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We establish a global existence theorem, and uniqueness and stability of solutions of the Cauchy problem for the Fourier-
transformed Fokker-Planck-Boltzmann equation with singular Maxwellian kernel, which may be viewed as a kinetic model for
the stochastic time-evolution of characteristic functions governed by Brownian motion and collision dynamics.

1. Introduction

In this paper, we consider the Cauchy problem for the space-
homogeneous Fokker-Planck-Boltzmann equation which
takes the form

𝜕
𝑡
𝑓 (V, 𝑡) = 𝑄 (𝑓, 𝑓) (V, 𝑡) + ]Δ𝑓 (V, 𝑡)

for (V, 𝑡) ∈ R
3
× (0,∞) ,

𝑓 (V, 0) = 𝑓
0
(V) for V ∈ R

3
.

(1)

Here, the diffusion constant ] ≥ 0, 𝑓
0
is a nonnegative initial

datum and 𝑄(𝑓) stands for the collision term defined as

𝑄 (𝑓, 𝑓) (V)

= ∫
R3
∫
S2
𝑏 (k ⋅ 𝜎) [𝑓 (V) 𝑓 (V

∗
) − 𝑓 (V) 𝑓 (V

∗
)] 𝑑𝜎 𝑑V

∗

(2)

for each scalar-valued function 𝑓 on R3 where

V =
V + V
∗

2
+

V − V
∗



2
𝜎,

V
∗
=
V + V
∗

2
−

V − V
∗



2
𝜎,

k = V − V
∗

V − V
∗



,

(3)

the collision kernel 𝑏 is a nonnegative function on [−1, 1], and
𝑑𝜎 denotes the area measure on the unit sphere S2.

In kinetic theory of a rarefied gas, the Fokker-Planck-
Boltzmann equation (1) models the single-particle distribu-
tion function 𝑓 of its molecules which evolve under binary
and elastic collision dynamics as well as Brownian motion
(see below). Each pair (V, V

∗
) represents the postcollision

velocities of two molecules colliding with velocities (V, V
∗
).

The collision kernel 𝑏 is an implicitly-defined function
which represents a specific type of collision dynamics in
terms of the deviation angle 𝜃 defined by cos 𝜃 = k ⋅ 𝜎. In a
physically relevant model known as the Maxwellian kernel, it
is customary to assume that 𝑏(cos 𝜃) is supported in [0, 𝜋/2],
bounded away from 𝜃 = 0, but develops a singularity at 𝜃 = 0

in the form

𝑏 (cos 𝜃) sin 𝜃 ∼ 𝜃
−3/2 as 𝜃 → 0+, (4)
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which accounts for grazing collisions in the long-range inter-
actions.

The Maxwellian kernel is a special instance of

𝐵 =
V − V
∗


𝜆

𝑏 (cos 𝜃) (−3 < 𝜆 ≤ 2) , (5)

known as the collision kernel of inverse-power potential type,
and we refer to Villani’s review paper [1] for more details.
Besides the physically relevant assumption (4) on 𝑏, a sim-
plified one is that

‖𝑏‖
𝐿
1
(S2) = 2𝜋∫

𝜋/2

0

𝑏 (cos 𝜃) sin 𝜃 𝑑𝜃 < +∞, (6)

referred to as Grad’s angular cutoff assumption.
The inhomogeneous Fokker-Planck-Boltzmann equation

reads

𝜕
𝑡
𝑓 + V ⋅ ∇

𝑥
𝑓 = 𝑄 (𝑓, 𝑓) + ]Δ V𝑓 in R

3
×R
3
× (0,∞)

(7)

for the unknown density 𝑓 = 𝑓(𝑥, V, 𝑡), where the space
variable 𝑥 ∈ R3 stands for the position. In the case when
the collision kernel 𝐵 takes form (5) and the angular part 𝑏
satisfies certain cutoff assumption of type (6), let us mention
some of the earlier works on the Cauchy problem for (7).
In the small perturbations of the vacuum state, a global
existence result is obtained by Hamdache [2]. In the context
of renormalized solutions, global existence and stability of
solutionswith large data are established byDiPerna and Lions
[3]. In the linearized context around the global Maxwellian
𝑀(V) = (2𝜋)

−3/2 exp(−|V|2/2), global existence or asymptotic
behavior of solutions is investigated by Li andMatsumura [4],
Xiong et al. [5], and Zhong and Li [6]. We also refer to Li [7]
for the diffusive property of solutions and further references
cited in the aforementioned work.

As for the homogeneous Fokker-Planck-Boltzmann
equation, we are aware only of results of Goudon [8] for
the global existence of a weak solution in the case when
the collision kernel is given by (5) with −3 < 𝜆 < −2

and 𝑏 satisfies a singular condition of type (4). For the
homogeneous Boltzmann equation, however, more extensive
results are available. We refer to Arkeryd [9, 10], Goudon [8],
and Villani [11] and to the references cited therein.

We recall that the Fourier transform of a complex Borel
measure 𝜇 on R3 is defined by

𝜇 (𝜉) = ∫
R3
𝑒
−𝑖𝜉⋅V

𝑑𝜇 (V) (𝜉 ∈ R
3
) , (8)

which extends to any tempered distribution on R3 via
the usual functional pairing relations. If 𝜇 is a probability
measure, that is, a nonnegative Borel measure with unit mass,
𝜇 is said to be a characteristic function.

From a probability theory point of view, Cauchy problem
(1), with an initial probability density 𝑓

0
, could be considered

as a governing equation for the time-evolution of a family
of probability densities {𝑓(⋅, 𝑡)}

𝑡≥0
and, hence, it is natural

to study the problem on the Fourier transform side for it is

fundamental in probability theory to investigate a probability
distribution through its characteristic function.

In [12], Bobylev discovered a remarkably simple formula
for the Fourier transform of the collision term which reads

[𝑄 (𝑓, 𝑓)] ̂ (𝜉)

= ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝑓 (𝜉
+
) 𝑓 (𝜉
−
) − 𝑓 (𝜉) 𝑓 (0)] 𝑑𝜎,

𝜉
+
=
𝜉 +

𝜉
 𝜎

2
, 𝜉

−
=
𝜉 −

𝜉
 𝜎

2

(9)

for each nonzero 𝜉 ∈ R3. To simplify, we introduce the
Boltzmann-Bobylev operatorB defined by

B (𝜙) (𝜉) = ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉) 𝜙 (0)] 𝑑𝜎

(10)

for each complex-valued function 𝜙 on R3. In view of
Bobylev’s formula, the Fourier-transformed version of (1)
takes the form

(𝜕
𝑡
+ ] 𝜉


2

) 𝜙 (𝜉, 𝑡) = B (𝜙) (𝜉, 𝑡)

for (𝜉, 𝑡) ∈ R
3
× (0,∞) ,

𝜙 (𝜉, 0) = 𝜙
0
(𝜉) for 𝜉 ∈ R

3
,

(11)

which is equivalent to the integral equation

𝜙 (𝜉, 𝑡) = 𝑒
−]|𝜉|2𝑡

𝜙
0
(𝜉) + ∫

𝑡

0

𝑒
−]|𝜉|2(𝑡−𝜏)

B (𝜙) (𝜉, 𝜏) 𝑑𝜏, (12)

provided that differentiation under the integral sign was
permissible.

In the theory of stochastic processes, a Markov process
{𝑋
𝑡
}
𝑡≥0

in any Euclidean space R𝑛, with stationary indepen-
dent increments, for which the characteristic functions of
its continuous transition probability densities are given by
the Gaussian family {𝑒−|𝜉|

2
𝑡
}
𝑡≥0

is known as Brownian motion
or the symmetric stable Lévi process of index 2 (see [13]).
Hence, Cauchy problem (11)may be viewed as a kineticmodel
for the stochastic time-evolution of characteristic functions
governed by Brownian motion and Maxwellian collision
dynamics. Formore detailed interpretations andmotivations,
we refer to the inspiring paper [14] of Bisi et al. which deals
with Cauchy problem (11) in the inelastic setting.

In this paper, we are concerned about global existence and
uniqueness and stability of solutions of Cauchy problem (11)
in the space of characteristic functions. Before proceeding
further, let us describe briefly some of the earlier works
about the Cauchy problem for the corresponding Fourier-
transformed Boltzmann equation:

𝜕
𝑡
𝜙 (𝜉, 𝑡) = B (𝜙) (𝜉, 𝑡)

for (𝜉, 𝑡) ∈ R
3
× (0,∞) ,

𝜙 (𝜉, 0) = 𝜙
0
(𝜉) for 𝜉 ∈ R

3

(13)
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for which the Maxwellian kernel 𝑏 is assumed to satisfy the
singular or noncutoff condition as described in (4).

(a) It is Pulvirenti and Toscani [15] who first established
a global existence of solution to (13) on the space of
characteristic functions 𝜙 satisfying

𝜙 (0) = 1, ∇𝜙 (0) = 0, Δ𝜙 (0) = −3. (14)

They also proved uniqueness and stability of solutions
in terms of Tanaka’s functionals related with proba-
bilistic Wasserstein distance.

(b) In [16], Toscani and Villani proved uniqueness and
stability, on the same solution space, with respect to
the Fourier-based metric 𝑑

2
which is a particular case

of

𝑑
𝛼
(𝑓, 𝑔) =

𝜙 − 𝜓
𝛼 = sup
𝜉∈R3

𝜙 (𝜉) − 𝜓 (𝜉)


𝜉

𝛼 (15)

for each 𝛼 ≥ 0 where 𝜙 = 𝑓 and 𝜓 = 𝑔 (see
also [17] for the properties of Fourier-based metrics
and their applications to the Boltzmann and Fokker-
Planck-Boltzmann equations in the inelastic setting).

(c) In [18], Bobylev and Cercignani constructed an
explicit class of self-similar solutions whose proba-
bility densities possess infinite energy for all time.
Specifically, they exhibited a class of characteristic
functions Φ(𝜉, 𝑡) satisfying (13) and ΔΦ(0, 𝑡) = −∞

for all 𝑡 ≥ 0.
(d) In [19], Cannone and Karch established global
existence and uniqueness and stability of solutions
on the spaceK𝛼, to be explained below, which turns
out to be larger than the solution space of Pulvirenti
and Toscani and closely related with infinite energy
solutions. In [20], Morimoto improved their work
by weakening the assumptions on the kernel and
providing another proof of uniqueness.

As to Cauchy problem (11), our aim is to establish global
existence and uniqueness and stability of solutions on the
space introduced by Cannone andKarch [19]. Following their
notation, letK be the set of all characteristic functions onR3.
For 0 < 𝛼 ≤ 2, let

K
𝛼
= {𝜙 ∈ K :

𝜙 − 1
𝛼 = sup
𝜉∈R3

𝜙 (𝜉) − 1


𝜉

𝛼

< +∞} . (16)

While K𝛼 is not a vector space, it is a complete metric
space with respect to the Fourier-based metric 𝑑

𝛼
defined

in (15) (for the proofs and further properties, see [19]). As a
monotonically indexed family, the embedding

{1} ⊂ K
𝛽
⊂ K
𝛼
⊂ K (17)

holds for 0 < 𝛼 ≤ 𝛽 ≤ 2. Any characteristic function 𝜙

satisfying (14) clearly belongs toK2. More extensively, it can

be trivially verified that if 𝜇 is a probability measure on R3

such that

∫
R3
|V|𝛼 𝜇 (𝑑V) < +∞ (18)

with the additional assumption that the first-order moments
vanish in the case 1 < 𝛼 ≤ 2, then 𝜇 ∈ K𝛼. The reverse
implication, however, is false as it can be seen from the Lévi
characteristic function 𝜇(𝜉) = 𝑒

−|𝜉|
𝛼

with 0 < 𝛼 < 2 which
belongs toK𝛼 but

∫
R3
|V|𝛼 𝜇 (𝑑V) = +∞. (19)

As ameans of treating singularity, we followMorimoto to
consider weak integrability of the kernel 𝑏 in the form

∫

𝜋/2

0

𝑏 (cos 𝜃) sin 𝜃 sin𝛼0 (𝜃
2
)𝑑𝜃 < +∞ (20)

with 0 < 𝛼
0
≤ 2. It is certainly satisfied by the trueMaxwellian

kernel 𝑏 which behaves like (4) as long as 𝛼
0

> 1/2. In
addition, we will consider

𝜆
𝛼
= ∫

S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


)(

𝜉
+
𝛼

+
𝜉
−
𝛼

𝜉

𝛼

− 1)𝑑𝜎

= 2𝜋∫

𝜋/2

0

𝑏 (cos 𝜃) sin 𝜃

× [cos𝛼 (𝜃
2
) + sin𝛼 (𝜃

2
) − 1] 𝑑𝜃

(21)

for 0 < 𝛼 ≤ 2, which is independent of 𝜉 ̸= 0 and finite under
condition (20) for all 𝛼

0
≤ 𝛼 ≤ 2. Introduced by Cannone and

Karch, these quantities will serve as the stability exponents.
To state our results, we set down the precise solution

spaces. Let 𝑇 > 0 be arbitrary. As it is customary, we denote
by 𝐶([0, 𝑇];K𝛼) the space of all complex-valued functions 𝜙
on R3 × [0, 𝑇] such that 𝜙(⋅, 𝑡) ∈ K𝛼(R3) for each 𝑡 ∈ [0, 𝑇]

and the map 𝑡 → ‖𝜙(𝑡) − 1‖
𝛼
is continuous on [0, 𝑇]. By

the Riemann-Lebesgue lemma, each characteristic function
is continuous inR3 and, hence, the space continuity is alluded
in the definition of 𝐶([0, 𝑇];K𝛼).

In consideration of time regularity, we will writeΩ𝛼(R3 ×
[0, 𝑇]) for the space of 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) such that 𝜙(𝜉, ⋅) ∈
𝐶([0, 𝑇]), 𝜕

𝑡
𝜙(𝜉, ⋅) ∈ 𝐶((0, 𝑇)) for each fixed 𝜉 ∈ R3. We put

Ω
𝛼
(R
3
× [0,∞)) = ⋃

𝑇>0

Ω
𝛼
(R
3
× [0, 𝑇]) . (22)

Our main result for global existence is as follows.

Theorem 1. Assume that the collision kernel 𝑏 satisfies a weak
integrability condition (20) for some 0 < 𝛼

0
≤ 2 and 𝛼

0
≤ 𝛼 ≤

2. Then, for any initial datum 𝜙
0
∈ K𝛼, there exists a classical

solution 𝜙 to the Cauchy problem (11) in the space Ω𝛼(R3 ×
[0,∞)) satisfying

𝜙 (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) . (23)
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A distinctive feature is the existence of a solution satisfy-
ing the stated maximum growth estimate which asserts in a
sense that the solution stays within Brownian motion for all
time.

To state our main result for stability and uniqueness, we
put

Ω
𝛼

] (R
3
× [0,∞))

= { 𝜙 ∈ Ω
𝛼
(R3 × [0,∞)) :

𝜙 (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) } .

(24)

Theorem 2. Under the same hypotheses on 𝛼, 𝑏 as in Theo-
rem 1, if 𝜙, 𝜓 are solutions to Cauchy problem (11) in the space
Ω
𝛼

] (R
3
×[0,∞)) corresponding to the initial data 𝜙

0
, 𝜓
0
∈ K𝛼,

respectively, then, for all 𝑡 ≥ 0,

sup
𝜉∈R3

[𝑒
]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) − 𝜓 (𝜉, 𝑡)


𝜉

𝛼

]

≤ 𝑒
𝜆𝛼𝑡 sup
𝜉∈R3

𝜙0 (𝜉) − 𝜓0 (𝜉)


𝜉

𝛼

.

(25)

In particular, for any initial datum 𝜙
0
∈ K𝛼, Cauchy problem

(11) has at most one solution in the space Ω𝛼] (R
3
× [0,∞)).

Upon setting ] = 0, both theorems are reduced to those
of Cannone and Karch and Morimoto. In fact, due to a
special structure of the Boltzmann-Bobylev operator, to be
explained below, the existence theorem is an almost instant
consequence of their existence theorem except for some
technical points. On the other hand, the stability theorem is
not so straightforward and our proof will be carried out along
Gronwall-type reasonings.

As some functionals or expressions involving the space
and time variables are too lengthy to put effectively, we will
often abbreviate the space variables for simplicity in the
sequel.

2. Preliminaries

A well-known Fourier transform formula states that

𝑒
−|𝜉|
2
𝑡
=

1

(4𝜋𝑡)
3/2

∫
R3
𝑒
−𝑖𝜉⋅V

𝑒
−|V|2/4𝑡

𝑑V (𝜉 ∈ R
3
, 𝑡 > 0) (26)

and, hence, it is clear that the Gaussian family {𝑒−|𝜉|
2
𝑡
}
𝑡≥0

⊂

K whose probability densities are self-similar Gaussian
functions (see, e.g., [21]).

Lemma 3. If 0 < 𝛼 ≤ 2 and 𝑡 > 0, then

sup
𝜉∈R3

1 − 𝑒
−|𝜉|
2
𝑡

𝜉

𝛼

≤ 𝑡
𝛼/2
. (27)

Proof. Observe that

sup
𝜉∈R3

1 − 𝑒
−|𝜉|
2
𝑡

𝜉

𝛼

= 𝑡
𝛼/2

⋅ sup
𝑟>0

𝑔
𝛼
(𝑟)

with 𝑔
𝛼
(𝑟) = (

1 − 𝑒
−𝑟

𝑟𝛼/2
) .

(28)

Since 𝑔
𝛼
is a smooth function on (0,∞) with

𝑔
𝛼
(𝑟) ≤ min (𝑟1−𝛼/2, 1) ,

lim
𝑟→0+

𝑔
𝛼
(𝑟) = lim

𝑟→∞
𝑔
𝛼
(𝑟) = 0,

(29)

the assertion follows.

TheBoltzmann-Bobylev operator defined in (10) takes the
form

B (𝜙) (𝜉) = ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜎 (30)

for each characteristic function 𝜙. We setB(𝜙)(0) = 0 in the
sequel.

For a nonzero 𝜉 ∈ R3, by considering a parametrization
of the unit sphere in terms of the deviation angle from 𝜉/|𝜉|,
it is well known that

B (𝜙) (𝜉) = ∫

𝜋/2

0

𝑏 (cos 𝜃) sin 𝜃

× {∫
S1(𝜉)

[𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜔}𝑑𝜃

(31)

in whichS1(𝜉) = S2∩𝜉⊥ and 𝑑𝜔 denotes the areameasure on
the unit circle S1 ⊂ R3. As it is defined in (9), the spherical
variables 𝜉+, 𝜉− are expressed in terms of 𝜃, 𝜔 via

𝜎 = cos 𝜃 𝜉
𝜉


+ sin 𝜃𝜔. (32)

The following are due toMorimoto [20, page 555].We put

𝜇
𝛼
= 2𝜋∫

𝜋/2

0

𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃
2
)𝑑𝜃, (33)

which is finite under condition (20) for any 𝛼
0
≤ 𝛼 ≤ 2.

Lemma 4. For 0 < 𝛼 ≤ 2, assume that the kernel 𝑏 satisfies
the condition 𝜇

𝛼
< +∞. Let 𝜙 ∈ K𝛼 and 𝜉 ∈ R3 − {0}. Then,


∫
S1(𝜉)

[𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜔



≤ 16𝜋
𝜙 − 1

𝛼
𝜉

𝛼 sin𝛼 (𝜃

2
)

(34)

for each 𝜃 ∈ (0, 𝜋/2]. Moreover,
B (𝜙) (𝜉)

 ≤ 8𝜇
𝛼

𝜙 − 1
𝛼
𝜉

𝛼

. (35)
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As an application, we have the following time-continuity
property.

Lemma 5. For 0 < 𝛼 ≤ 2, assume that the kernel 𝑏 satisfies
the condition 𝜇

𝛼
< +∞ and 𝑇 > 0. If 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) and

𝜙(𝜉, ⋅) ∈ 𝐶([0, 𝑇]) for each 𝜉 ∈ R3, thenB(𝜙)(𝜉, ⋅) ∈ 𝐶([0, 𝑇])

for each 𝜉 ∈ R3.

Proof. Fix a nonzero 𝜉 ∈ R3 and 𝑡
0
∈ [0, 𝑇]. For any sequence

(𝑡
𝑛
) ⊂ [0, 𝑇] with 𝑡

𝑛
→ 𝑡
0
, we may write, with the aid of (31),

B (𝜙) (𝜉, 𝑡
𝑛
)

= ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
, 𝑡
𝑛
) 𝜙 (𝜉
−
, 𝑡
𝑛
) − 𝜙 (𝜉, 𝑡

𝑛
)] 𝑑𝜎

= ∫

𝜋/2

0

𝑏 (cos 𝜃) sin 𝜃𝐴
𝑛
(𝜉, 𝜃) 𝑑𝜃 where

𝐴
𝑛
(𝜉, 𝜃) = ∫

S1(𝜉)

[𝜙 (𝜉
+
, 𝑡
𝑛
) 𝜙 (𝜉
−
, 𝑡
𝑛
) − 𝜙 (𝜉, 𝑡

𝑛
)] 𝑑𝜔.

(36)

By the estimate (34), we notice that

𝐴𝑛 (𝜉, 𝜃)
 ≤ 16𝜋

𝜙 (𝑡𝑛) − 1
𝛼
𝜉

𝛼 sin𝛼 (𝜃

2
)

≤ 16𝜋𝐶
𝛼
(𝑇)

𝜉

𝛼 sin𝛼 (𝜃

2
) where

𝐶
𝛼
(𝑇) = max

𝑡∈[0,𝑇]

𝜙(𝑡) − 1
𝛼 .

(37)

By the continuity of 𝑡 → ‖𝜙(𝑡) − 1‖
𝛼
, we have 𝐶

𝛼
(𝑇) < +∞.

Since

𝑏 (cos 𝜃) sin 𝜃 𝐴𝑛 (𝜉, 𝜃)


≤ 16𝜋𝐶
𝛼
(𝑇)

𝜉

𝛼

𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃
2
)

≡ 𝐴 (𝜉, 𝜃)

(38)

uniformly in 𝑛 and the definition of 𝜇
𝛼
gives

∫

𝜋/2

0

𝐴 (𝜉, 𝜃) 𝑑𝜃 = 8𝜇
𝛼
𝐶
𝛼
(𝑇)

𝜉

𝛼

< +∞, (39)

we may apply Lebesgue’s dominated convergence
theorem to evaluate the limit under the integral sign
lim
𝑛→∞

B(𝜙)(𝜉, 𝑡
𝑛
) = B(𝜙)(𝜉, 𝑡

0
), which proves continuity

at 𝑡
0
.

3. Global Existence

An important feature of the Boltzmann-Bobylev operatorB
is that it satisfies the pointwise identity

𝑒
ℎ(𝑡)|𝜉|

2

B (𝜙) (𝜉, 𝑡) = B (𝑒
ℎ(𝑡)|𝜉|

2

𝜙) (𝜉, 𝑡) (40)

for any scalar-valued function ℎ defined on [0,∞) and for
any scalar-valued function 𝜙 on R3 × [0,∞), which results

from |𝜉
+
|
2
+ |𝜉
−
|
2
= |𝜉|
2 for all 𝜉 ∈ R3 and 𝜎 ∈ S2. As a

consequence, at the formal level, it is straightforward to find
that if 𝜙 is a solution to Cauchy problem (13) of the Fourier-
transformed Boltzmann equation, then 𝑒−]|𝜉|

2
𝑡
𝜙 is a solution

to Cauchy problem (11) of our consideration.
To be rigorous, we begin with quoting the existence

theorem of Cannone and Karch [19] and Morimoto [20] in
a combined manner.

Theorem 6. Assume that 𝑏 satisfies (20) for some 0 < 𝛼
0
≤ 2.

Let 𝛼
0
≤ 𝛼 ≤ 2 and 𝜙

0
∈ K𝛼. Then, there exists a unique

classical solution𝜙 to Cauchy problem (13) in the spaceΩ𝛼(R3×
[0,∞)).

Remark 7. In their work, Cannone and Karch constructed a
unique solution on the space 𝐶([0,∞);K𝛼) without men-
tioning time-regularity conditions. SinceK𝛼 is not a Banach
space, the meaning of a classical solution to Cauchy problem
(20) is not so clear in this space. Inspecting their proof and
making use of the time continuity of the Boltzmann-Bobylev
operator as stated in Lemma 5, however, it is not hard to find
that their solution is indeed a classical solution in the space
Ω
𝛼
(R3 × [0,∞)) for which the partial derivative in time is

taken in the usual pointwise sense.
Let us consider an equivalent formulation of (13):

𝜙 (𝜉, 𝑡) = 𝜙
0
(𝜉) + ∫

𝑡

0

B (𝜙) (𝜉, 𝜏) 𝑑𝜏, (41)

where the time integration is taken in the usual Riemann
sense. By Lemma 5, if 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) and 𝜙(𝜉, 𝑡) is
continuous in 𝑡 for each fixed 𝜉, then this integral is well
defined for a kernel 𝑏 satisfying 𝜇

𝛼
< +∞.

We will need a technical lemma in support ofTheorem 6.

Lemma 8. For 0 < 𝛼 ≤ 2, let 𝜇
𝛼
< +∞ and 𝜙

0
∈ K𝛼. Assume

that 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) and 𝜙(𝜉, 𝑡) is continuous in 𝑡 ∈ [0, 𝑇]

for each fixed 𝜉. If𝜙 is a solution to (41), then, for all 𝑠, 𝑡 ∈ [0, 𝑇],

(i) 𝜙 (𝑡) − 1
𝛼 ≤ 𝑒

8𝜇𝛼𝑡 𝜙0 − 1
𝛼 ,

(ii) 𝜙 (𝑡) − 𝜙 (𝑠)
𝛼 ≤ (8𝜇

𝛼
𝑒
8𝜇𝛼𝑇 𝜙0 − 1

𝛼) |𝑡 − 𝑠| .

(42)

Proof. (i) An application of Lemma 4 yields

𝜙 (𝑡) − 1
𝛼 ≤

𝜙0 − 1
𝛼 + 8𝜇𝛼 ∫

𝑡

0

𝜙 (𝜏) − 1
𝛼 𝑑𝜏,

(43)

which yields the desired estimate in view of Gronwall’s
lemma.

(ii) Assuming 𝑠 < 𝑡, we apply Lemma 4 once again to find
𝜙 (𝑡) − 𝜙 (𝑠)

𝛼

≤ ∫

𝑡

𝑠

sup
𝜉∈R3

B (𝜙) (𝜉, 𝜏)


𝜉

𝛼

𝑑𝜏

≤ 8𝜇
𝛼
(max
𝜏∈[0,𝑇]

𝜙 (𝜏) − 1
𝛼) |𝑡 − 𝑠| ,

(44)

which yields the desired estimate upon combining with (i).
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Proof of Theorem 1. Since the stated assumptions on 𝑏 and 𝜙
0

are the same as those of Theorem 6, there exists a unique
solution 𝜙 to Cauchy problem (13) in the space Ω

𝛼
(R3 ×

[0,∞)). Put

Φ (𝜉, 𝑡) = 𝑒
−]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) . (45)

We will verify that Φ is a solution to Cauchy problem (11)
satisfying the stated maximum growth estimate.

(i) Clearly Φ(⋅, 𝑡) ∈ K for any fixed 𝑡 ≥ 0. Moreover,
Lemma 3 gives

Φ (𝜉, 𝑡) − 1


𝜉

𝛼

≤ 𝑒
−]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) − 1


𝜉

𝛼

+
1 − 𝑒
−]|𝜉|2𝑡

𝜉

𝛼

≤
𝜙 (𝑡) − 1

𝛼 + (]𝑡)
𝛼/2

,

(46)

which implies Φ(⋅, 𝑡) ∈ K𝛼 for any fixed 𝑡 ≥ 0 with

‖Φ (𝑡) − 1‖
𝛼
≤ 𝑒
8𝜇𝛼𝑡 𝜙0 − 1

𝛼 + (]𝑡)
𝛼/2

. (47)

(ii) For 𝑠, 𝑡 ∈ [0, 𝑇], with an arbitrary 𝑇 > 0, writing

Φ (𝑡) − Φ (𝑠) = −𝑒
−]|𝜉|2𝑠

[1 − 𝑒
−]|𝜉|2(𝑡−𝑠)

] 𝜙 (𝑡)

+ 𝑒
−]|𝜉|2𝑠

[𝜙 (𝑡) − 𝜙 (𝑠)] ,

(48)

we deduce from Lemmas 3 and 8
‖Φ (𝑡) − Φ (𝑠)‖

𝛼

≤ (] |𝑡 − 𝑠|)𝛼/2 + 𝜙 (𝑡) − 𝜙 (𝑠)
𝛼

≤ 𝐶
𝑇
|𝑡 − 𝑠|

𝛼/2 where

𝐶
𝑇
= ]𝛼/2 + 8𝜇

𝛼
𝑒
8𝜇𝛼𝑇 𝜙0 − 1

𝛼 𝑇
1−𝛼/2

.

(49)

Thus, themap 𝑡 → ‖Φ(𝑡)−1‖
𝛼
is Lipschitz continuous

in [0, 𝑇] for
‖Φ (𝑡) − 1‖

𝛼
− ‖Φ (𝑠) − 1‖

𝛼

 ≤ ‖Φ (𝑡) − Φ (𝑠)‖
𝛼
. (50)

Therefore, Φ ∈ Ω
𝛼
(R3 × [0,∞)) for the time-regularity

conditions are obviously valid. In particular, Lemmas 4 and 5
imply thatB(Φ) is well defined with

B (Φ) (𝜉, 𝑡)
 ≤ 8𝜇

𝛼
‖Φ (𝑡) − 1‖

𝛼

𝜉

𝛼 (51)

for each (𝜉, 𝑡) ∈ R3 × [0,∞) andB(Φ)(𝜉, 𝑡) is continuous in
𝑡 for each 𝜉. Clearly, Φ(𝜉, 0) = 𝜙

0
(𝜉). We calculate

𝜕
𝑡
Φ (𝜉, 𝑡)

= −] 𝜉

2

𝑒
−]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) + 𝑒
−]|𝜉|2𝑡

𝜕
𝑡
𝜙 (𝜉, 𝑡)

= −] 𝜉

2

Φ (𝜉, 𝑡) + 𝑒
−]|𝜉|2𝑡

B (𝜙) (𝜉, 𝑡)

= −] 𝜉

2

Φ (𝜉, 𝑡) +B (Φ) (𝜉, 𝑡)

(52)

for all (𝜉, 𝑡) ∈ R3 × (0,∞), where we have used (40). Thus,Φ
satisfies Cauchy problem (11). Since it is obvious that

Φ (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) , (53)

our proof of Theorem 1 is complete.

Remark 9. In our forthcoming paper [22], we study the
Cauchy problem for the Boltzmann equation coupled with
fractional Laplacian diffusion terms on the Fourier transform
side in which we give direct proofs of global existence.

4. Uniqueness and Stability of Solutions

To proceed our proof for stability of solutions, we begin with
estimating the time-growth behavior of ‖𝜙(𝑡) − 1‖

𝛼
for each

solution 𝜙 of Cauchy problem (11) or integral equation (12).

Lemma 10. Under the same hypotheses on 𝛼, 𝑏, 𝜙 as stated in
Lemma 8, if 𝜙 is a solution to (12), then

𝜙 (𝑡) − 1
𝛼 ≤ 𝑒

8𝜇𝛼𝑡 [
𝜙0 − 1

𝛼 + (]𝑡)
𝛼/2
]

(𝑡 ≥ 0) .

(54)

Proof. Writing

𝜙 (𝜉, 𝑡) − 1

𝜉

𝛼

=
𝑒
−]|𝜉|2𝑡

𝜙
0
(𝜉) − 1

𝜉

𝛼

+ ∫

𝑡

0

𝑒
−]|𝜉|2(𝑡−𝜏)B (𝜙) (𝜉, 𝜏)

𝜉

𝛼

𝑑𝜏

(55)

and applying Lemma 4, it is straightforward to obtain

𝜙 (𝑡) − 1
𝛼 ≤

𝜙0 − 1
𝛼 + (]𝑡)

𝛼/2

+ 8𝜇
𝛼
∫

𝑡

0

𝜙 (𝜏) − 1
𝛼 𝑑𝜏.

(56)

A Gronwall-type argument yields
𝜙 (𝑡) − 1

𝛼

≤ 𝑒
8𝜇𝛼𝑡 {

𝜙0 − 1
𝛼 +

𝛼]𝛼/2

2
∫

𝑡

0

𝑒
−8𝜇𝛼𝜏𝜏

𝛼/2−1
𝑑𝜏}

≤ 𝑒
8𝜇𝛼𝑡 [

𝜙0 − 1
𝛼 + (]𝑡)

𝛼/2
] .

(57)

Proof ofTheorem 2. Wewill prove the stated stability inequal-
ity for each 𝑡 ∈ [0, 𝑇] with an arbitrarily fixed 𝑇 > 0.

Let us consider a monotone sequence (𝑏
𝑛
) of kernels

obtained from 𝑏 by cutting off the singularity at 𝜃 = 0 in the
manner

𝑏
𝑛
(cos 𝜃) = 𝑏 (cos 𝜃) 𝜒

[1/𝑛,𝜋/2]
(𝜃) , 𝑛 = 1, 2, . . . . (58)

Since 𝑏 is assumed to be at least bounded away from 𝜃 = 0,
it is clear that each 𝑏

𝑛
is integrable on the unit sphere, 𝑏

𝑛
≤ 𝑏
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and 𝑏
𝑛
→ 𝑏monotonically. Setting 𝑏𝑟

𝑛
= 𝑏 − 𝑏

𝑛
for each 𝑛, we

introduce two sequences of operators (G
𝑛
), (R
𝑛
) defined by

G
𝑛
(𝜙) (𝜉) = ∫

S2
𝑏
𝑛
(
𝜉 ⋅ 𝜎
𝜉


) 𝜙 (𝜉
+
) 𝜙 (𝜉
−
) 𝑑𝜎,

R
𝑛
(𝜙) (𝜉) = ∫

S2
𝑏
𝑟

𝑛
(
𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜎.

(59)

Suppose that 𝜙, 𝜓 ∈ Ω
𝛼

] (R
3
× [0,∞)) are solutions to

Cauchy problem (11) with the initial data 𝜙
0
, 𝜓
0

∈ K𝛼,
respectively. Then,

𝜕
𝑡
(𝜙 − 𝜓) + (

𝑏𝑛
1 + ] 𝜉


2

) (𝜙 − 𝜓)

= [G
𝑛
(𝜙) −G

𝑛
(𝜓)] + [R

𝑛
(𝜙) −R

𝑛
(𝜓)]

(60)

for which we denote

𝑏𝑛
1 = 2𝜋∫

𝜋/2

1/𝑛

𝑏 (cos 𝜃) sin 𝜃 𝑑𝜃 < +∞. (61)

Upon setting

𝑈 (𝜉, 𝑡) = 𝑒
]|𝜉|2𝑡

[
𝜙 (𝜉, 𝑡) − 𝜓 (𝜉, 𝑡)

𝜉

𝛼

] (62)

for 𝜉 ̸= 0 and 𝑈(0, 𝑡) = 0, the above identity implies


𝜕
𝑡
[𝑒
‖𝑏𝑛‖1𝑡𝑈 (𝜉, 𝑡)]



≤ 𝑒
(‖𝑏𝑛‖1+]|𝜉|

2
)𝑡

× {



G
𝑛
(𝜙) −G

𝑛
(𝜓)

𝜉

𝛼



+



R
𝑛
(𝜙) −R

𝑛
(𝜓)

𝜉

𝛼



} .

(63)

Let 𝜌 > 0 be arbitrary. Put 𝑈
𝜌
(𝑡) = sup

|𝜉|≤𝜌
|𝑈(𝜉, 𝑡)| and

𝛾
𝑛,𝛼

= ∫
S2
𝑏
𝑛
(
𝜉 ⋅ 𝜎
𝜉


)(

𝜉
+
𝛼

+
𝜉
−
𝛼

𝜉

𝛼

)𝑑𝜎

= 2𝜋∫

𝜋/2

1/𝑛

𝑏 (cos 𝜃) sin 𝜃 [cos𝛼 (𝜃
2
) + sin𝛼 (𝜃

2
)] 𝑑𝜃.

(64)

For |𝜉| ≤ 𝜌, we make use of |𝜉+| ≤ |𝜉| to estimate

𝜙 (𝜉
+
, 𝑡) − 𝜓 (𝜉

+
, 𝑡)



≤ 𝑒
−]|𝜉+|2𝑡 𝜉

+

𝛼

× {𝑒
]|𝜉+|2𝑡



𝜙 (𝜉
+
, 𝑡) − 𝜓 (𝜉

+
, 𝑡)

𝜉
+
𝛼



}

≤ 𝑒
−]|𝜉+|2𝑡 𝜉

+

𝛼

𝑈
𝜌
(𝑡) .

(65)

Likewise, we make use of |𝜉−| ≤ |𝜉| to estimate

𝜙 (𝜉
−
, 𝑡) − 𝜓 (𝜉

−
, 𝑡)

 ≤ 𝑒
−]|𝜉−|2𝑡 𝜉

−

𝛼

𝑈
𝜌
(𝑡) (66)

for all |𝜉| ≤ 𝜌. Since |𝜙(𝜉, 𝑡)| ≤ 𝑒
−]|𝜉|2𝑡, |𝜓(𝜉, 𝑡)| ≤ 𝑒

−]|𝜉|2𝑡, we
find

𝜙 (𝜉
+
, 𝑡) 𝜙 (𝜉

−
, 𝑡) − 𝜓 (𝜉

+
, 𝑡) 𝜓 (𝜉

−
, 𝑡)



≤ 𝑒
−]|𝜉|2𝑡

(
𝜉
+

𝛼

+
𝜉
−

𝛼

)𝑈
𝜌
(𝑡)

(67)

for all |𝜉| ≤ 𝜌. Henceforth, it is straightforward to deduce

𝑒
]|𝜉|2𝑡



G
𝑛
(𝜙) −G

𝑛
(𝜓)

𝜉

𝛼



≤ 𝛾
𝑛,𝛼
𝑈
𝜌
(𝑡) (68)

for all |𝜉| ≤ 𝜌. On the other hand, Lemma 4 gives

R𝑛 (𝜙) (𝜉, 𝑡)
 = 16𝜋

𝜙 (𝑡) − 1
𝛼
𝜉

𝛼

× ∫

1/𝑛

0

𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃
2
)𝑑𝜃.

(69)

By considering similar estimate forR
𝑛
(𝜓), hence, we note

𝑒
]|𝜉|2𝑡



R
𝑛
(𝜙) −R

𝑛
(𝜓)

𝜉

𝛼



≤ 𝑀
𝑛 (70)

for all |𝜉| ≤ 𝜌 and 𝑡 ∈ [0, 𝑇], where we put

𝑀
𝑛
= 𝑀(𝜌, 𝑇)∫

1/𝑛

0

𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃
2
)𝑑𝜃,

𝑀 (𝜌, 𝑇) = 16𝜋𝑒
]𝜌2𝑇

× max
𝑡∈[0,𝑇]

(
𝜙 (𝑡) − 1

𝛼 +
𝜓 (𝑡) − 1

𝛼) .

(71)

In view of the growth estimate of Lemma 10,

𝑀(𝜌, 𝑇)

≤ 16𝜋𝑒
(]𝜌2+8𝜇𝛼)𝑇

× [
𝜙0 − 1

𝛼 +
𝜓0 − 1

𝛼 + 2 (]𝑇)
𝛼/2
] < +∞,

(72)

and so an application of Lebesgue’s dominated convergence
theorem shows𝑀

𝑛
→ 0 as 𝑛 → ∞ under the assumption

𝜇
𝛼
< +∞.
Now, estimates (68) and (70) imply


𝜕
𝑡
[𝑒
‖𝑏𝑛‖1𝑡𝑈 (𝜉, 𝑡)]


≤ 𝛾
𝑛,𝛼
𝑒
‖𝑏𝑛‖1𝑡𝑈

𝜌
(𝑡) + 𝑀

𝑛
𝑒
‖𝑏𝑛‖1𝑡 (73)

for all |𝜉| ≤ 𝜌, 𝑡 ∈ [0, 𝑇]. A standard Gronwall-type argument
gives

𝑈
𝜌
(𝑡) ≤ 𝑒

(𝛾𝑛,𝛼−‖𝑏𝑛‖1)𝑡𝑈
𝜌
(0) +

𝑀
𝑛

𝛾
𝑛,𝛼

−
𝑏𝑛

1

[𝑒
(𝛾𝑛,𝛼−‖𝑏𝑛‖1)𝑡 − 1] .

(74)
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Since

𝛾
𝑛,𝛼

−
𝑏𝑛

1 = 2𝜋∫

𝜋/2

1/𝑛

𝑏 (cos 𝜃) sin 𝜃

× [cos𝛼 (𝜃
2
) + sin𝛼 (𝜃

2
) − 1] 𝑑𝜃,

(75)

we notice 0 < 𝛾
𝑛,𝛼

− ‖𝑏
𝑛
‖
1
→ 𝜆
𝛼
increasingly as 𝑛 → ∞.

Passing to the limit, we conclude 𝑈
𝜌
(𝑡) ≤ 𝑒

𝜆𝛼𝑡𝑈
𝜌
(0) for all

𝑡 ∈ [0, 𝑇]. Letting 𝜌 → +∞, we finally obtain

sup
𝜉∈R3

𝑈 (𝜉, 𝑡)
 ≤ 𝑒
𝜆𝛼𝑡 sup
𝜉∈R3

𝑈 (𝜉, 0)
 , (76)

which is equivalent to the desired stability estimate on [0, 𝑇].

5. Concluding Remarks

Having established global existence and uniqueness and
stability of solutions to the Fourier-transformed version of
Fokker-Planck-Boltzmann equation on the spaceK𝛼, we end
our paper with a few additional remarks.

(a) Concerning Theorem 1, while it asserts that there
exists a solution 𝜙 of Cauchy problem (11) satisfying

𝜙 (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) , (77)

a natural question is whether this dominating prop-
erty would hold for any solution of (11). The answer
is affirmative in the case when the collision kernel 𝑏
satisfies Grad’s angular cutoff assumption.
Suppose 𝑏 ∈ 𝐿

1
(S2) and 𝜙

0
∈ K. If 𝜙 is a solution to

(11) in the space 𝐶([0,∞);K), then necessarily (77)
holds.
As it can be proved in an elementary way, we leave its
verification to the interested reader. For the singular
case of 𝑏, however, we were not able to draw any
conclusion.

(b) In the cutoff case of 𝑏, it is possible to construct
an explicit solution of Cauchy problem (11) by using
the Wild sum method as developed in [15, 17, 23].
Assuming ‖𝑏‖

𝐿
1
(S2) = 1, if we follow the same known

method, then it is straightforward to derive

𝜙 (𝜉, 𝑡) = 𝑒
−(1+]|𝜉|2)𝑡

∞

∑

𝑛=0

𝑢
𝑛
(𝜉) (1 − 𝑒

−𝑡
)
𝑛

, (78)

where 𝑢
0
= 𝜙
0
is the initial datum and

𝑢
𝑛+1

(𝜉) =
1

𝑛 + 1

𝑛

∑

𝑗=0

∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) 𝑢
𝑗
(𝜉
+
) 𝑢
𝑛−𝑗

(𝜉
−
) 𝑑𝜎 (79)

for 𝑛 = 0, 1, . . .. It can be shown plainly that if 𝜙
0
∈

K𝛼, then this explicit solution 𝜙 ∈ K𝛼 for 0 <

𝛼 ≤ 2. By uniqueness, this solution coincides with the
solution of Theorem 1.

(c) Concerning the asymptotic behavior of a solution𝜙 to
Cauchy problem (11), an important question common
in kinetic theory is whether there exists a steady-state
equilibrium 𝜙

∞
such that 𝜙 → 𝜙

∞
as 𝑡 → ∞ in

some sense. For instance, in the inelastic case, it is
shown that there exists such steady-state equilibrium
for a solution of the Cauchy problem for the cor-
responding Fokker-Planck-Boltzmann equation (see
[17] and further references therein). In the elastic
case, however, it is likely that the answer would be
negative in view of the pointwise behavior 𝜙(𝜉, 𝑡) →

0 due to growth estimate (77). A seemingly reasonable
alternative is to investigate if the solution gets close to
the Gaussian 𝑒−]|𝜉|

2
𝑡 in an appropriate sense.
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