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This paper introduces new approach to approximation of continuous vector-functions and vector sequences by fractal interpolation
vector-functions which are multidimensional generalization of fractal interpolation functions. Best values of fractal interpolation
vector-functions parameters are found. We give schemes of approximation of some sets of data and consider examples of
approximation of smooth curves with different conditions.

1. Introduction

It is well known that interpolation and approximation are
an important tool for interpretation of some complicated
data. But there are multitudes of interpolationmethods using
several families of functions: polynomial, exponential, ratio-
nal, trigonometric, and splines to name a few. Still it should
be noted that all these conventional nonrecursive methods
produce interpolants that are differentiable a number of times
except possibly at a finite set of points. But, inmany situations,
we deal with irregular forms, which can not be approximate
with desired precision. Fractal approximation became a
suitable tool for that purpose. This tool was developed and
studied in [1–3].

We know that such curves as coastlines, price graphs,
encephalograms, and many others are fractals since their
Hausdorff-Besicovitch dimension is greater than unity. To
approximate them, we use fractal interpolation curves [1]
and their generalizations [4] instead of canonical smooth
functions (polynomials and splines).

This paper is multidimensional generalization of [5]. In
Section 2, we consider fractal interpolation vector-functions
which depend on several matrices of parameters. Example of

such functions is given. In Section 3, we set the optimization
problem for approximation of vector-function from 𝐿

2
by

fractal approximation vector-functions. We find best values
ofmatrix parameters bymeans ofmatrix differential calculus.
Section 4 illustrates some examples.

2. Fractal Interpolation Vector-Functions

Let [𝑎, 𝑏] ⊂ R be a nonempty interval; let 1 < 𝑁 ∈ N and
{(𝑡
𝑛
, x
𝑛
) ∈ [𝑎, 𝑏] × R𝑀 | 𝑎 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑁−1
< 𝑡
𝑁
= 𝑏}

be the interpolation points. For all 𝑛 = 1,𝑁, consider affine
transformation

𝐴
𝑛
: R
𝑀+1

→ R
𝑀+1

,

𝐴
𝑛
(

𝑡

x
) := (

𝑎
𝑛

0
c
𝑛

D
𝑛

)(

𝑡

x
) + (

𝑒
𝑛

f
𝑛

) .

(1)

Henceforth, small bold letters denote columns (rows) of
length𝑀 and big bold letters denote matrices of𝑀×𝑀.

Require that for all 𝑛 the following conditions hold true:

𝐴
𝑛
(𝑡
0
, x
0
) = (𝑡

𝑛−1
, x
𝑛−1

) , 𝐴
𝑛
(𝑡
𝑁
, x
𝑁
) = (𝑡

𝑛
, x
𝑛
) . (2)
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Then,

𝑎
𝑛
𝑡
0
+ 𝑒
𝑛
= 𝑡
𝑛−1

,

𝑎
𝑛
𝑡
𝑁
+ 𝑒
𝑛
= 𝑡
𝑛
,

c
𝑛
𝑡
0
+D
𝑛
x
0
+ f
𝑛
= x
𝑛−1

,

c
𝑛
𝑡
𝑁
+D
𝑛
x
𝑁
+ f
𝑛
= x
𝑛
.

(3)

Solving the system, we have

𝑎
𝑛
=
𝑡
𝑛
− 𝑡
𝑛−1

𝑏 − 𝑎
,

𝑒
𝑛
=
𝑏𝑡
𝑛−1

− 𝑎𝑡
𝑛

𝑏 − 𝑎
,

c
𝑛
=
x
𝑛
− x
𝑛−1

−D
𝑛
(x
𝑁
− x
0
)

𝑏 − 𝑎
,

f
𝑛
=
𝑏x
𝑛−1

− 𝑎x
𝑛
−D
𝑛
(𝑏x
0
− 𝑎x
𝑁
)

𝑏 − 𝑎
,

(4)

where matrices {D
𝑛
}
𝑁

𝑛=1
are considered as parameters.

Remark 1. Notice that ∑𝑁
𝑛=1

𝑎
𝑛
= 1.

Also notice that for all 𝑛 operator 𝐴
𝑛
takes straight seg-

ment between (𝑡
0
, x
0
) and (𝑡

𝑁
, x
𝑁
) to straight segment which

connects points of interpolation (𝑡
𝑛−1

, x
𝑛−1

) and (𝑡
𝑛
, x
𝑛
).

LetK be a space of nonempty compact subsets of R𝑀+1,
with Hausdorff metric. Define the Hutchinson operator [6]

Φ : K → K, Φ (𝐸) =

𝑁

⋃

𝑛=1

𝐴
𝑛
(𝐸) . (5)

By the condition (2) Hutchinson operator Φ takes a graph of
any continuous vector-function on segment [𝑎, 𝑏] to a graph
of a continuous vector-function on the same segment. Thus,
Φ can be treated as operator on the space of continuous
vector-functions (𝐶[𝑎, 𝑏])𝑀.

For all 𝑛 = 1,𝑁, denote

𝑝
𝑛
: [𝑎, 𝑏] → [𝑡

𝑛−1
, 𝑡
𝑛
] , 𝑝

𝑛
(𝑡) := 𝑎

𝑛
𝑡 + 𝑒
𝑛
,

q
𝑛
: [𝑎, 𝑏] → R

𝑀
, q
𝑛
(𝑡) := c

𝑛
𝑡 + f
𝑛
.

(6)

In (1), substitute x to vector-function g(𝑡).We have thatΦ acts
on (𝐶[𝑎, 𝑏])𝑀 according to

(Φg) (𝑡)

=

𝑁

∑

𝑛=1

((q
𝑛
∘ 𝑝
−1

𝑛
) (𝑡) +D

𝑛
(g ∘ 𝑝−1

𝑛
) (𝑡)) 𝜒

[𝑡
𝑛−1
,𝑡
𝑛
]
(𝑡) .

(7)

Suppose that we consider all matricesD
𝑛
as linear opera-

tors onR𝑀. Furthermore, they are contractivemappings; that
is, constant 𝑐 ∈ [0, 1) exists such that for all k,w ∈ R𝑀 and
𝑛 = 1,𝑁 we have

D𝑛 (k) −D
𝑛
(w) ≤ 𝑐 |k − w| . (8)

Then, from (7), it follows that operator Φ is contraction with
contraction coefficient 𝑐 on Banach space ((𝐶[𝑎, 𝑏])𝑀, ‖ ⋅ ‖

∞
),

where ‖g(𝑡) − h(𝑡)‖
∞

:= sup{𝑡 ∈ [𝑎, 𝑏] : |g(𝑡) − h(𝑡)|}. By
the fixed-point theorem, there exists unique vector-function
g⋆ ∈ (𝐶[𝑎, 𝑏])𝑀 such thatΦg⋆ = g⋆ and for all g ∈ (𝐶[𝑎, 𝑏])𝑀
we have

lim
𝑘→∞


Φ
𝑘
(g) − g⋆∞ = 0. (9)

Function g⋆ is called fractal interpolation vector-function.
It is easy to notice that if g ∈ (𝐶[𝑎, 𝑏])

𝑀, g(𝑡
0
) = x

0
, and

g(𝑡
𝑁
) = x
𝑁
, thenΦ(g) passes through points of interpolation.

In this case functionsΦ𝑘(g) are called prefractal interpolation
vector-functions of order 𝑘.

Example 2. Figure 1 shows fractal interpolation vector-
function of plane. Here 𝑡

0
= −1, 𝑡

1
= 0, and 𝑡

2
= 1 and

𝑥
0
= (1, −1), 𝑥

1
= (0, 0), and 𝑥

2
= (1, 1). Values of matrices

D
1
andD

2
are

(

−
1

4

3

4

−
1

4

1

2

) , (

−
1

4
−
3

4

1

4

1

2

) . (10)

3. Approximation

Henceforth, we assume that for all 𝑛 = 1,𝑁 linear operator
D
𝑛
is contractive mapping with contraction coefficient 𝑐 ∈

[0, 1). We approximate vector-function g ∈ (𝐶[𝑎, 𝑏])
𝑀

by fractal interpolation vector-function g⋆ constructed on
points of interpolation {(𝑡

𝑛
, x
𝑛
)}
𝑁

𝑛=0
. Thus, we need to fit

matrix parameters D
𝑛
to minimize the distance between g

and g⋆.
We use methods that have been developed for fractal

image compression [7]. Denote Banach space of square
integrated vector-functions on segment as (𝐿𝑀

2
[𝑎, 𝑏], ‖ ⋅ ‖

2
),

where norm ‖ ⋅ ‖
2
defines

g
2
= √∫

𝑏

𝑎

g (𝑡)


2 d𝑡. (11)

Then from (7) and (8) and Remark 1 it follows that for all
g, h ∈ 𝐿𝑀

2
[𝑎, 𝑏]

Φg − Φh


2

2

= ∫

𝑏

𝑎

Φg − Φh


2 d𝑡

=

𝑁

∑

𝑛=1

∫

𝑡
𝑛

𝑡
𝑛−1


D
𝑛
∘ (g − h) ∘ 𝑢−1

𝑛
(𝑡)


2

d𝑡

=

𝑁

∑

𝑛=1

𝑎
𝑛
∫

𝑏

𝑎

D𝑛 ∘ (g − h) (𝑡)
2 d𝑡

≤

𝑁

∑

𝑛=1

𝑎
𝑛
𝑐
2
∫

𝑏

𝑎

(g − h) (𝑡)
2 d𝑡 = 𝑐2 g − h

2

2
.

(12)
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Figure 1: Fractal interpolation vector-function g⋆.

Thus, Φ : 𝐿
𝑀

2
[𝑎, 𝑏] → 𝐿

𝑀

2
[𝑎, 𝑏] is a contractive operator and

g⋆ is its fixed point.
Instead of minimizing ‖g − g⋆‖

2
we minimize ‖g − Φg‖

2

that makes the problem of optimization much easier. The
collage theorem provides validity of such approach [8].

Theorem 3. Let (𝑋, 𝑑) be complete metric space and 𝑇 : 𝑋 →

𝑋 is contractive mapping with contraction coefficient 𝑐 ∈ [0, 1)
and fixed point 𝑥⋆. Then

𝑑 (𝑥, 𝑥
⋆
) ≤

𝑑 (𝑥, 𝑇 (𝑥))

1 − 𝑐
(13)

for all 𝑥 ∈ 𝑋.

Considering (4) and (6), rewrite (7)

(Φg) (𝑡) =
𝑁

∑

𝑛=1

(u
𝑛
(𝑡) +D

𝑛
(g ∘ 𝑤

𝑛
(𝑡) − k

𝑛
(𝑡))) 𝜒

[𝑡
𝑛−1
,𝑡
𝑛
]
(𝑡) ,

(14)

where

u
𝑛
(𝑡) =

(x
𝑛
− x
𝑛−1

) 𝑡 + (𝑡
𝑛
x
𝑛−1

− 𝑡
𝑛−1

x
𝑛
)

𝑡
𝑛
− 𝑡
𝑛−1

,

k
𝑛
(𝑡) =

(x
𝑁
− x
0
) 𝑡 + (𝑡

𝑛
x
0
− 𝑡
𝑛−1

x
𝑁
)

𝑡
𝑛
− 𝑡
𝑛−1

,

𝑤
𝑛
(𝑡) =

(𝑏 − 𝑎) 𝑡 + (𝑡
𝑛
𝑎 − 𝑡
𝑛−1

𝑏)

𝑡
𝑛
− 𝑡
𝑛−1

.

(15)

Thus, we minimize the functional

g − Φg


2

2

=

𝑁

∑

𝑛=1

∫

𝑡
𝑛

𝑡
𝑛−1

g (𝑡) − u
𝑛
(𝑡) −D

𝑛
(g ∘ 𝑤

𝑛
(𝑡) − k

𝑛
(𝑡))



2 d𝑡.
(16)

Lemma 4. Let f , h ∈ 𝐿
𝑀

2
[𝑎, 𝑏] be square integrated vector-

functions. Suppose that matrix ∫
𝑏

𝑎
hh𝑇dt is nondegenerated.

Matrix integration is implied to be componentwise. Then, the
functional

Ψ : R
𝑀×𝑀

→ R, Ψ (X) = ∫
𝑏

𝑎

|f − Xh|2 dt (17)

reaches its minimum in X = ∫
𝑏

𝑎
fh𝑇dt (∫ba hhTdt)−1.

Proof. To prove it, we use matrix differential calculus [9].
Consider

dΨ (X,U) = d(∫
𝑏

𝑎

(f − Xh)𝑇 (f − Xh) d𝑡)U

= d(∫
𝑏

𝑎

(f𝑇f − h𝑇X𝑇f − f𝑇Xh + h𝑇X𝑇Xh) d𝑡)U

= ∫

𝑏

𝑎

(−h𝑇U𝑇f − f𝑇Uh + h𝑇U𝑇Xh + h𝑇X𝑇Uh) d𝑡

= 2∫

𝑏

𝑎

(−h𝑇U𝑇f + h𝑇U𝑇Xh) d𝑡.
(18)

Necessary condition of existence of functional Ψ extremum
is dΨ(X,U) = 0 for all U ∈ R𝑀×𝑀. Since there is 𝑈-linearity
of functional dΨ(X,U), it is sufficient to prove dΨ(X,U) = 0

only formatricesU that consist of𝑀2−1 zeros and one unity.
Therefore, we have𝑀2 expressions for finding coefficients of
matrix X. In matrix form these expressions are as follows:

∫

𝑏

𝑎

fh𝑇d𝑡 = ∫
𝑏

𝑎

Xhh𝑇d𝑡, (19)

from which

X = ∫

𝑏

𝑎

fh𝑇d𝑡 (∫
𝑏

𝑎

hh𝑇d𝑡)
−1

. (20)

Hence,

d2Ψ (X,U) = 2∫
𝑏

𝑎

h𝑇U𝑇Uh d𝑡 = 2∫
𝑏

𝑎

|Uh|2 d𝑡 ≥ 0, (21)

and then functional Ψ is convex one. Thus, the value X is
absolute minimum of Ψ.

From Lemma 4, it follows that functional (16) reaches
minimum when

D
𝑛
= ∫

𝑡
𝑛

𝑡
𝑛−1

(g (𝑡) − u
𝑛
(𝑡)) (g ∘ 𝑤

𝑛
(𝑡) − k

𝑛
(𝑡))
𝑇 d𝑡

⋅ (∫

𝑡
𝑛

𝑡
𝑛−1

(g ∘ 𝑤
𝑛
(𝑡) − k

𝑛
(𝑡)) (g ∘ 𝑤

𝑛
(𝑡) − k

𝑛
(𝑡))
𝑇 d𝑡)
−1

.

(22)
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Figure 2: Vector-function g(𝑡) = (𝑡
2
, 𝑡
3
) and fractal interpolation

vector-function g⋆ completely identical.

Example 5. Let us approximate vector-function g(𝑡) =

(𝑡
2
, 𝑡
3
) on segment [−1, 1] by the fractal interpolation vector-

function constructed on values of g(𝑡) in points 𝑡
0
= −1, 𝑡

1
=

0, and 𝑡
2
= 1 and 𝑥

0
= (1, −1), 𝑥

1
= (0, 0), and 𝑥

2
= (1, 1)

(see Figure 2). Then,

𝑎
1
= 𝑎
2
=
1

2
,

𝑒
1
= −

1

2
, 𝑒

2
=
1

2
,

u
1
= (−𝑡, 𝑡) , u

2
= (𝑡, 𝑡) ,

k
1
= (1, 1 + 2𝑡) , k

2
= (1, −1 + 2𝑡) ,

𝑤
1
= 1 + 2𝑡, 𝑤

2
= −1 + 2𝑡

2
.

(23)

CalculateD
1
,D
2
according to formula (22) as follows:

D
1
= (

1

4
0

−
3

8

1

8

) D
2
= (

1

4
0

3

8

1

8

) . (24)

Apply affine transformations from (1) to vector {𝑡, 𝑡2, 𝑡3}

𝐴
1
(

𝑡

𝑡
2

𝑡
3

) =(

(

1

2
0 0

−
1

2

1

4
0

3

8
−
3

8

1

8

)

)

(

𝑡

𝑡
2

𝑡
3

)+(

(

−
1

2

1

4

−
1

8

)

)

=
(
(

(

𝑡

2
−
1

2

𝑡
2

4
−
𝑡

2
+
1

4

𝑡
3

8
−
3𝑡
2

8
+
3𝑡

8
−
1

8

)
)

)

=
(
(

(

𝑡− 1

2

(
𝑡 − 1

2
)

2

(
𝑡 − 1

2
)

3

)
)

)

,

𝐴
2
(

𝑡

𝑡
2

𝑡
3

) =(

(

1

2
0 0

1

2

1

4
0

3

8

3

8

1

8

)

)

(

𝑡

𝑡
2

𝑡
3

)+(

(

1

2

1

4

1

8

)

)

=
(
(

(

𝑡

2
+
1

2

𝑡
2

4
+
𝑡

2
+
1

4

𝑡
3

8
+
3𝑡
2

8
+
3𝑡

8
+
1

8

)
)

)

=
(
(

(

𝑡+ 1

2

(
𝑡 + 1

2
)

2

(
𝑡 + 1

2
)

3

)
)

)

.

(25)

Thus, Φ(g) = g and g = g⋆.

4. Discretization and Results

In this section, we approximate discrete data 𝑍 =

{(𝑧
𝑚
,w
𝑚
)}
𝐾

𝑘=0
, 𝑎 = 𝑧

0
< 𝑧
1
< ⋅ ⋅ ⋅ < 𝑧

𝐾
= 𝑏 by fractal

interpolation vector-function g⋆ constructed on points of
interpolation 𝑋 = {(𝑡

𝑖
, x
𝑖
)}
𝑁

𝑖=0
, 𝑎 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑏,

𝑁 ≪ 𝐾. Assume that𝑋 ⊂ 𝑍. We fit matrix parametersD
𝑛
to

minimize functional
𝐾

∑

𝑘=0

w𝑘 − g⋆ (𝑧
𝑘
)


2

. (26)

It is necessary to use results of previous section. Approxi-
mate 𝑍 by constant piecewise vector-function g : [𝑎, 𝑏] →

R𝑀. More precisely g(𝑧) = w
𝑘
, where (𝑧

𝑘
,w
𝑘
) ∈ 𝑍 𝑧

𝑘

is the nearest approximation neighbor of 𝑧. By substituting
integrals in (22) to discretization points sums we obtain

D
𝑛

= ( ∑

𝑧
𝑘
∈[𝑡𝑛−1,𝑡𝑛]

(g (𝑧
𝑘
) − u
𝑛
(𝑧
𝑘
)) (g ∘ 𝑤

𝑛
(𝑧
𝑘
) − k
𝑛
(𝑧
𝑘
))
𝑇

)

⋅ ( ∑

𝑧
𝑘
∈[𝑡𝑛−1,𝑡𝑛]

(g ∘ 𝑤
𝑛
(𝑧
𝑘
) − k
𝑛
(𝑧
𝑘
))
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Figure 3: Approximation of vector-function g(𝑡) = (𝑡(𝑡 − 2), (𝑡 − 1)
2
(𝑡 + 1)

2
) by fractal interpolation function g⋆ with three (a) and four (b)

points of interpolation correspondingly.

⋅ (g ∘ 𝑤
𝑛
(𝑧
𝑘
) − k
𝑛
(𝑧
𝑘
))
𝑇

)

−1

,

𝑛 = 1,𝑁.

(27)

It is sufficient to apply (1) for constructing fractal interpola-
tion vector-function after we findD

𝑛
.

Consider several examples of approximation of discrete
data.

Example 6. Let us approximate vector-function g(𝑡) = (𝑡(𝑡 −

2), (𝑡 − 1)
2
(𝑡 + 1)

2
), where 𝑡 ∈ [−3, 3]. Figure 3 shows the

results. Here, we have two pictures; the first one illustrates
initial vector-function and its approximation with 3 points
and the second one with 4 points, where two functions are
nearly identical.

In this case affine transformations (1) have the following
form:

𝐴
1
(

𝑡

𝑥
1

𝑥
2

) = (

0.5 0 0

−0.8842 0.0943 −0.1045

−0.1038 −0.0530 0.2287

)(

𝑡

𝑥
1

𝑥
2

)

+(

0

0.7320

5.3989

) ,

𝐴
2
(

𝑡

𝑥
1

𝑥
2

) = (

0.5 0 0

3.4602 0.7065 −1.5549

−0.4554 0.1504 −0.2847

)(

𝑡

𝑥
1

𝑥
2

)

+(

0.75

10.8875

8.1844

) .

(28)

Remark 7. Vectors c
𝑛
in matrices of affine transformations

(1) equal 0 (like in previous example). It means that fractal
interpolation vector-function can be treated as attractor of
classical affine IFS in R𝑀.

Example 8. Next example is devoted to a circle g(𝑡) =

(cos 𝑡, sin 𝑡), 𝑡 ∈ [0, 2𝜋]. Figure 4 shows the results. Here we
also have two pictures; the first one illustrates initial vector-
function and its approximation with 3 points and the second
one with 5 points.

In this case affine transformations (1) have the following
form:

𝐴
1
(

𝑡

𝑥
1

𝑥
2

) = (

0.5 0 0

−0.3180 0.0006 0.2128

−0.0013 −0.5686 −0.0038

)(

𝑡

𝑥
1

𝑥
2

)

+(

0

0.9993

0.5686

) ,

𝐴
2
(

𝑡

𝑥
1

𝑥
2

) = (

0.5 0 0

0.3181 −0.0053 −0.2128

0.0040 0.5686 0.0020

)(

𝑡

𝑥
1

𝑥
2

)

+(

3.151

−0.9945

−0.5770

) .

(29)

Example 9. Spiral of Archimedes g(𝑡) = (𝑡 cos 𝑡, 𝑡 sin 𝑡), 𝑡 ∈
[0, 5𝜋], where the scheme is equal to the examples above, but
here we use far more points of interpolation, as illustrated in
Figure 5.
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Figure 4: Approximation of vector-function g(𝑡) = (cos 𝑡, sin 𝑡) by fractal interpolation function g⋆ with three (a) and five (b) points of
interpolation correspondingly.
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Figure 5: Approximation of vector-function g(𝑡) = (𝑡 cos 𝑡, 𝑡 sin 𝑡), 𝑡 ∈ [0, 5𝜋], by fractal interpolation function g⋆ with twelve (a) and
seventeen (b) points of interpolation correspondingly.

Example 10. Figure 6 shows approximation of vector-
function g(𝑡) = (cos(1.5𝑡), sin(𝑡)), 𝑡 ∈ [0, 12𝜋], by
fractal interpolation vector-function with sixteen points
of interpolation.

Example 11. The example illustrates approximation of graph
of Weierstrass function 𝜔(𝑥) = ∑

∞

𝑛=0
(1/2)
𝑛 cos(2𝜋4𝑛𝑥)

(Figure 7) by fractal interpolation vector-function.

This example is taken from [10], where fractal approxima-
tion is used for approximate calculation of box dimension of
fractal curves.

5. Conclusion

In this paper, we have introduced new effective method of
approximation of continuous vector-functions and vector
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Figure 6: Approximation of vector-function g(𝑡) = (cos(1.5𝑡),
sin(𝑡)) by fractal interpolation function g⋆.
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Figure 7: Weierstrass function (blue one) and approximating
vector-function (red one).

sequences by fractal interpolation vector-functions, which
are affine transformations withmatrix parameters. Parameter
fitting was a crucial part of approximation process. We have
found appropriate parameter values of fractal interpolation
vector-functions and illustrate it with several examples of
different types of discrete data.

We assume that fractal approximation is highly promising
computational tool for different types of data and it can
be used in many ways, even in interdisciplinary fields,
with a quite high precision that allows us to apply fractal
approximation methods to a wide variety of curves, smooth
and nonsmooth alike.
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