ,𝑥𝑛+2𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ ∫
𝑑(𝑥𝑛 ,𝑥𝑛+2)+𝑑(𝑥𝑛+2 ,𝑥𝑛+3)+⋅⋅⋅+𝑑(𝑥𝑛+2𝑚−1,𝑥𝑛+2𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ ∫
𝑑(𝑥𝑛 ,𝑥𝑛+2)

0

𝜑 (𝑡) 𝑑𝑡 + ∫
𝑑(𝑥𝑛+2 ,𝑥𝑛+3)

0

𝜑 (𝑡) 𝑑𝑡

+ ⋅ ⋅ ⋅ + ∫
𝑑(𝑥𝑛+2𝑚−1,𝑥𝑛+2𝑚)

0

𝜑 (𝑡) 𝑑𝑡

≤ ∫
𝑑(𝑥𝑛 ,𝑥𝑛+2)

0

𝜑 (𝑡) 𝑑𝑡 +

𝑛+2𝑚−1

∑
𝑝=𝑛+2

𝜓
𝑝

(∫
𝑑(𝑥0 ,𝑥1)

0

𝜑 (𝑡) 𝑑𝑡)

≤ ∫
𝑑(𝑥𝑛 ,𝑥𝑛+2)

0

𝜑 (𝑡) 𝑑𝑡

+

+∞

∑
𝑝=𝑛

𝜓
𝑝

(∫
𝑑(𝑥0 ,𝑥1)

0

𝜑 (𝑡) 𝑑𝑡) → 0 as 𝑛 → ∞.

(45)

By combining expressions (44) and (45), we have

lim
𝑛→∞

∫
𝑑(𝑥𝑛 ,𝑥𝑛+𝑘)

0

𝜑 (𝑡) 𝑑𝑡 = 0 ∀𝑘 ≥ 3. (46)

Hence, we have
lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑘
) = 0 ∀𝑘 ≥ 3. (47)

We conclude that {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑑). Since

(𝑋, 𝑑) is complete, there exists 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = 0. (48)

Since 𝑇 is continuous, we obtain from (48) that
lim
𝑛→∞

𝑑 (𝑥
𝑛+1
, 𝑇𝑢) = lim

𝑛→∞

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑢) = 0; (49)

that is, lim
𝑛→∞

𝑥
𝑛+1

= 𝑇𝑢. Taking Proposition 4 into
account, we conclude that 𝑇𝑢 = 𝑢; that is, 𝑢 is a fixed point of
𝑇.

The following result is deduced from Theorem 16 due to
the obvious inequality𝑁(𝑥, 𝑦) ≤ 𝑀(𝑥, 𝑦).

Theorem 17. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let𝑇 : 𝑋 → 𝑋 be generalized 𝛼−𝜓-contractive type map-
pings of integral type II. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) 𝑇 is continuous.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Theorem 16 remains true if we replace the continuity
hypothesis by the following property.

If {𝑥
𝑛
} is a sequence in𝑋 such that𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛

and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then there exists a subsequence

{𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1 for all 𝑘.

This statement is given as follows.

Theorem 18. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be generalized 𝛼 − 𝜓-contractive type
mappings of integral type I. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then there exists

a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1

for all 𝑘.

Then, there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the lines in the proof of Theorem 8, we
deduce that the sequence {𝑥

𝑛
} defined by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
for all

𝑛 ≥ 0 is Cauchy and converges to some 𝑢 ∈ 𝑋. In view of
Proposition 4,

lim
𝑘→∞

𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢) = 𝑑 (𝑢, 𝑇𝑢) . (50)

By using the method of reductio ad absurdum, we will show
that 𝑇𝑢 = 𝑢. Suppose, on the contrary, that 𝑇𝑢 ̸= 𝑢; that
is, 𝑑(𝑇𝑢, 𝑢) > 0. From (15) and condition (iii), there exists a
subsequence {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘.

By applying (8), we find that

∫
𝑑(𝑥𝑛(𝑘)+1,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝛼 (𝑥
𝑛(𝑘)
, 𝑢) ∫
𝑑(𝑇𝑥𝑛(𝑘) ,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑥𝑛(𝑘) ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡) ,

(51)

where

𝑀(𝑥
𝑛(𝑘)
, 𝑢)

= max {𝑑 (𝑥
𝑛(𝑘)
, 𝑢) , 𝑑 (𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) , 𝑑 (𝑢, 𝑇𝑢)}

= max {𝑑 (𝑥
𝑛(𝑘)
, 𝑢) , 𝑑 (𝑥

𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1

) , 𝑑 (𝑢, 𝑇𝑢)} .

(52)
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By (18) and (50), we obtain

Lim
𝑘→∞

∫
𝑀(𝑥𝑛(𝑘) ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑢,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡. (53)

Since 𝜓 is upper semicontinuous, by letting 𝑘 → ∞ in
(51) we derive that

∫
𝑑(𝑢,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑑(𝑢,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡) < ∫
𝑑(𝑢,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡.

(54)

This is a contradiction.Hence, we obtain that 𝑢 is a fixed point
of 𝑇; that is, 𝑇𝑢 = 𝑢.

In the following, the hypothesis of upper semicontinuity
of 𝜓 is not required. Similar to Theorem 18, for the gener-
alized 𝛼 − 𝜓 contractive mappings of type II, we have the
following.

Theorem 19. Let (𝑋, 𝑑) be a complete generalizedmetric space
and let 𝑇 : 𝑋 → 𝑋 be generalized 𝛼 − 𝜓-contractive type
mappings of integral type II. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then there exists

a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1

for all 𝑘.

Then, there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Following the proof of Theorem 17 (which is the same
as Theorem 16), we know that the sequence {𝑥

𝑛
} defined by

𝑥
𝑛+1
= 𝑇𝑥
𝑛
for all 𝑛 ≥ 0 is Cauchy and converges to some

𝑢 ∈ 𝑋. Similarly, in view of Proposition 4,

lim
𝑘→∞

𝑑 (𝑥
𝑛(𝑘)+1

, 𝑇𝑢) = 𝑑 (𝑢, 𝑇𝑢) . (55)

Wewill show that𝑇𝑢 = 𝑢. Suppose, on the contrary, that𝑇𝑢 ̸=

𝑢. From (15) and condition (iii), there exists a subsequence
{𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑥

𝑛(𝑘)
, 𝑢) ≥ 1 for all 𝑘. By applying

(10), for all 𝑘, we get that

∫
𝑑(𝑥𝑛(𝑘)+1,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝛼 (𝑥
𝑛(𝑘)
, 𝑢) ∫
𝑑(𝑇𝑥𝑛(𝑘) ,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑁(𝑥𝑛(𝑘) ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡) ,

(56)

where

𝑁(𝑥
𝑛(𝑘)
, 𝑢)

= max{𝑑 (𝑥
𝑛(𝑘)
, 𝑢) ,

𝑑 (𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) + 𝑑 (𝑢, 𝑇𝑢)

2
} .

(57)

Letting 𝑘 → ∞ in (56), we have

lim
𝑘→∞

∫
𝑁(𝑥𝑛(𝑘) ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑢,𝑇𝑢)/2

0

𝜑 (𝑡) 𝑑𝑡. (58)

From (58), for 𝑘 large enough, we have𝑁(𝑥
𝑛(𝑘)
, 𝑢) > 0, which

implies that

𝜓(∫
𝑁(𝑥𝑛(𝑘) ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡) < ∫
𝑁(𝑥𝑛(𝑘) ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡. (59)

Thus, from (56) and (58), we have

∫
𝑑(𝑢,𝑇𝑢)

0

𝜑 (𝑡) 𝑑𝑡 ≤ ∫
𝑑(𝑢,𝑇𝑢)/2

0

𝜑 (𝑡) 𝑑𝑡, (60)

which is a contradiction. Hence, we obtain that 𝑢 is a fixed
point of 𝑇; that is, 𝑇𝑢 = 𝑢.

Theorem 20. Adding condition (𝑈) to the hypotheses of
Theorem 16 (resp.,Theorem 18), one obtains that𝑢 is the unique
fixed point of 𝑇.

Proof. By using the method of reductio ad absurdum, we will
show that 𝑢 is the unique fixed point of 𝑇. Let V be another
fixed point of 𝑇 with V ̸= 𝑢. By hypothesis (𝑈),

1 ≤ 𝛼 (𝑢, V) = 𝛼 (𝑇𝑢, 𝑇V) . (61)

Now, due to (8), we have

∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝛼 (𝑢, V) ∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡

= 𝛼 (𝑇𝑢, 𝑇V) ∫
𝑑(𝑇𝑢,𝑇V)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
max{𝑑(𝑢,V),𝑑(𝑢,𝑇𝑢),𝑑(V,𝑇V)}

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡) < ∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡

(62)

which is a contradiction. Hence, 𝑢 = V.

Theorem 21. Adding condition (𝑈) to the hypotheses of
Theorem 17 (resp.,Theorem 19), one obtains that 𝑢 is the unique
fixed point of 𝑇.

Proof. As in Theorem 20, we use the method of reductio ad
absurdum to show that 𝑢 is the unique fixed point of 𝑇.
Suppose, on the contrary, that V is another fixed point of 𝑇
with V ̸= 𝑢. It is evident that 1 ≤ 𝛼(𝑢, V) = 𝛼(𝑇𝑢, 𝑇V).
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Now, due to (10), we have

∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝛼 (𝑢, V) ∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡

= 𝛼 (𝑇𝑢, 𝑇V) ∫
𝑑(𝑇𝑢,𝑇V)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑁(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
max{𝑑(𝑢,V),(𝑑(𝑢,𝑇𝑢)+𝑑(V,𝑇V))/2}

0

𝜑 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡) < ∫
𝑑(𝑢,V)

0

𝜑 (𝑡) 𝑑𝑡

(63)

which is a contradiction. Hence, 𝑢 = V.

For the uniqueness of a fixed point of a generalized
𝛼 − 𝜓 contractive mapping, we will consider the following
hypotheses suggested in [11].

(H1): for all 𝑥, 𝑦 ∈ Fix(𝑇), there exists 𝑧 in 𝑋 such that
𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1.

(H2): let 𝑥, 𝑦 ∈ Fix(𝑇). If there exists {𝑧
𝑛
} in 𝑋 such that

𝛼(𝑥, 𝑧
𝑛
) ≥ 1 and 𝛼(𝑦, 𝑧

𝑛
) ≥ 1, then

𝑑 (𝑧
𝑛
, 𝑧
𝑛+1
) ≤ inf {𝑑 (𝑥, 𝑧

𝑛
) , 𝑑 (𝑦, 𝑧

𝑛
)} ∀𝑛 ∈ N. (64)

Theorem 22. Adding conditions (𝐻1), (𝐻2), and (𝑊) to the
hypotheses of Theorem 16 (resp., Theorem 18), one obtains that
𝑢 is the unique fixed point of 𝑇.

Proof. We will show that 𝑢 is the unique fixed point of 𝑇, by
using the method of reductio ad absurdum. Let V be another
fixed point of 𝑇 with V ̸= 𝑢; that is, 𝑑(𝑢, V) > 0. Due to (H1),
there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑢, 𝑧) ≥ 1, 𝛼 (V, 𝑧) ≥ 1. (65)

Since 𝑇 is 𝛼-admissible, from (65), we have

𝛼 (𝑢, 𝑇
𝑛

𝑧) ≥ 1, 𝛼 (V, 𝑇𝑛𝑧) ≥ 1, ∀𝑛. (66)

Define the sequence {𝑧
𝑛
} in𝑋 by 𝑧

𝑛+1
= 𝑇𝑧
𝑛
for all 𝑛 ≥ 0 and

𝑧
0
= 𝑧. From (66), for all 𝑛, we have

∫
𝑑(𝑢,𝑧𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑇𝑢,𝑇𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑢, 𝑧
𝑛
) ∫
𝑑(𝑇𝑢,𝑇𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑀(𝑢,𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡) ,

(67)

where

𝑀(𝑢, 𝑧
𝑛
) = max {𝑑 (𝑢, 𝑧

𝑛
) , 𝑑 (𝑢, 𝑇𝑢) , 𝑑 (𝑧

𝑛
, 𝑇𝑧
𝑛
)}

= max {𝑑 (𝑢, 𝑧
𝑛
) , 𝑑 (𝑧

𝑛
, 𝑧
𝑛+1
)} .

(68)

By (H2), we get

𝑀(𝑢, 𝑧
𝑛
) = 𝑑 (𝑢, 𝑧

𝑛
) ∀𝑛. (69)

Iteratively, by using inequality (67), we get that

∫
𝑑(𝑢,𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓
𝑛

(∫
𝑑(𝑢,𝑧0)

0

𝜑 (𝑡) 𝑑𝑡) , (70)

for all 𝑛. Letting 𝑛 → ∞ in the above inequality, we obtain

lim
𝑛→∞

∫
𝑑(𝑧𝑛 ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡 = 0, (71)

and hence

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑢) = 0. (72)

Similarly, one can show that

lim
𝑛→∞

𝑑 (𝑧
𝑛
, V) = 0. (73)

Regarding (W), there exists 𝑟
𝑢,V > 0 such that for all 𝑛

𝑟
𝑢,V < 𝑑 (𝑢, 𝑧𝑛) + 𝑑 (V, 𝑧𝑛) , (74)

and hence

∫
𝑟𝑢,V

0

𝜑 (𝑡) 𝑑𝑡 < ∫
𝑑(𝑢,𝑧𝑛)+𝑑(V,𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡. (75)

From (71) and (73), by passing 𝑛 → ∞, it follows that
𝑟
𝑢,V = 0, which is a contradiction. Thus, we proved that 𝑢 is
the unique fixed point of 𝑇.

Theorem 23. Adding conditions (𝐻1), (𝐻2), and (𝑊) to the
hypotheses of Theorem 17 (resp., Theorem 19), one obtains that
𝑢 is the unique fixed point of 𝑇.

Proof. Suppose that V is another fixed point of 𝑇 and 𝑢 ̸= V.
From (H1), there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑢, 𝑧) ≥ 1, 𝛼 (V, 𝑧) ≥ 1. (76)

Since 𝑇 is 𝛼-admissible, from (76), we have

𝛼 (𝑢, 𝑇
𝑛

𝑧) ≥ 1, 𝛼 (V, 𝑇𝑛𝑧) ≥ 1, ∀𝑛. (77)

Define the sequence {𝑧
𝑛
} in𝑋 by 𝑧

𝑛+1
= 𝑇𝑧
𝑛
for all 𝑛 ≥ 0 and

𝑧
0
= 𝑧. From (77), for all 𝑛, we have

∫
𝑑(𝑢,𝑧𝑛+1)

0

𝜑 (𝑡) 𝑑𝑡 = ∫
𝑑(𝑇𝑢,𝑇𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝛼 (𝑢, 𝑧
𝑛
) ∫
𝑑(𝑇𝑢,𝑇𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡

≤ 𝜓(∫
𝑁(𝑢,𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡) ,

(78)
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where

𝑁(𝑢, 𝑧
𝑛
) = max{𝑑 (𝑢, 𝑧

𝑛
) ,
𝑑 (𝑢, 𝑇𝑢) + 𝑑 (𝑧

𝑛
, 𝑇𝑧
𝑛
)

2
}

= max{𝑑 (𝑢, 𝑧
𝑛
) ,
𝑑 (𝑧
𝑛
, 𝑧
𝑛+1
)

2
} .

(79)

By (H2), we get

𝑁(𝑢, 𝑧
𝑛
) = 𝑑 (𝑢, 𝑧

𝑛
) ∀𝑛. (80)

Iteratively, by using inequality (78), we get that

∫
𝑑(𝑢,𝑧𝑛)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓
𝑛

(∫
𝑑(𝑢,𝑧0)

0

𝜑 (𝑡) 𝑑𝑡) , (81)

for all 𝑛. Letting 𝑛 → ∞ in the above inequality, we obtain

lim
𝑛→∞

∫
𝑑(𝑧𝑛 ,𝑢)

0

𝜑 (𝑡) 𝑑𝑡 = 0, (82)

and hence

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑢) = 0. (83)

Analogously, one can show that

lim
𝑛→∞

𝑑 (𝑧
𝑛
, V) = 0. (84)

Similarly, regarding (W) together with (83) and (84), it
follows that 𝑢 = V. Thus we proved that 𝑢 is the unique fixed
point of 𝑇.

It is known that Hausdorffness property implies the
uniqueness of the limit, so the (W) condition in Theorem 22
(resp., Theorem 23) can be replaced by Hausdorff property.
Then, the proof of the following result is clear and hence it is
omitted.

Corollary 24. Adding conditions (𝐻1) and (𝐻2) to the
hypotheses of Theorem 16 (resp., Theorems 18, 17, and 19) and
assuming that (𝑋, 𝑑) is Hausdorff, one obtains that 𝑢 is the
unique fixed point of 𝑇.

3. Consequences

In what follows we introduce the notion of 𝛼 − 𝜓-contractive
type mappings of integral type.

Definition 25 (Karapınar, [14]). Let (𝑋, 𝑑) be a generalized
metric space and let 𝑇 : 𝑋 → 𝑋 be a given mapping. One
says that 𝑇 is an 𝛼−𝜓-contractive mapping of integral type if
there exist two functions 𝛼 : 𝑋 × 𝑋 → [0, +∞) and 𝜓 ∈ Ψ
such that for each 𝑥, 𝑦 ∈ 𝑋

𝛼 (𝑥, 𝑦) ∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑑(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡) , (85)

where 𝜑 ∈ Φ
𝑠
.

Now, we state the following fixed point theorem.

Theorem 26 (Karapınar, [14]). Let (𝑋, 𝑑) be a complete
generalized metric space and let 𝑇 : 𝑋 → 𝑋 be an 𝛼 − 𝜓
contractive mapping of integral type. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) either 𝑇 is continuous or {𝑥
𝑛
} is regular.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. Theproof is verbatim of the proofs ofTheorems 16 and
18.

Theorem 27 (Karapınar, [14]). Adding condition (𝑈) to the
hypotheses ofTheorem 26, one obtains that 𝑢 is the unique fixed
point of 𝑇.

Proof. Theproof is verbatimof the proofs ofTheorem 20.

Remark 28. Theuniqueness condition (𝑈) inTheorem 27 can
be replaced with alternative criteria (H1), (H2), and (W) as in
Theorems 22 and 23.

Corollary 29. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a continuous mapping. Suppose
that there exists a function 𝜓 ∈ Ψ such that

∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑀(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡) , (86)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Φ
𝑠
and

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} . (87)

Then 𝑇 has a unique fixed point.

Proof. Let 𝛼 : 𝑋 × 𝑋 → [0,∞) be the mapping defined by
𝛼(𝑥, 𝑦) = 1, for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 is an 𝛼 − 𝜓-contraction
mapping of integral type I. It is clear that all conditions of
Theorem 20 are satisfied. Hence, 𝑇 has a unique fixed point.

Corollary 30. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a continuous mapping. Suppose
that there exists a function 𝜓 ∈ Ψ such that

∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜓(∫
𝑁(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡) , (88)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Φ
𝑠
and

𝑁(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
} . (89)

Then 𝑇 has a unique fixed point.

Proof. As in the corollary, it is sufficient to define𝛼 : 𝑋×𝑋 →
[0,∞) such that 𝛼(𝑥, 𝑦) = 1, for all 𝑥, 𝑦 ∈ 𝑋. Then, evidently,
𝑇 is an 𝛼 −𝜓-contraction mapping of integral type II. Hence,
all conditions of Theorem 21 are fulfilled. So, 𝑇 has a unique
fixed point.
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The following fixed point theorems follow immediately
from Corollary 29 by taking 𝜓(𝑡) = 𝜆𝑡, where 𝜆 ∈ (0, 1).

Corollary 31. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a continuous mapping. Suppose
that there exists a constant 𝜆 ∈ (0, 1) such that

∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜆∫
𝑀(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡, (90)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Φ
𝑠
and

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} . (91)

Then 𝑇 has a unique fixed point.

By taking 𝜓(𝑡) = 𝜆𝑡, where 𝜆 ∈ (0, 1), in Corollary 30, we
derive the following result.

Corollary 32. Let (𝑋, 𝑑) be a complete generalized metric
space and let 𝑇 : 𝑋 → 𝑋 be a continuous mapping. Suppose
that there exists a constant 𝜆 ∈ (0, 1) such that

∫
𝑑(𝑇𝑥,𝑇𝑦)

0

𝜑 (𝑡) 𝑑𝑡 ≤ 𝜆∫
𝑁(𝑥,𝑦)

0

𝜑 (𝑡) 𝑑𝑡, (92)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜑 ∈ Φ
𝑠
and

𝑁(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2
} . (93)

Then 𝑇 has a unique fixed point.

Corollary 33 (cf. [11]). Let (𝑋, 𝑑) be a complete generalized
metric space and let 𝑇 : 𝑋 → 𝑋 be a continuous mapping.
Suppose that there exists a function 𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑀(𝑥, 𝑦)) , (94)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point.

Proof. Let 𝛼 : 𝑋 × 𝑋 → [0,∞) be the mapping defined by
𝛼(𝑥, 𝑦) = 1, for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 is an 𝛼 − 𝜓-contraction
mapping. It is evident that all conditions of Theorem 8 are
satisfied. Hence, 𝑇 has a unique fixed point.

The following fixed point theorems follow immediately
from Corollary 33 by taking 𝜓(𝑡) = 𝜆𝑡, where 𝜆 ∈ (0, 1).

Corollary 34 (see e.g. [11]). Let (𝑋, 𝑑) be a complete general-
izedmetric space and let𝑇 : 𝑋 → 𝑋 be a continuousmapping.
Suppose that there exists a constant 𝜆 ∈ (0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑁 (𝑥, 𝑦) , (95)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point.

Now, we will show that many existing results in the
literature can be deduced easily from our obtained results.
The following theorems are the main results of Aydi et al. [11].

Theorem 35 (Aydi et al. [11]). Let (𝑋, 𝑑) be a complete
generalized metric space and let 𝑇 : 𝑋 → 𝑋 be a generalized
𝛼 − 𝜓 contractive mapping of type I. Suppose that

(i) 𝑇 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) either 𝑇 is continuous or if {𝑥
𝑛
} is a sequence in𝑋 such

that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as

𝑛 → ∞, then there exists a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
}

such that 𝛼(𝑥
𝑛(𝑘)
, 𝑥) ≥ 1 for all 𝑘.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. It is sufficient to take 𝜑(𝑡) = 1 in Theorems 16 and 18.

Theorem 36 (Aydi et al. [11]). Let (𝑋, 𝑑) be a complete
generalized metric space and let 𝑇 : 𝑋 → 𝑋 be a generalized
𝛼 − 𝜓 contractive mapping of type II. Suppose that

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and

𝛼(𝑥
0
, 𝑇2𝑥
0
) ≥ 1;

(iii) either 𝑇 is continuous or if {𝑥
𝑛
} is a sequence in𝑋 such

that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑥 ∈ 𝑋 as

𝑛 → ∞, then there exists a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
}

such that 𝛼(𝑥
𝑛(𝑘)
, 𝑥) ≥ 1 for all 𝑘.

Then there exists a 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.

Proof. If we take 𝜑(𝑡) = 1 in Theorems 17 and 19, then the
proof follows immediately.

Theorem 37 (Aydi et al. [11]). Adding condition (𝑈) to the
hypotheses ofTheorem 35 (resp., Theorem 36), one obtains that
𝑢 is the unique fixed point of 𝑇.

Proof. Let 𝜑(𝑡) = 1 in Theorems 20 and 21.

Remark 38. Notice that all consequences and corollaries of
Aydi et al. [11] can be added here since their main results
are corollaries of the main results of this paper. To avoid the
repetition, we do notwant to state themhere butwe underline
this fact.

Example 39. Let𝑋 = [0, 1] and 𝐴 = {1/𝑛 : 𝑛 ∈ N}. We define
the distance function 𝑑 : 𝑋 × 𝑋 → [0,∞) as follows:

𝑑 (𝑥, 𝑦) = 0 if 𝑥 = 𝑦,

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) ∀𝑥, 𝑦,

𝑑 (
1

2
,
1

3
) = 𝑑 (

1

4
,
1

5
) =

1

5
,

𝑑 (
1

2
,
1

5
) = 𝑑 (

1

3
,
1

4
) =

2

5
,

𝑑 (
1

2
,
1

4
) = 𝑑 (

1

3
,
1

5
) = 1,

𝑑 (𝑥, 𝑦) =
𝑥 − 𝑦

 otherwise.

(96)

It is clear that (𝑋, 𝑑) is a generalized metric space. Notice also
that 𝑑 is not a metric since

1 = 𝑑 (
1

2
,
1

4
) > 𝑑 (

1

2
,
1

3
) + 𝑑 (

1

3
,
1

4
) =

3

5
. (97)
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We define 𝑇 : 𝑋 → 𝑋 as 𝑇𝑥 = 1 − 𝑥. Furthermore, let
𝜓 : [0,∞) → [0,∞) be defined as 𝜓(𝑡) = 𝑡/3 and 𝜑(𝑡) = 1.
Now, we define 𝛼𝑋 × 𝑋 → [0,∞) as follows:

𝛼 (𝑥, 𝑦) =

{{{

{{{

{

1 if 𝑥 = 𝑦,

5𝑥 if 𝑥, 𝑦 ∈ {1
2
,
1

3
,
1

4
,
1

5
} with 𝑥 ̸= 𝑦,

0 otherwise.

(98)

Hence, all conditions ofTheorem 20 are satisfied and 𝑥 = 1/2
is a unique fixed point of 𝑇.
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