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We present two algorithms for finding a zero of the sum of two monotone operators and a fixed point of a nonexpansive operator
in Hilbert spaces. We show that these two algorithms converge strongly to the minimum norm common element of the zero of the
sum of two monotone operators and the fixed point of a nonexpansive operator.

1. Introduction

Throughout, we assume that H is a real Hilbert space with
inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, respectively. LetC ⊂ H be
a nonempty closed convex set.

Definition 1. An operator S : C → C is said to be non-
expansive if

‖S𝑢 − SV‖ ≤ ‖𝑢 − V‖ (1)

for all 𝑢, V ∈ C.

We denote by Fix(S) the set of fixed points of S.

Definition 2. An operatorA : C → H is said to be 𝜉-inverse
strong monotone if

⟨A𝑢 − AV, 𝑢 − V⟩ ≥ 𝜉‖A𝑢 − AV‖2 (2)

for some 𝜉 > 0 and for all 𝑢, V ∈ C.

It is known that if A is 𝜉-inverse strong monotone, then
A is 1/𝜉-lipschitz, that is,

‖A𝑢 − AV‖ ≤
1

𝜉
‖𝑢 − V‖ , (3)

for all 𝑢, V ∈ C. Furthermore,

‖(𝐼 − 𝛿A) 𝑢 − (𝐼 − 𝛿A) V‖2

≤ ‖𝑢 − V‖2 + 𝛿 (𝛿 − 2𝜉) ‖A𝑢 − AV‖2, ∀𝑢, V ∈ C.
(4)

In particular, if 𝛿 ∈ (0, 2𝜉), then 𝐼 − 𝛿A is nonexpansive.
Let B : H → 2

H be a set-valued operator. The effective
domain of B is denoted by dom(B), that is, dom(B) = {𝑥 ∈

H : B𝑥 ̸= 0}.

Definition 3. A multivalued operator B is said to be a mono-
tone onH if and only if

⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0 (5)

for all 𝑥, 𝑦 ∈ dom(B), 𝑢 ∈ B𝑥, and V ∈ B𝑦.

Amonotone operatorB onH is said to bemaximal if and
only if its graph is not strictly contained in the graph of any
other monotone operator on H. We denote by B−10 the set
of the zero points of B, that is, B−10 = {𝑥 ∈ H : 0 ∈ B𝑥}.

For 𝜆 > 0, we define a single-valued operator

𝐽
B
𝜆
= (𝐼 + 𝜆B)

−1:H → dom (B) , (6)
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which is called the resolvent of B for 𝜆. It is known that the
resolvent 𝐽B

𝜆
is firmly nonexpansive, that is,


𝐽
B
𝜆
𝑢 − 𝐽

B
𝜆
V


2

≤ ⟨𝐽
B
𝜆
𝑢 − 𝐽

B
𝜆
V, 𝑢 − V⟩ , (7)

for all 𝑢, V ∈ C and B−10 = Fix(𝐽B
𝜆
) for all 𝜆 > 0.

In the present paper, we consider the variational inclusion
of finding a zero𝑥 ∈ Hof the sumof twomonotone operators
A and B such that

0 ∈ A (𝑥) + B (𝑥) , (8)

whereA : H → H is a single-valued operator andB : H →

2
H is a set-valued operator.The set of solutions of problem (8)
is denoted by (A + B)

−1
(0).

Special Cases. (i) If H = R𝑚, then problem (8) becomes the
generalized equation introduced by Robinson [1].

(ii) If A = 0, then problem (8) becomes the inclusion
problem introduced by Rockafellar [2].

It is known that (8) provides a convenient framework
for the unified study of optimal solutions in many optimiza-
tion related areas including mathematical programming,
complementarity, variational inequalities, optimal control,
mathematical economics, equilibria, and game theory. Also
various types of variational inclusions problems have been
extended and generalized. For relatedwork, please see [3–20].

Zhang et al. [21] introduced the following iterative algo-
rithm for finding a common element of the set of solutions to
the problem (8) and the set of fixed points of a nonexpansive
operator:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
)S𝐽

B
𝜆
(𝑥
𝑛
− 𝜆A𝑥

𝑛
) , (9)

where S : C → C is a nonexpansive operator. Under some
mild conditions, they prove that the sequence {𝑥

𝑛
} converges

strongly to 𝑥∗ ∈ Fix(S) ∩ (A + B)
−1
(0).

Recently, Takahashi et al. [22] introduced another itera-
tive algorithm for finding a zero of the sum of two monotone
operators and a fixed point of a nonexpansive operator

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+(1 − 𝛽

𝑛
)S (𝛼

𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽

B
𝜆
𝑛

(𝑥
𝑛
− 𝜆
𝑛
A𝑥
𝑛
))

(10)

for all 𝑛 ≥ 0. Under some assumptions, they proved that the
sequence {𝑥

𝑛
} converges strongly to a point of Fix(S) ∩ (A +

B)
−1
(0).
Motivated and inspired by (9) and (10), in the present

paper, we suggest two algorithms

𝑥
𝑡
= 𝐽

B
𝜆
((1 − 𝑡)S𝑥

𝑡
− 𝜆AS𝑥

𝑡
) , 𝑡 ∈ (0, 1) , (11)

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐽

B
𝜆
𝑛

((1 − 𝛼
𝑛
)S𝑥
𝑛
− 𝜆
𝑛
AS𝑥
𝑛
) ,

𝑛 ≥ 0.

(12)

It is obvious that (12) is very different from (9) and (10).
Furthermore, we prove that both (11) and (12) converge
strongly to the minimum norm element in Fix(S) ∩ (A +

B)
−1
0. It should be pointed out that we do not use the metric

projection in (11) and (12).

2. Lemmas

In this section, we collect several useful lemmas for our next
section.

First, the following resolvent equality is well known.

Lemma 4. For 𝜆 > 0 and 𝜆† > 0, one has

𝐽
B
𝜆
𝑢 = 𝐽

B
𝜆
† (

𝜆
†

𝜆
𝑢 + (1 −

𝜆
†

𝜆
) 𝐽

B
𝜆
𝑢) , ∀𝑢 ∈ H. (13)

Lemma 5 (see [23]). Let C ⊂ H be a closed convex set. Let
S : C → C be a nonexpansive operator. Then Fix(S) is a
closed convex subset ofC and the operator 𝐼 − S is demiclosed
at 0.

Lemma 6 (see [24]). LetX be a Banach space. Let {𝑢
𝑛
} ⊂ X

and {V
𝑛
} ⊂ X be two bounded sequences. Let the sequence

{𝜁
𝑛
} ⊂ (0, 1) satisfy 0 < lim

𝑛→∞
𝜁
𝑛
≤ lim
𝑛→∞

𝜁
𝑛
< 1. Suppose

𝑢
𝑛+1

= (1 − 𝜁
𝑛
)V
𝑛
+ 𝜁
𝑛
𝑢
𝑛
for all 𝑛 ≥ 0 and lim

𝑛→∞
(‖V
𝑛+1

−

V
𝑛
‖ − ‖𝑢

𝑛+1
− 𝑢
𝑛
‖) ≤ 0. Then lim

𝑛→∞
‖𝑢
𝑛
− V
𝑛
‖ = 0.

Lemma 7 (see [25]). Let {𝜎
𝑛
} ⊂ [0,∞), {𝛾

𝑛
} ⊂ (0, 1), and

{𝛿
𝑛
} ⊂ R be three sequences satisfying

𝜎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝜎
𝑛
+ 𝛿
𝑛
𝛾
𝑛
. (14)

If ∑∞
𝑛=1

𝛾
𝑛
= ∞ and lim

𝑛→∞
𝛿
𝑛
≤ 0 (or ∑∞

𝑛=1
|𝛿
𝑛
𝛾
𝑛
| < ∞),

then lim
𝑛→∞

𝜎
𝑛
= 0.

3. Strong Convergence Results

Let C ⊂ H be a nonempty closed convex set. Let A :

C → H be a -inverse strong monotone operator. Let B be
a maximal monotone operator onH such that dom(B) ⊂ C.
Let S : C → C be a nonexpansive operator.

Pick up a constant 𝜏 ∈ (0, 2). For any 𝑡 ∈ (0, (2−𝜏)/2),
we define an operator

𝜓 (𝑥) = 𝐽
B
𝜏
((1 − 𝑡)S − 𝜏AS) 𝑥, (15)

for all 𝑥 ∈ C.
Since 𝐽B

𝜏
, S, and 𝐼 − 𝜏A/(1 − 𝑡) are nonexpansive, we have

𝜓 (𝑥) − 𝜓 (𝑦)
 =


𝐽
B
𝜏
((1 − 𝑡) (𝐼 −

𝜏

1 − 𝑡
A)S𝑥)

− 𝐽
B
𝜏
((1 − 𝑡) (𝐼 −

𝜏

1 − 𝑡
A)S𝑦)



≤ (1 − 𝑡)

(𝐼 −

𝜏

1 − 𝑡
A)S𝑥

−(𝐼 −
𝜏

1 − 𝑡
A)S𝑦



≤ (1 − 𝑡)
𝑥 − 𝑦

 ,

(16)

for any 𝑥, 𝑦 ∈ C. Hence 𝜓 is a contraction on C. We use 𝑥
𝑡

to denote the unique fixed point of𝜓 inC. Thus, {𝑥
𝑡
} satisfies

the fixed point equation

𝑥
𝑡
= 𝐽

B
𝜏
((1 − 𝑡)S𝑥

𝑡
− 𝜏AS𝑥

𝑡
) . (17)

Next, we give the convergence analysis of (17).
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Theorem 8. Assume that Fix(S) ∩ (A + B)
−1
0 ̸= 0. Then {𝑥

𝑡
}

defined by (17) converges strongly, as 𝑡 → 0+, to the minimum
norm element in Fix(S) ∩ (A + B)

−1
(0).

Proof. Choose any 𝑧 ∈ Fix(S) ∩ (A + B)
−1
(0). It is obvious

that 𝑧 = S𝑧 = 𝐽B
𝜏
(𝑧 − 𝜏A𝑧) for all 𝜏 > 0. So, we have

𝑧 = S𝑧 = 𝐽
B
𝜏
(𝑧 − 𝜏A𝑧) = 𝐽

B
𝜏
(𝑡𝑧 + (1 − 𝑡) (𝐼 −

𝜏

1 − 𝑡
A)S𝑧)

(18)

for all 𝑡 ∈ (0, 1).
From (17), we have

𝑥𝑡 − 𝑧
 =


𝐽
B
𝜏
((1 − 𝑡) (𝐼 −

𝜏

1 − 𝑡
A)S𝑥

𝑡
) − 𝑧



=

𝐽
B
𝜏
((1 − 𝑡) (S𝑥

𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
))

−𝐽
B
𝜏
(𝑡𝑧 + (1 − 𝑡) (S𝑧 −

𝜏

1 − 𝑡
AS𝑧))



≤

(1 − 𝑡) (S𝑥

𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(𝑡𝑧 + (1 − 𝑡) (S𝑧 −
𝜏

1 − 𝑡
AS𝑧))



=

(1 − 𝑡) ((S𝑥

𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(S𝑧 −
𝜏

1 − 𝑡
AS𝑧)) − 𝑡𝑧



≤ (1 − 𝑡)

(𝐼 −

𝜏

1 − 𝑡
A)S𝑥

𝑡
− (𝐼 −

𝜏

1 − 𝑡
A)S𝑧



+ 𝑡 ‖𝑧‖

≤ (1 − 𝑡)
𝑥𝑡 − 𝑧

 + 𝑡 ‖𝑧‖ .

(19)

Hence, we get
𝑥𝑡 − 𝑧

 ≤ ‖𝑧‖ . (20)

Thus, {𝑥
𝑡
} is bounded.

By (4) and (19), we derive

𝑥𝑡 − 𝑧

2

≤

(1 − 𝑡) ((S𝑥

𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(S𝑧 −
𝜏

1 − 𝑡
AS𝑧)) + 𝑡 (−𝑧)



2

≤ (1 − 𝑡)

(S𝑥
𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(S𝑧 −
𝜏

1 − 𝑡
AS𝑧)



2

+ 𝑡‖𝑧‖
2

= (1 − 𝑡)

(S𝑥
𝑡
− S𝑧) −

𝜏

1 − 𝑡
(AS𝑥

𝑡
− AS𝑧)



2

+ 𝑡‖𝑧‖
2

= (1 − 𝑡) (
S𝑥𝑡 − S𝑧


2

−
2𝜏

1 − 𝑡

× ⟨AS𝑥
𝑡
− AS𝑧,S𝑥

𝑡
− S𝑧⟩

+
𝜏
2

(1 − 𝑡)
2

AS𝑥𝑡 − AS𝑧

2

) + 𝑡‖𝑧‖
2

≤ (1 − 𝑡) (
S𝑥𝑡 − S𝑧


2

−
2𝜏

1 − 𝑡

AS𝑥𝑡 − AS𝑧

2

+
𝜏
2

(1 − 𝑡)
2

AS𝑥𝑡 − AS𝑧

2

) + 𝑡‖𝑧‖
2

= (1 − 𝑡) (
S𝑥𝑡 − S𝑧


2

+
𝜏

(1 − 𝑡)
2
(𝜏 − 2 (1 − 𝑡) )

×
AS𝑥𝑡 − AS𝑧


2

) + 𝑡‖𝑧‖
2

≤ (1 − 𝑡)
𝑥𝑡 − 𝑧


2

+
𝜏

1 − 𝑡
(𝜏 − 2 (1 − 𝑡) )

×
AS𝑥𝑡 − AS𝑧


2

+ 𝑡‖𝑧‖
2
.

(21)

So,
𝜏

1 − 𝑡
(2 (1 − 𝑡)  − 𝜏)

AS𝑥𝑡 − A𝑧

2

≤ 𝑡‖𝑧‖
2
− 𝑡
𝑥𝑡 − 𝑧


2

→ 0.

(22)

Since 2(1 − 𝑡) − 𝜏 > 0 for all 𝑡 ∈ (0, 1 − 𝜏/2), we obtain

lim
𝑡→0+

AS𝑥𝑡 − A𝑧
 = 0. (23)

Using the firm nonexpansivity of 𝐽B
𝜏
, we have

𝑥𝑡 − 𝑧

2

=

𝐽
B
𝜏
((1 − 𝑡)S𝑥

𝑡
− 𝜏AS𝑥

𝑡
) − 𝑧



2

=

𝐽
B
𝜏
((1 − 𝑡)S𝑥

𝑡
− 𝜏AS𝑥

𝑡
) − 𝐽

B
𝜏
(𝑧 − 𝜏A𝑧)



2

≤ ⟨(1 − 𝑡)S𝑥
𝑡
− 𝜏AS𝑥

𝑡
− (𝑧 − 𝜏A𝑧) , 𝑥

𝑡
− 𝑧⟩

=
1

2
(
(1 − 𝑡)S𝑥𝑡 − 𝜏AS𝑥𝑡 − (𝑧 − 𝜏A𝑧)


2

+
𝑥𝑡 − 𝑧


2

−
(1 − 𝑡)S𝑥𝑡 − 𝜏 (AS𝑥𝑡 − 𝜏A𝑧) − 𝑥𝑡


2

) .

(24)

Note that
(1 − 𝑡)S𝑥𝑡 − 𝜏AS𝑥𝑡 − (𝑧 − 𝜏A𝑧)


2

=

(1 − 𝑡) ((S𝑥

𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(S𝑧 −
𝜏

1 − 𝑡
AS𝑧)) + 𝑡 (−𝑧)



2
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≤ (1 − 𝑡)

(S𝑥
𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

− (S𝑧 −
𝜏

1 − 𝑡
AS𝑧)



2

+ 𝑡‖𝑧‖
2

≤ (1 − 𝑡)
𝑥𝑡 − 𝑧


2

+ 𝑡‖𝑧‖
2
.

(25)

Thus,

𝑥𝑡 − 𝑧

2

≤
1

2
((1 − 𝑡)

𝑥𝑡 − 𝑧

2

+ 𝑡‖𝑧‖
2
+
𝑥𝑡 − 𝑧


2

−
(1 − 𝑡)S𝑥𝑡 − 𝜏 (AS𝑥𝑡 − A𝑧) − 𝑥

𝑡


2

) .

(26)

It follows that

𝑥𝑡 − 𝑧

2

≤ (1 − 𝑡)
𝑥𝑡 − 𝑧


2

+ 𝑡‖𝑧‖
2

−
(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡 − 𝜏 (AS𝑥𝑡 − A𝑧)


2

= (1 − 𝑡)
𝑥𝑡 − 𝑧


2

+ 𝑡‖𝑧‖
2
−
(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡


2

+ 2𝜏 ⟨(1 − 𝑡)S𝑥
𝑡
− 𝑥
𝑡
,AS𝑥

𝑡
− A𝑧⟩

− 𝜏
2AS𝑥𝑡 − A𝑧


2

≤ (1 − 𝑡)
𝑥𝑡 − 𝑧


2

+ 𝑡‖𝑧‖
2
−
(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡


2

+ 2𝜏
(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡


AS𝑥𝑡 − A𝑧

 .

(27)

Hence,

(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡

2

≤ 𝑡‖𝑧‖
2
+ 2𝜏

(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡

AS𝑥𝑡 − A𝑧

 .

(28)

This together with (23) implies that

lim
𝑡→0+

(1 − 𝑡)S𝑥𝑡 − 𝑥𝑡
 = 0. (29)

So,

lim
𝑡→0+

𝑥𝑡 − S𝑥
𝑡

 = 0. (30)

By (19), we have

𝑥𝑡 − 𝑧

2

≤

(1 − 𝑡) ((S𝑥

𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(𝑧 −
𝜏

1 − 𝑡
A𝑧)) + 𝑡 (−𝑧)



2

= (1 − 𝑡)
2

(S𝑥
𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(𝑧 −
𝜏

1 − 𝑡
A𝑧)



2

+ 2𝑡 (1 − 𝑡) ⟨−𝑧, (S𝑥
𝑡
−

𝜏

1 − 𝑡
AS𝑥
𝑡
)

−(𝑧 −
𝜏

1 − 𝑡
A𝑧)⟩ + 𝑡

2
‖𝑧‖
2

≤ (1 − 𝑡)
2𝑥𝑡 − 𝑧


2

+ 2𝑡 (1 − 𝑡)

× ⟨−𝑧,S𝑥
𝑡
−

𝜏

1 − 𝑡
(AS𝑥

𝑡
− AS𝑧) − 𝑧⟩

+ 𝑡
2
‖𝑧‖
2
.

(31)

It follows that

𝑥𝑡 − 𝑧

2

≤ ⟨−𝑧,S𝑥
𝑡
−

𝜏

1 − 𝑡
(AS𝑥

𝑡
− A𝑧) − 𝑧⟩

+
𝑡

2
(‖𝑧‖
2
+
𝑥𝑡 − 𝑧


2

)

+ 𝑡 ‖𝑧‖

S𝑥
𝑡
−

𝜏

1 − 𝑡
(AS𝑥

𝑡
− A𝑧) − 𝑧



≤ ⟨−𝑧,S𝑥
𝑡
− 𝑧⟩ + (𝑡 +

AS𝑥𝑡 − A𝑧
)𝑀,

(32)

where𝑀 is some constant such that

sup
𝑡∈(0,(2−𝜏)/2)

{
1

2
(‖𝑧‖
2
+
𝑥𝑡 − 𝑧


2

) ,

‖𝑧‖

S𝑥
𝑡
−

𝜏

1 − 𝑡
(AS𝑥

𝑡
− A𝑧) − 𝑧


} ≤ 𝑀.

(33)

Nowwe show that {𝑥
𝑡
} is relatively norm-compact as 𝑡 → 0+.

Assume {𝑡
𝑛
} ⊂ (0, (2−𝜏)/2) such that 𝑡

𝑛
→ 0+ as 𝑛 → ∞.

Put 𝑥
𝑛
:= 𝑥
𝑡
𝑛

. From (32), we have

𝑥𝑛 − 𝑧

2

≤ ⟨−𝑧,S𝑥
𝑛
− 𝑧⟩ + (𝑡

𝑛
+
AS𝑥𝑛 − A𝑧

)𝑀. (34)

Since {𝑥
𝑛
} is bounded, without loss of generality, we may

assume that 𝑥
𝑛
𝑗

⇀ 𝑥 ∈ 𝐶. Hence, 𝑥
𝑛
𝑗

− (𝜏/(1 − 𝑡
𝑛
𝑗

))(AS𝑥
𝑛
𝑗

−

A𝑧) ⇀ 𝑥 because of ‖AS𝑥
𝑛
− A𝑧‖ → 0 by (23). From (30),

we have

lim
𝑛→∞

𝑥𝑛 − S𝑥
𝑛

 = 0. (35)

By Lemma 5 and (35), we deduce 𝑥 ∈ Fix(S).
Next, we show that 𝑥 ∈ (A +B)

−1
0. Let V ∈ B𝑢. Note that

𝑥
𝑛
= 𝐽

B
𝜏
((1 − 𝑡

𝑛
)S𝑥
𝑛
− 𝜏AS𝑥

𝑛
) for all 𝑛. Then, we have

(1 − 𝑡
𝑛
)S𝑥
𝑛
− 𝜏AS𝑥

𝑛
∈ (𝐼 + 𝜏B) 𝑥

𝑛
. (36)

So,

1 − 𝑡
𝑛

𝜏
S𝑥
𝑛
− AS𝑥

𝑛
−
𝑥
𝑛

𝜏
∈ B𝑥
𝑛
. (37)
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Since B is monotone, we have, for (𝑢, V) ∈ B,

⟨
𝑡
𝑛
𝛾𝑓 (𝑥
𝑛
)

𝜏
+
1 − 𝑡
𝑛

𝜏
S𝑥
𝑛
− AS𝑥

𝑛
−
𝑥
𝑛

𝜏
− V, 𝑥
𝑛
− 𝑢⟩ ≥ 0

⇒ ⟨(1 − 𝑡
𝑛
)S𝑥
𝑛
− 𝜏AS𝑥

𝑛
− 𝑥
𝑛
− 𝜏V, 𝑥

𝑛
− 𝑢⟩ ≥ 0

⇒ ⟨AS𝑥
𝑛
+ V, 𝑥
𝑛
− 𝑢⟩

≤
1

𝜏
⟨S𝑥
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑢⟩ −

𝑡
𝑛

𝜏
⟨S𝑥
𝑛
, 𝑥
𝑛
− 𝑢⟩

⇒ ⟨AS𝑥 + V, 𝑥
𝑛
− 𝑢⟩

≤
1

𝜏
⟨S𝑥
𝑛
− 𝑥
𝑛
, 𝑥
𝑛
− 𝑢⟩ −

𝑡
𝑛

𝜏
⟨S𝑥
𝑛
, 𝑥
𝑛
− 𝑢⟩

+ ⟨AS𝑥 − AS𝑥
𝑛
, 𝑥
𝑛
− 𝑢⟩

⇒ ⟨AS𝑥 + V, 𝑥
𝑛
− 𝑢⟩

≤
1

𝜏

S𝑥𝑛 − 𝑥𝑛

𝑥𝑛 − 𝑢

 +
𝑡
𝑛

𝜏

S𝑥𝑛

𝑥𝑛 − 𝑢



+
AS𝑥 − AS𝑥

𝑛


𝑥𝑛 − 𝑢

 .

(38)

It follows that

⟨AS𝑥 + V, 𝑥 − 𝑢⟩ ≤
1

𝜏


S𝑥
𝑛
𝑗

− 𝑥
𝑛
𝑗




𝑥
𝑛
𝑗

− 𝑢


+
𝑡
𝑛
𝑗

𝜏


S𝑥
𝑛
𝑗




𝑥
𝑛
𝑗

− 𝑢


+

AS𝑥 − AS𝑥

𝑛
𝑗




𝑥
𝑛
𝑗

− 𝑢


+ ⟨AS𝑥 + V, 𝑥 − 𝑥
𝑛
𝑗

⟩ .

(39)

Since

⟨𝑥
𝑛
𝑗

− 𝑥,AS𝑥
𝑛
𝑗

− AS𝑥⟩ ≥ 

AS𝑥
𝑛
𝑗

− AS𝑥


2

, (40)

AS𝑥
𝑛
𝑗

→ AS𝑧, and 𝑥
𝑛
𝑗

⇀ 𝑥, we have AS𝑥
𝑛
𝑗

→ AS𝑥. We
also observe that 𝑡

𝑛
→ 0 and ‖S𝑥

𝑛
− 𝑥
𝑛
‖ → 0. Then, from

(39), we derive

⟨AS𝑥 + V, 𝑥 − 𝑢⟩ ≤ 0. (41)

That is, ⟨−A𝑥 − V, 𝑥 − 𝑢⟩ ≥ 0. Since B is maximal monotone,
we have −A𝑥 ∈ B𝑥. This shows that 0 ∈ (A +B)𝑥. Hence, we
have 𝑥 ∈ Fix(S) ∩ (A + B)

−1
0. Therefore, we can substitute 𝑥

for 𝑧 in (34) to get

𝑥𝑛 − 𝑥

2

≤ ⟨−𝑥,S𝑥
𝑛
− 𝑥⟩ + (𝑡

𝑛
+
AS𝑥𝑛 − A𝑥

)𝑀. (42)

Consequently, the weak convergence of {𝑥
𝑛
} to 𝑥 actually

implies that 𝑥
𝑛

→ 𝑥. This has proved the relative norm-
compactness of the net {𝑥

𝑡
} as 𝑡 → 0+.

From (34), we get

‖𝑥 − 𝑧‖
2
≤ ⟨−𝑧, 𝑥 − 𝑧⟩ , ∀𝑧 ∈ Fix (S) ∩ (A + B)

−1
0. (43)

That is,

⟨𝑥, 𝑥 − 𝑧⟩ ≤ 0, ∀𝑧 ∈ Fix (S) ∩ (A + B)
−1
0. (44)

It follows that

‖𝑥‖ ≤ ‖𝑧‖ , ∀𝑧 ∈ Fix (S) ∩ (A + B)
−1
0. (45)

It is obvious that 𝑥 = projFix(S)∩(A+B)−10(0) by (44). This
denotes that the entire net {𝑥

𝑡
} converges to 𝑥.This completes

the proof.

Next, we present another algorithm.

Algorithm 9. For given 𝑥
0
∈ C, define a sequence {𝑥

𝑛
} ⊂ C

iteratively by

𝑥
𝑛+1

= 𝜍
𝑛
𝑥
𝑛
+ (1 − 𝜍

𝑛
) 𝐽

B
𝜏
𝑛

((1 − 
𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
) ,

∀𝑛 ≥ 0,

(46)

where {𝜏
𝑛
} ⊂ (0, 2), {

𝑛
} ⊂ (0, 1), and {𝜍

𝑛
} ⊂ (0, 1).

Theorem 10. Suppose that Fix(S) ∩ (A + B)
−1
0 ̸= 0. Assume

that the following conditions are satisfied:

(i) lim
𝑛→∞


𝑛
= 0 and ∑

𝑛

𝑛
= ∞;

(ii) 0 < lim
𝑛→∞

𝜍
𝑛
≤ lim
𝑛→∞

𝜍
𝑛
< 1;

(iii) 𝑎(1 − 
𝑛
) ≤ 𝜏
𝑛
≤ 𝑏(1 − 

𝑛
), where [𝑎, 𝑏] ⊂ (0, 2) and

lim
𝑛→∞

(𝜏
𝑛+1

− 𝜏
𝑛
) = 0.

Then {𝑥
𝑛
} generated by (46) converges strongly to a point 𝑥 =

projFix(S)∩(A+B)−1(0)(0) which is the minimum norm element in
Fix(S) ∩ (A + B)

−1
(0).

Proof. Let 𝑧 ∈ Fix(S) ∩ (A + B)
−1
(0). We have 𝑧 = 𝐽

B
𝜏
𝑛

(𝑧 −

𝜏
𝑛
A𝑧) = 𝐽

B
𝜏
𝑛

(
𝑛
𝑧 + (1 − 

𝑛
)(𝑧 − 𝜏

𝑛
A𝑧/(1 − 

𝑛
))) for all 𝑛 ≥ 0.

Since 𝐽B
𝜏
𝑛

, S, and 𝐼 − 𝜏
𝑛
A/(1 − 

𝑛
) are nonexpansive, we have


𝐽
B
𝜏
𝑛

((1 − 
𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
) − 𝑧



=

𝐽
B
𝜏
𝑛

((1 − 
𝑛
) (S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
))

− 𝐽
B
𝜏
𝑛

(
𝑛
𝑧 + (1 − 

𝑛
) (𝑧 −

𝜏
𝑛

1 − 
𝑛

A𝑧))


≤

((1 − 

𝑛
) (S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
))

− (
𝑛
𝑧 + (1 − 

𝑛
) (𝑧 −

𝜏
𝑛

1 − 
𝑛

A𝑧))


=

(1 − 

𝑛
) (S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛

−(𝑧 −
𝜏
𝑛

1 − 
𝑛

A𝑧)) + 
𝑛
(−𝑧)



≤ (1 − 
𝑛
)
𝑥𝑛 − 𝑧

 + 𝑛 ‖𝑧‖ .

(47)
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Thus,
𝑥𝑛+1 − 𝑧

 ≤ 𝜍𝑛
𝑥𝑛 − 𝑧

 + (1 − 𝜍𝑛) (1 − 𝑛)
𝑥𝑛 − 𝑧



+ (1 − 𝜍
𝑛
) 
𝑛 ‖𝑧‖

= [1 − 
𝑛
(1 − 𝜍

𝑛
)]
𝑥𝑛 − 𝑧

 + (1 − 𝜍𝑛) 𝑛 ‖𝑧‖ .

(48)

By induction, we have
𝑥𝑛+1 − 𝑧

 ≤ max {𝑥0 − 𝑧
 , ‖𝑧‖} . (49)

Therefore, {𝑥
𝑛
} is bounded.

From (4) and (47), we derive

(1 − 

𝑛
) ((S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
) − (𝑧 −

𝜏
𝑛

1 − 
𝑛

A𝑧))

+ 
𝑛
(−𝑧)



2

≤ (1 − 
𝑛
)

(S𝑥
𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
) − (𝑧 −

𝜏
𝑛

1 − 
𝑛

A𝑧)


2

+ 
𝑛‖𝑧‖
2

= (1 − 
𝑛
)

(S𝑥
𝑛
− 𝑧) −

𝜏
𝑛

1 − 
𝑛

(AS𝑥
𝑛
− 𝐴𝑧)



2

+ 
𝑛‖𝑧‖
2

= (1 − 
𝑛
)(

S𝑥𝑛 − 𝑧

2

−
2𝜏
𝑛

1 − 
𝑛

⟨AS𝑥
𝑛
− A𝑧,S𝑥

𝑛
− 𝑧⟩

+
𝜏
2

𝑛

(1 − 
𝑛
)
2

AS𝑥𝑛 − A𝑧

2

) + 
𝑛‖𝑧‖
2

≤ (1 − 
𝑛
)(

𝑥𝑛 − 𝑧

2

−
2𝜏
𝑛

1 − 
𝑛

AS𝑥𝑛 − A𝑧

2

+
𝜏
2

𝑛

(1 − 
𝑛
)
2

AS𝑥𝑛 − A𝑧

2

) + 
𝑛‖𝑧‖
2

= (1 − 
𝑛
)(

𝑥𝑛 − 𝑧

2

+
𝜏
𝑛

(1 − 
𝑛
)
2
(𝜏
𝑛
− 2 (1 − 

𝑛
) )

×
AS𝑥𝑛 − A𝑧


2

) + 
𝑛‖𝑧‖
2
.

(50)

Set 𝑢
𝑛
= (1 − 

𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
for all 𝑛 ≥ 0. Since 𝜏

𝑛
− 2(1 −


𝑛
) ≤ 0 for all 𝑛 ≥ 0, we obtain

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

≤ (1 − 
𝑛
)(

𝑥𝑛 − 𝑧

2

+
𝜏
𝑛

(1 − 
𝑛
)
2
(𝜏
𝑛
− 2 (1 − 

𝑛
) )

×
AS𝑥𝑛 − A𝑧


2

) + 
𝑛‖𝑧‖
2
.

(51)

From (46), we have

𝑥𝑛+1 − 𝑧

2

=

𝜍
𝑛
(𝑥
𝑛
− 𝑧) + (1 − 𝜍

𝑛
) (𝐽

B
𝜏
𝑛

𝑢
𝑛
− 𝑧)



2

≤ 𝜍
𝑛

𝑥𝑛 − 𝑧

2

+ (1 − 𝜍
𝑛
)

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

.

(52)

Set 𝑦
𝑛
= 𝐽

B
𝜏
𝑛

((1 − 
𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
) for all 𝑛 ≥ 0. Then 𝑥

𝑛+1
=

𝜍
𝑛
𝑥
𝑛
+ (1 − 𝜍

𝑛
)𝑦
𝑛
for all 𝑛 ≥ 0. Next, we estimate ‖𝑥

𝑛+1
− 𝑥
𝑛
‖.

In fact, we have

𝑦𝑛+1 − 𝑦𝑛
 =


𝐽
B
𝜏
𝑛+1

𝑢
𝑛+1

− 𝐽
B
𝜏
𝑛

𝑢
𝑛



≤

𝐽
B
𝜏
𝑛+1

𝑢
𝑛+1

− 𝐽
B
𝜏
𝑛+1

𝑢
𝑛


+

𝐽
B
𝜏
𝑛+1

𝑢
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



≤
((1 − 𝑛+1)S𝑥𝑛+1 − 𝜏𝑛+1AS𝑥𝑛+1)

− ((1 − 
𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
)


+

𝐽
B
𝜏
𝑛+1

𝑢
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



=
(𝐼 − 𝜏𝑛+1A)S𝑥𝑛+1 − (𝐼 − 𝜏𝑛+1A)S𝑥𝑛

+ (𝜏
𝑛
− 𝜏
𝑛+1

)AS𝑥
𝑛
+ 
𝑛
S𝑥
𝑛
− 
𝑛+1

S𝑥
𝑛+1



+

𝐽
B
𝜏
𝑛+1

𝑢
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



≤
(𝐼 − 𝜏𝑛+1A)S𝑥𝑛+1 − (𝐼 − 𝜏𝑛+1A)S𝑥𝑛



+
𝜏𝑛+1 − 𝜏𝑛


AS𝑥𝑛

 + 𝑛
S𝑥𝑛



+ 
𝑛+1

S𝑥𝑛+1
 +


𝐽
B
𝜏
𝑛+1

𝑢
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛


.

(53)

Since 𝐼 − 𝜏
𝑛+1

A is nonexpansive for 𝜏
𝑛+1

∈ (0, 2), we have

(𝐼 − 𝜏𝑛+1A)S𝑥𝑛+1 − (𝐼 − 𝜏𝑛+1A)S𝑥𝑛


≤
S𝑥𝑛+1 − S𝑥

𝑛

 ≤
𝑥𝑛+1 − 𝑥𝑛

 .
(54)

From (13), we have

𝐽
B
𝜏
𝑛+1

𝑢
𝑛
= 𝐽

B
𝜏
𝑛

(
𝜏
𝑛

𝜏
𝑛+1

𝑢
𝑛
+ (1 −

𝜏
𝑛

𝜏
𝑛+1

) 𝐽
B
𝜏
𝑛+1

𝑢
𝑛
) . (55)

It follows that


𝐽
B
𝜏
𝑛+1

𝑢
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



=

𝐽
B
𝜏
𝑛

(
𝜏
𝑛

𝜏
𝑛+1

𝑢
𝑛
+ (1 −

𝜏
𝑛

𝜏
𝑛+1

) 𝐽
B
𝜏
𝑛+1

𝑢
𝑛
) − 𝐽

B
𝜏
𝑛

𝑢
𝑛



≤

(
𝜏
𝑛

𝜏
𝑛+1

𝑢
𝑛
+ (1 −

𝜏
𝑛

𝜏
𝑛+1

) 𝐽
B
𝜏
𝑛+1

𝑢
𝑛
) − 𝑢
𝑛



≤

𝜏𝑛+1 − 𝜏𝑛


𝜏
𝑛+1


𝑢
𝑛
− 𝐽

B
𝜏
𝑛+1

𝑢
𝑛


.

(56)
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So,

𝑦𝑛+1 − 𝑦𝑛
 ≤

𝑥𝑛+1 − 𝑥𝑛
 +

𝜏𝑛+1 − 𝜏𝑛

AS𝑥𝑛



+ 
𝑛

S𝑥𝑛


+ 
𝑛+1

S𝑥𝑛+1
 +

𝜏𝑛+1 − 𝜏𝑛


𝜏
𝑛+1


𝑢
𝑛
− 𝐽

B
𝜏
𝑛+1

𝑢
𝑛


.

(57)

Then,

𝑦𝑛+1 − 𝑦𝑛
 −

𝑥𝑛+1 − 𝑥𝑛


≤
𝜏𝑛+1 − 𝜏𝑛


AS𝑥𝑛

 + 𝑛
S𝑥𝑛



+ 
𝑛+1

S𝑥𝑛+1
 +

𝜏𝑛+1 − 𝜏𝑛


𝜏
𝑛+1


𝑢
𝑛
− 𝐽

B
𝜏
𝑛+1

𝑢
𝑛


.

(58)

Since 
𝑛
→ 0, 𝜏

𝑛+1
− 𝜏
𝑛
→ 0 and lim

𝑛→∞
𝜏
𝑛
> 0, we obtain

lim sup
𝑛→∞

(
𝑦𝑛+1 − 𝑦𝑛

 −
𝑥𝑛+1 − 𝑥𝑛

) ≤ 0. (59)

By Lemma 6, we get

lim
𝑛→∞

𝑦𝑛 − 𝑥𝑛
 = 0. (60)

Consequently, we obtain

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = lim
𝑛→∞

(1 − 𝜍
𝑛
)
𝑦𝑛 − 𝑥𝑛

 = 0. (61)

From (51) and (52), we have

𝑥𝑛+1 − 𝑧

2

≤ 𝜍
𝑛

𝑥𝑛 − 𝑧

2

+ (1 − 𝜍
𝑛
)

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

≤ (1 − 𝜍
𝑛
) (1 − 

𝑛
)

× (
𝑥𝑛 − 𝑧


2

+
𝜏
𝑛

(1 − 
𝑛
)
2
(𝜏
𝑛
− 2 (1 − 

𝑛
) )

×
AS𝑥𝑛 − A𝑧


2

)

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2
+ 𝜍
𝑛

𝑥𝑛 − 𝑧

2

= [1 − (1 − 𝜍
𝑛
) 
𝑛
]
𝑥𝑛 − 𝑧


2

+
(1 − 𝜍

𝑛
) 𝜏
𝑛

1 − 
𝑛

(𝜏
𝑛
− 2 (1 − 

𝑛
) )

AS𝑥𝑛 − A𝑧

2

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2

≤
𝑥𝑛 − 𝑧


2

+
(1 − 𝜍

𝑛
) 𝜏
𝑛

1 − 
𝑛

(𝜏
𝑛
− 2 (1 − 

𝑛
) )

×
AS𝑥𝑛 − A𝑧


2

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2
.

(62)

Then, we obtain

(1 − 𝜍
𝑛
) 𝜏
𝑛

(1 − 
𝑛
)
(2 (1 − 

𝑛
)  − 𝜏

𝑛
)
AS𝑥𝑛 − A𝑧


2

≤
𝑥𝑛 − 𝑧


2

−
𝑥𝑛+1 − 𝑧


2

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2

≤ (
𝑥𝑛 − 𝑧

 −
𝑥𝑛+1 − 𝑧

)
𝑥𝑛+1 − 𝑥𝑛



+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2
.

(63)

Since lim
𝑛→∞


𝑛

= 0, lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0, and

lim
𝑛→∞

((1 − 𝜍
𝑛
)𝜏
𝑛
/(1 − 

𝑛
))(2(1 − 

𝑛
) − 𝜏

𝑛
) > 0, we have

lim
𝑛→∞

AS𝑥𝑛 − A𝑧
 = 0. (64)

Next, we show ‖𝑥
𝑛
−S𝑥
𝑛
‖ → 0. By using the firm nonexpan-

sivity of 𝐽B
𝜏
𝑛

, we have


𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

=

𝐽
B
𝜏
𝑛

((1 − 
𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
) − 𝐽

B
𝜏
𝑛

(𝑧 − 𝜏
𝑛
A𝑧)



2

≤ ⟨(1 − 
𝑛
)S𝑥
𝑛
− 𝜏
𝑛
AS𝑥
𝑛
− (𝑧 − 𝜏

𝑛
A𝑧) , 𝐽

B
𝜏
𝑛

𝑢
𝑛
− 𝑧⟩

=
1

2
(
(1 − 𝑛)S𝑥𝑛 − 𝜏𝑛AS𝑥𝑛 − (𝑧 − 𝜏𝑛A𝑧)


2

+

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

−

(1 − 

𝑛
)S𝑥
𝑛
− 𝜏
𝑛
(AS𝑥

𝑛
− A𝑧) − 𝐽

B
𝜏
𝑛

𝑢
𝑛



2

) .

(65)

Observe that

(1 − 𝑛)S𝑥𝑛 − 𝜏𝑛AS𝑥𝑛 − (𝑧 − 𝜏𝑛A𝑧)

2

=

(1 − 

𝑛
) (S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛

−(𝑧 −
𝜏
𝑛

1 − 
𝑛

A𝑧)) + 
𝑛
(−𝑧)



2

≤ (1 − 
𝑛
)

S𝑥
𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛

−(𝑧 −
𝜏
𝑛

1 − 
𝑛

A𝑧)


2

+ 
𝑛‖𝑧‖
2

≤ (1 − 
𝑛
)
𝑥𝑛 − 𝑧


2

+ 
𝑛‖𝑧‖
2
.

(66)

Hence,


𝐽
B
𝜏
𝑛

𝑢
𝑛
−𝑧


2

≤
1

2
((1−

𝑛
)
𝑥𝑛−𝑧


2

+
𝑛‖𝑧‖
2
+

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

−

(1−
𝑛
)S𝑥
𝑛
−𝐽

B
𝜏
𝑛

𝑢
𝑛
−𝜏
𝑛
(AS𝑥

𝑛
−A𝑧)



2

) .

(67)
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It follows that


𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑧



2

≤ (1 − 
𝑛
)
𝑥𝑛 − 𝑧


2

+ 
𝑛‖𝑧‖
2

−

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛
− 𝜏
𝑛
(AS𝑥

𝑛
− A𝑧)



2

= (1 − 
𝑛
)
𝑥𝑛 − 𝑧


2

+ 
𝑛‖𝑧‖
2

−

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



2

+ 2𝜏
𝑛
⟨(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛
,AS𝑥

𝑛
− A𝑧⟩

− 𝜏
2

𝑛

AS𝑥𝑛 − A𝑧

2

≤ (1 − 
𝑛
)
𝑥𝑛 − 𝑧


2

+ 
𝑛‖𝑧‖
2

−

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



2

+ 2𝜏
𝑛


(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛


AS𝑥𝑛 − A𝑧

 .

(68)

This together with (52) implies that

𝑥𝑛+1 − 𝑧

2

≤ 𝜍
𝑛

𝑥𝑛 − 𝑧

2

+ (1 − 𝜍
𝑛
) (1 − 

𝑛
)
𝑥𝑛 − 𝑧


2

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2

− (1 − 𝜍
𝑛
)

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



2

+ 2𝜏
𝑛
(1 − 𝜍

𝑛
)

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



×
AS𝑥𝑛 − A𝑧



= [1 − (1 − 𝜍
𝑛
) 
𝑛
]
𝑥𝑛 − 𝑧


2

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2

− (1 − 𝜍
𝑛
)

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



2

+ 2𝜏
𝑛
(1 − 𝜍

𝑛
)

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



×
AS𝑥𝑛 − A𝑧

 .

(69)

Hence,

(1 − 𝜍
𝑛
)

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛



2

≤
𝑥𝑛 − 𝑧


2

−
𝑥𝑛+1 − 𝑧


2

− (1 − 𝜍
𝑛
) 
𝑛

𝑥𝑛 − 𝑧

2

+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2
+ 2𝜏
𝑛
(1 − 𝜍

𝑛
)

×

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛


AS𝑥𝑛 − A𝑧



≤ (
𝑥𝑛 − 𝑧

 +
𝑥𝑛+1 − 𝑧

)
𝑥𝑛+1 − 𝑥𝑛



+ (1 − 𝜍
𝑛
) 
𝑛‖𝑧‖
2
+ 2𝜏
𝑛
(1 − 𝜍

𝑛
)

×

(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛


AS𝑥𝑛 − A𝑧

 .

(70)

Since lim
𝑛→∞

𝜍
𝑛
< 1, ‖𝑥

𝑛+1
−𝑥
𝑛
‖ → 0, 

𝑛
→ 0, and ‖AS𝑥

𝑛
−

A𝑧‖ → 0 (by (60)), we deduce

lim
𝑛→∞


(1 − 

𝑛
)S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛


= 0. (71)

This indicates that

lim
𝑛→∞


S𝑥
𝑛
− 𝐽

B
𝜏
𝑛

𝑢
𝑛


= 0. (72)

Combining (60) and (72), we get

lim
𝑛→∞

𝑥𝑛 − S𝑥
𝑛

 = 0. (73)

Put 𝑥 = lim
𝑡→0+

𝑥
𝑡
= projFix(S)∩(A+B)−1(0)(0), where 𝑥𝑡 is the

net defined by (17). We will finally show that 𝑥
𝑛
→ 𝑥.

Set V
𝑛
= 𝑥
𝑛
− (𝜏
𝑛
/(1 − 

𝑛
))(AS𝑥

𝑛
− A𝑥) for all 𝑛. Take

𝑧 = 𝑥 in (64) to get ‖AS𝑥
𝑛
− A𝑥‖ → 0. First, we prove

lim
𝑛→∞

⟨−𝑥,S𝑥
𝑛
− 𝑥⟩ ≤ 0. We take a subsequence {S𝑥

𝑛
𝑖

} of
{S𝑥
𝑛
} such that

lim
𝑛→∞

⟨−𝑥,S𝑥
𝑛
− 𝑥⟩ = lim

𝑖→∞

⟨−𝑥,S𝑥
𝑛
𝑖

− 𝑥⟩ . (74)

It is clear that {S𝑥
𝑛
𝑖

} is bounded due to the boundedness
of {S𝑥

𝑛
} and ‖AS𝑥

𝑛
− A𝑥‖ → 0. Then, there exists a

subsequence {S𝑥
𝑛
𝑖
𝑗

} of {S𝑥
𝑛
𝑖

} which converges weakly to
some point 𝑤 ∈ C. Hence, {𝑥

𝑛
𝑖
𝑗

} and {𝑦
𝑛
𝑖
𝑗

} also converge
weakly to𝑤 because of ‖S𝑥

𝑛
𝑖
𝑗

−𝑥
𝑛
𝑖
𝑗

‖ → 0 and ‖𝑥
𝑛
𝑖
𝑗

−𝑦
𝑛
𝑖
𝑗

‖ →

0. By the demiclosedness principle of the nonexpansive
mapping (see Lemma 5) and (73), we deduce 𝑤 ∈ Fix(S).
Furthermore, by similar argument as that of Theorem 8, we
can show that 𝑤 is also in (A + B)

−1
(0). Hence, we have

𝑤 ∈ Fix(S) ∩ (A + B)
−1
(0). This implies that

lim
𝑛→∞

⟨−𝑥,S𝑥
𝑛
− 𝑥⟩ = lim

𝑗→∞

⟨−𝑥,S𝑥
𝑛
𝑖
𝑗

− 𝑥⟩

= ⟨−𝑥, 𝑤 − 𝑥⟩ .

(75)

Note that 𝑥 = projFix(S)∩(A+B)−1(0)(0). Then, ⟨−𝑥, 𝑤 − 𝑥⟩ ≤

0, 𝑤 ∈ Fix(S) ∩ (A + B)
−1
(0). Therefore,

lim
𝑛→∞

⟨−𝑥,S𝑥
𝑛
− 𝑥⟩ ≤ 0. (76)

From (46), we have

𝑥𝑛+1 − 𝑥

2

≤ 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝑥



2

= 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)

𝐽
B
𝜏
𝑛

𝑢
𝑛
− 𝐽

B
𝜏
𝑛

(𝑥 − 𝜏
𝑛
𝐴𝑥)



2

≤ 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)
𝑢𝑛 − (𝑥 − 𝜏𝑛A𝑥)


2
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= 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)

×
(1 − 𝑛)S𝑥𝑛 − 𝜏𝑛AS𝑥𝑛 − (𝑥 − 𝜏𝑛A𝑥)


2

= (1 − 𝜍
𝑛
)

(1 − 

𝑛
) ((S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
)

−(𝑥 −
𝜏
𝑛

1 − 
𝑛

A𝑥))

+ 
𝑛
(−𝑥)



2

+ 𝜍
𝑛

𝑥𝑛 − 𝑥

2

= 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)

× ((1 − 
𝑛
)
2

(S𝑥
𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
)

−(𝑥 −
𝜏
𝑛

1 − 
𝑛

A𝑥)


2

+ 2
𝑛
(1 − 

𝑛
)⟨−𝑥, (S𝑥

𝑛
−

𝜏
𝑛

1 − 
𝑛

AS𝑥
𝑛
)

−(𝑥 −
𝜏
𝑛

1 − 
𝑛

A𝑥)⟩ + 
2

𝑛
‖𝑥‖
2
)

≤ 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)

× ((1 − 
𝑛
)
2𝑥𝑛 − 𝑥


2

+ 2
𝑛
𝜏
𝑛
⟨−𝑥,AS𝑥

𝑛
− A𝑥⟩

+ 2
𝑛
(1 − 

𝑛
) ⟨−𝑥,S𝑥

𝑛
− 𝑥⟩ + 

2

𝑛
‖𝑥‖
2
)

≤ 𝜍
𝑛

𝑥𝑛 − 𝑥

2

+ (1 − 𝜍
𝑛
)

× ((1 − 
𝑛
)
2𝑥𝑛 − 𝑥


2

+ 2
𝑛
𝜏
𝑛 ‖𝑥‖

AS𝑥𝑛 − A𝑥


+ 2
𝑛
(1 − 

𝑛
) ⟨−𝑥,S𝑥

𝑛
− 𝑥⟩ + 

2

𝑛
‖𝑥‖
2
)

≤ [1 − 2 (1 − 𝜍
𝑛
) 
𝑛
]
𝑥𝑛 − 𝑥


2

+ 2
𝑛
(1 − 𝜍

𝑛
) 𝜏
𝑛 ‖𝑥‖

AS𝑥𝑛 − A𝑥


+ 2
𝑛
(1 − 𝜍

𝑛
) (1 − 

𝑛
) ⟨−𝑥,S𝑥

𝑛
− 𝑥⟩

+ (1 − 𝜍
𝑛
) 
2

𝑛
(‖𝑥‖
2
+
𝑥𝑛 − 𝑥


2

)

= [1 − 2 (1 − 𝜍
𝑛
) 
𝑛
]
𝑥𝑛 − 𝑥


2

+ 2 (1 − 𝜍
𝑛
) 
𝑛
{𝜏
𝑛 ‖𝑥‖

AS𝑥𝑛 − A𝑥


+ (1 − 
𝑛
) ⟨−𝑥,S𝑥

𝑛
− 𝑥⟩

+ 
𝑛
(‖𝑥‖
2
+
𝑥𝑛 − 𝑥


2

)} .

(77)
It is clear that ∑

𝑛
2(1 − 𝜍

𝑛
)
𝑛
= ∞ and

lim sup
𝑛→∞

{𝜏
𝑛 ‖𝑥‖

AS𝑥𝑛 − A𝑥
 + (1 − 𝑛)

× ⟨−𝑥,S𝑥
𝑛
− 𝑥⟩ + 

𝑛
(‖𝑥‖
2
+
𝑥𝑛 − 𝑥


2

)} ≤ 0.

(78)

By Lemma 7, we conclude that 𝑥
𝑛
→ 𝑥. This completes the

proof.

Corollary 11. Suppose that (A + B)
−1
(0) ̸= 0. Let 𝜏 be a

constant satisfying 𝑎 ≤ 𝜏 ≤ 𝑏, where [𝑎, 𝑏] ⊂ (0, 2). For
𝑡 ∈ (0, 1 − 𝜏/(2)), let {𝑥

𝑡
} ⊂ C be a net generated by

𝑥
𝑡
= 𝐽

B
𝜏
((1 − 𝑡) 𝑥

𝑡
− 𝜏A𝑥

𝑡
) . (79)

Then the net {𝑥
𝑡
} converges strongly, as 𝑡 → 0+, to a point

𝑥 = proj
(A+B)

−1
(0)(0) which is the minimum norm element in

(A + B)
−1
(0).

Corollary 12. Suppose that (A + B)
−1
(0) ̸= 0. For given 𝑥

0
∈

C, let {𝑥
𝑛
} ⊂ C be a sequence generated by

𝑥
𝑛+1

= 𝜍
𝑛
𝑥
𝑛
+ (1 − 𝜍

𝑛
) 𝐽

B
𝜏
𝑛

((1 − 
𝑛
) 𝑥
𝑛
− 𝜏
𝑛
A𝑥
𝑛
) (80)

for all 𝑛 ≥ 0, where {𝜏
𝑛
} ⊂ (0, 2), {

𝑛
} ⊂ (0, 1), and {𝜍

𝑛
} ⊂

(0, 1) satisfy

(i) lim
𝑛→∞


𝑛
= 0 and ∑

𝑛

𝑛
= ∞;

(ii) 0 < lim
𝑛→∞

𝜍
𝑛
≤ lim
𝑛→∞

𝜍
𝑛
< 1;

(iii) 𝑎(1 − 
𝑛
) ≤ 𝜏
𝑛
≤ 𝑏(1 − 

𝑛
), where [𝑎, 𝑏] ⊂ (0, 2) and

lim
𝑛→∞

(𝜏
𝑛+1

− 𝜏
𝑛
) = 0.

Then {𝑥
𝑛
} converges strongly to a point 𝑥 = proj

(A+B)
−1
(0)(0)

which is the minimum norm element in (A + B)
−1
(0).
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