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We provide a construction for the completion of a dislocated metric space (abbreviated 𝑑-metric space); we also prove that the
completion of the metric associated with a 𝑑-metric coincides with the metric associated with the completion of the 𝑑-metric.

1. Introduction

Completion of a metric space via Cauchy sequences can be
achieved because of certain convergence properties enjoyed
by the metric and the property that convergent sequences are
Cauchy sequences. Lack of some of these properties inweaker
forms of metric spaces comes in the way of completion
process in the above lines. In semimetric spaces several new
ways of completeness were invented, for example, Cauchy
completeness, McAuley notions of strong and weak com-
pleteness [1], Moore completeness [2], and so on. Moshokoa
[3] introduced the notion of convergence completeness for
semimetric spaces and discussed completion on these lines.

For 𝑑-metric spaces adoption of Van der-Waerdens com-
pletion process through Cauchy sequences is possible but is
not routine, the difficulty being the mischief created by the
isolated points. Here we show how to overcome this problem.

In his study of programming languages, Hitzler [4] asso-
ciated a metric 𝑑 with every 𝑑-metric by defining

𝑑


(𝑎, 𝑏) = {
𝑑 (𝑎, 𝑏) , if 𝑎 ̸= 𝑏

0, if 𝑎 = 𝑏.
(1)

We establish that the metric associated with the comple-
tion of a 𝑑-metric is the completion of the metric associated
with 𝑑.

We recall [4] where a distance function on a set 𝑋 is said
to be a 𝑑-metric on𝑋 if

(i) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);
(ii) 𝑑(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦;
(iii) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 in𝑋.
If 𝑑 is a 𝑑-metric on 𝑋 then (𝑋, 𝑑) is called a 𝑑-metric

space. Many authors (see, e.g. [5–9]) have studied fixed point
theorems in 𝑑-metric spaces but topology and topological
aspects on this space are discussed by Sarma andKumari [10].

The classB = {𝑉
𝜖
(𝑥)/𝑥 ∈ 𝑋 and 𝜖 > 0} is an open base for

the topology J
𝑑
induced by 𝑑, where 𝑉

𝜖
(𝑥) = {𝑦/𝑑(𝑥, 𝑦) <

𝜖} ∪ {𝑥}. In what follows whenever we talk about topological
properties of a 𝑑-metric space, we refer to the topologyJ

𝑑
.

In [11], the authors highlighted some convergence proper-
ties and covers a huge range of implications and nonimplica-
tions among them. By using these convergence axioms many
authors (see, e.g. [12–15]) have proved fixed point theorems
in certain spaces.

The presence of the triangle inequality lends the Hauss-
dorff property for 𝑑 and some nice properties to (𝑋, 𝑑). In
particular (𝑋, 𝑑) satisfies properties 𝐶

1
through 𝐶

5
:

𝐶
1
: lim𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 = lim 𝑑(𝑥

𝑛
, 𝑥) ⇒ lim 𝑑(𝑦

𝑛
, 𝑥) = 0;

𝐶
2
: lim𝑑(𝑥

𝑛
, 𝑥) = 0 = lim 𝑑(𝑦

𝑛
, 𝑥) ⇒ lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0;

𝐶
3
: lim𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 = lim 𝑑(𝑦

𝑛
, 𝑧
𝑛
) ⇒ lim𝑑(𝑥

𝑛
, 𝑧
𝑛
) =

0;
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𝐶
4
: lim 𝑑(𝑥

𝑛
, 𝑥) = 0 ⇒ lim 𝑑(𝑥

𝑛
, 𝑦) = 𝑑(𝑥, 𝑦);

𝐶
5
: lim 𝑑(𝑥

𝑛
, 𝑥) = lim 𝑑(𝑥

𝑛
, 𝑦) = 0 ⇒ 𝑥 = 𝑦; for all

𝑥, 𝑦 ∈ 𝑋.

Above mentioned convergence axioms can be found in
[11]. If the triangular inequality is deleted from the axioms on
𝑑 then it is difficult to define the concept of completion of the
resulting distance space. In such an amorphous space, even
constant sequences may fail to converge. This and related
difficulties compel us to retain the triangle inequality in the
discussion of completeness.

Definition 1. Let (𝑋, 𝑑) and (𝑌, 𝑑

) be distance spaces. A map

𝑓 : 𝑋 → 𝑌 is called an isodistance if for any 𝑥, 𝑦 ∈ 𝑋 one has
𝑑{𝑓(𝑥), 𝑓(𝑦)} = 𝑑


(𝑥, 𝑦).

2. Completion

In what follows, 𝑑 is a 𝑑-metric on a nonempty set 𝑋. A
complete 𝑑-metric space is a 𝑑-metric space in which every
Cauchy sequence converges. “Cauchy sequences” in 𝑑-metric
spaces are defined exactly as in metric spaces.

Lemma 2. 𝑥 is an isolated point of 𝑋 if and only if 𝑋 = 𝑥 or
inf
𝑦 ̸=𝑥

𝑑(𝑥, 𝑦) > 0.

Proof. Suppose 𝑥 is an isolated point of 𝑋. Then there exists
𝑟 > 0 such that 𝑦 ̸= 𝑥 ⇒ 𝑑(𝑥, 𝑦) > 𝑟 ⇒ 𝑋 = {𝑥} or
inf
𝑦 ̸=𝑥

𝑑(𝑥, 𝑦) ≥ 𝑟 > 0. Conversely suppose 𝑋 = {𝑥} or
inf
𝑦 ̸=𝑥

𝑑(𝑥, 𝑦) > 0. If 𝑋 = {𝑥}, then clearly 𝑥 is an isolated
point of 𝑋. If 𝑋 ̸= {𝑥}, then inf

𝑦 ̸=𝑥
𝑑(𝑥, 𝑦) = 𝑟 > 0 which

implies that 𝑑(𝑥, 𝑦) ≥ 𝑟 > 𝑟/2 for all 𝑦 ̸= 𝑥. Hence 𝑥 is an
isolated point of𝑋.

Corollary 3. If 𝑑(𝑥, 𝑥) > 0, then 𝑥 is an isolated point of𝑋.

Proof. If 𝑦 ̸= 𝑥, then 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑥) = 2𝑑(𝑥, 𝑦)

and so (1/2)𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦) for all 𝑦 in 𝑋. So 𝑋 = {𝑥} or
inf
𝑦 ̸=𝑥

𝑑(𝑥, 𝑦) ≥ (1/2)𝑑(𝑥, 𝑥) > 0.

Theorem 4. Let (𝑋, 𝑑) be a 𝑑-metric space. Then there exists
a complete 𝑑-metric space (𝑋

∗
, 𝑑
∗
) and an isodistance 𝑇 :

(𝑋, 𝑑) → (𝑋
∗
, 𝑑
∗
) such that 𝑇(𝑋) is dense in𝑋

∗.

Proof. Let 𝐼 be the collection of isolated points of 𝑋 and let
𝐽 = 𝑋 − 𝐼. Let 𝐼 be the collection of sequences in 𝑋 which
are ultimately a constant element lying in 𝐼 and 𝐽 denote the
class of Cauchy sequences in 𝐽. We define relations𝑅

𝐼
and𝑅

𝐽
,

respectively, on 𝐼 and 𝐽 as follows.
If (𝑥
𝑛
)(𝑦
𝑛
) are sequences in 𝐼 then (𝑥

𝑛
)𝑅
𝐼
(𝑦
𝑛
) iff the

ultimately constant value of (𝑥
𝑛
) coincides with that of (𝑦

𝑛
).

If (𝑥
𝑛
)(𝑦
𝑛
) are sequences in 𝐽 then (𝑥

𝑛
)𝑅
𝐽
(𝑦
𝑛
) iff

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0. Clearly 𝑅

𝐼
is an equivalence relation.

We verify that 𝑅
𝐽
is an equivalence relation. Suppose (𝑥

𝑛
) ∈ 𝐽

and 𝜖 > 0. Since (𝑥
𝑛
) is a Cauchy sequence in 𝐽, 𝑑(𝑥

𝑛
, 𝑥
𝑛
) = 0

and hence 𝑅
𝐽
is reflexive.

Suppose (𝑥
𝑛
)𝑅
𝐽
(𝑦
𝑛
) for (𝑥

𝑛
), (𝑦
𝑛
) ∈ 𝐽.Then lim

𝑛→∞
𝑑(𝑥
𝑛
,

𝑦
𝑛
) = lim

𝑛→∞
𝑑(𝑦
𝑛
, 𝑥
𝑛
) = 0. Hence 𝑅

𝐽
is symmetric.

If (𝑥
𝑛
), (𝑦
𝑛
), (𝑧
𝑛
) ∈ 𝐽, (𝑥

𝑛
)𝑅
𝐽
(𝑦
𝑛
) and (𝑦

𝑛
)𝑅
𝐽
(𝑧
𝑛
). If 𝜖 > 0,

then there exists an integer 𝑛
1
such that 𝑑(𝑥

𝑛
, 𝑦
𝑛
) < 𝜖/2 and

𝑑(𝑦
𝑛
, 𝑧
𝑛
) < 𝜖/2, if 𝑛 > 𝑛

1
. Consider

𝑑 (𝑥
𝑛
, 𝑧
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑧
𝑛
) <

𝜖

2
+

𝜖

2
= 𝜖 if 𝑛 > 𝑛

1
.

(2)

This proves that 𝑅
𝐽
is transitive and hence an equivalence

relation. Let 𝑋 = 𝐼 ∪ 𝐽. Then ∼= 𝑅
𝐼
∪ 𝑅
𝐽
is an equivalence

relation on𝑋.
Let 𝑋

∗ denote 𝑋/∼. If (𝑥
𝑛
) ∈ 𝑋, [(𝑥

𝑛
)] denotes the

equivalence class in𝑋
∗ containing the sequence (𝑥

𝑛
).

If 𝑥 ∈ 𝑋 let (𝑥) be the constant sequence (𝑥
𝑛
) where 𝑥

𝑛
=

𝑥, ∀𝑛 and 𝑥 = [(𝑥)], the equivalence class containing (𝑥).
If (𝑥
𝑛
) ∈ 𝐽, (𝑦

𝑛
) ∈ 𝐽, it follows from the triangle inequality

that |𝑑(𝑥
𝑛
, 𝑦
𝑛
) − 𝑑(𝑥

𝑚
, 𝑦
𝑚
)| ≤ 𝑑(𝑥

𝑛
, 𝑥
𝑚
) + 𝑑(𝑦

𝑛
, 𝑦
𝑚
). Since

(𝑥
𝑛
), (𝑦
𝑛
) are Cauchy sequences, given that 𝜖 > 0, there

exists a positive integer 𝑛
0
such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) < 𝜖/2 and

𝑑(𝑦
𝑛
, 𝑦
𝑚
) < 𝜖/2 for all 𝑛,𝑚 ≥ 𝑛

0
.

This implies that |𝑑(𝑥
𝑛
, 𝑦
𝑛
) − 𝑑(𝑥

𝑚
, 𝑦
𝑚
)| < 𝜖 proving

that (𝑑(𝑥
𝑛
, 𝑦
𝑛
)) is a Cauchy sequence of real numbers. By the

completeness of 𝑅 this sequence converges. The definition of
𝑅
𝐽
makes it obvious that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑦
𝑛
) is independent

of the choice of the representative sequences (𝑥
𝑛
), (𝑦
𝑛
),

respectively, from the classes [(𝑥
𝑛
)], [(𝑦

𝑛
)].

We can prove similarly if 𝑥 ∈ 𝑋 and (𝑦
𝑛
) ∈ 𝐽, (𝑧

𝑛
) ∈

𝐽, lim𝑑(𝑥, 𝑦
𝑛
), lim𝑑(𝑥, 𝑧

𝑛
) exists and or equal. Provided (𝑦

𝑛
)

and (𝑧
𝑛
) belong to the same equivalence class.

We define 𝑑∗ : 𝑋∗ × 𝑋
∗
→ [0,∞) as follows:

𝑑
∗
([(𝑥
𝑛
)], [(𝑦

𝑛
)]) = 𝑑(𝑥, 𝑦) if (𝑥

𝑛
), (𝑦
𝑛
) ∈ 𝐼 and

𝑥, 𝑦 are, respectively, the ultimately constant terms of
(𝑥
𝑛
), (𝑦
𝑛
).

𝑑
∗
([(𝑥
𝑛
)], [(𝑦

𝑛
)]) = lim

𝑛→∞
𝑑(𝑥, 𝑦

𝑛
) if (𝑥

𝑛
) ∈ 𝐼,

(𝑦
𝑛
) ∈ 𝐽 and 𝑥

𝑛
= 𝑥 eventually.

If (𝑥
𝑛
) ∈ 𝐽, (𝑦

𝑛
) ∈ 𝐼, then define 𝑑∗([(𝑥

𝑛
)], [(𝑦

𝑛
)]) =

𝑑
∗
([(𝑌
𝑛
)], [(𝑋

𝑛
)]).

If (𝑥
𝑛
) ∈ 𝐽, (𝑦

𝑛
) ∈ 𝐽, then define 𝑑∗([(𝑥

𝑛
)], [(𝑦

𝑛
)]) =

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
).

VerificationThat 𝑑∗ Is a 𝑑-Metric on𝑋
∗. Clearly 𝑑∗(𝑥∗, 𝑦∗) ≥

0 and 𝑑
∗
(𝑥
∗
, 𝑦
∗
) = 𝑑
∗
(𝑦
∗
, 𝑥
∗
) for 𝑥∗, 𝑦∗ ∈ 𝑋

∗.
Suppose 𝑑∗(𝑥∗, 𝑦∗) = 0. Let (𝑥

𝑛
) ∈ 𝑥
∗ and (𝑦

𝑛
) ∈ 𝑦
∗. We

first see that (𝑥
𝑛
), (𝑦
𝑛
) either are both in 𝐼 or are both in 𝐽.

Suppose, on the contrary, (𝑥
𝑛
) ∈ 𝐼 and (𝑦

𝑛
) ∈ 𝐽. Let 𝑥 be

the ultimately constant value of (𝑥
𝑛
). Consider

0 ≤ 𝑑 (𝑥, 𝑥) ≤ 2𝑑 (𝑥, 𝑦
𝑛
) ∀𝑛,

⇒ 0 = 𝑑
∗
(𝑥
∗
, 𝑦
∗
) = lim
𝑛→∞

𝑑 (𝑥, 𝑦
𝑛
) .

(3)

Hence 0 ≤ 𝑑(𝑥, 𝑥) ≤ lim
𝑛→∞

2𝑑(𝑥, 𝑦
𝑛
) = 0, contrary to the

fact that 𝑥 ∈ 𝐼.
Suppose 𝑥∗, 𝑦∗ ∈ 𝐼, (𝑥

𝑛
) ∈ 𝑥
∗, and (𝑦

𝑛
) ∈ 𝑦
∗ with 𝑎, 𝑏 the

ultimately constant values of (𝑥
𝑛
) and (𝑦

𝑛
), respectively.

Then 𝑑
∗
(𝑥
∗
, 𝑦
∗
) = 0 ⇒ 𝑑(𝑎, 𝑏) = 0 ⇒ 𝑎 = 𝑏 ⇒ (𝑥

𝑛
) ∼

(𝑦
𝑛
) ⇒ 𝑥

∗
= 𝑦
∗.
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Suppose 𝑥∗, 𝑦∗ ∈ 𝐽, (𝑥
𝑛
) ∈ 𝑥
∗ and (𝑦

𝑛
) ∈ 𝑦
∗. Consider

𝑑
∗
(𝑥
∗
, 𝑦
∗
) = 0 ⇒ lim

𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) = 0

⇒ (𝑥
𝑛
) ∼ (𝑦

𝑛
)

⇒ 𝑥
∗
= 𝑦
∗
.

(4)

Verification of the triangular inequality is routine.

Embedding of 𝑋 in 𝑋
∗. Define 𝑇 : 𝑋 → 𝑋

∗ by 𝑇(𝑥) = 𝑥.
It is clear that 𝑇 is an isodistance. We now verify that 𝑇(𝑥) is
dense in𝑋

∗. Let [(𝑥
𝑛
)] ∈ 𝑋

∗ and 𝜖 > 0.

Case (i) ((𝑥
𝑛
) ∈ 𝐼). In this case let “𝑎” be the ultimately con-

stant value of (𝑥
𝑛
).

Then by the definition of 𝑇, 𝑎 = [(𝑥
𝑛
)] ∈ 𝑇(𝑋).

Then 𝑎 = [(𝑥
𝑛
)]. Thus [(𝑥

𝑛
)] ∈ 𝑇(𝑋) in this case.

Case (ii) ((𝑥
𝑛
) ∈ 𝐽). There exists a positive integer 𝑛

0
such

that 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜖 if 𝑛,𝑚 ≥ 𝑛

0
. Let 𝑥

𝑛0
= 𝑎. Then since 𝑎 ∈

𝐽, 𝑑(𝑎, 𝑎) = 0,

𝑑
∗

([(𝑥)] , 𝑎) = lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑎) ≤ 𝜖. (5)

Hence 𝑇(𝑋) is dense in𝑋
∗.

(𝑋
∗
, 𝑑
∗
) Is Complete. Let (𝑥∗

𝑛
) be a Cauchy sequence in 𝑋

∗,
and 𝜖 > 0. There exists 𝑛

0
such that 𝑛 ≥ 𝑚 ≥ 𝑛

0
implies

𝑑
∗
(𝑥
∗

𝑛
, 𝑥
∗

𝑚
) < 𝜖/3.

There is no harm in assuming that 𝑛
0
> 𝜖/3. Since 𝑇(𝑋)

is dense in𝑋
∗, for each positive integer 𝑛, there exists 𝑧

𝑛
in𝑋

such that 𝑑(𝑥∗
𝑛
, �̂�
𝑛
) < 1/𝑛.

Hence

𝑑
∗
(�̂�
𝑛
, �̂�
𝑚
) ≤ 𝑑
∗
(�̂�
𝑛
, 𝑥
∗

𝑛
) + 𝑑
∗
(𝑥
∗

𝑛
, 𝑥
∗

𝑚
) + 𝑑
∗
(𝑥
∗

𝑚
, �̂�
𝑚
)

<
1

𝑛
+

1

𝑚
+

𝜖

3

<
𝜖

3
+

𝜖

3
+

𝜖

3
= 𝜖 if 𝑛,𝑚 ≥ 𝑛

0
.

(6)

Hence (�̂�
𝑛
) is a Cauchy sequence in 𝑇(𝑋). Since 𝑇 is an

isodistance, (𝑧
𝑛
) is a Cauchy sequence in 𝑋.

Moreover, 𝑑(𝑧
𝑛
, 𝑧
𝑚
) = 𝑑
∗
(�̂�
𝑛
, �̂�
𝑚
) < 𝜖, if 𝑛 ≥ 𝑚 ≥ 𝑛

0
.

Let 𝑧∗ denote [(𝑧
𝑛
)], by the triangle inequality:

< (1/𝑛) + lim
𝑚
𝑑(𝑧
𝑛
, 𝑧
𝑚
) < (2𝜖/3) < 𝜖 for 𝑛 ≥ 𝑛

0
;

𝑑
∗
(𝑥
∗

𝑛
, 𝑧
∗
) ≤ 𝑑
∗
(𝑥
∗

𝑛
, �̂�
𝑛
) + 𝑑
∗
(�̂�
𝑛
, 𝑧
∗
);

⇒ lim
𝑚
𝑑
∗
(𝑥
∗

𝑛
, 𝑧
∗
) = 0 proving that (𝑋∗, 𝑑∗) is com-

plete.

Definition 5. Let (𝑋, 𝑑) and (𝑋
1
, 𝑑
1
) be 𝑑-metric spaces.

(𝑋
1
, 𝑑
1
) is said to be a completion of (𝑋, 𝑑) if

(i) (𝑋
1
, 𝑑
1
) is complete;

(ii) there is an isodistance 𝑇 : (𝑋, 𝑑) → (𝑋
1
, 𝑑
1
) such

that 𝑇(𝑋) is dense in𝑋
1
.

Note. If (𝑋, 𝑑) is a complete metric space then its completion
is (𝑋, 𝑑) itself.

Lemma 6. Let (𝑋, 𝑑) be a 𝑑-metric space and let (𝑋
1
, 𝑑
1
) be

a completion of (𝑋, 𝑑). Let 𝑇 : 𝑋 → 𝑋
1
be isodistance

embedding 𝑋 in 𝑋
1
with 𝑇(𝑋) dense in 𝑋

1
. Then a point 𝑦 of

𝑋
1
is an isolated point if and only if 𝑦 = 𝑇(𝑋) for some isolated

point 𝑥 of𝑋
1
.

Proof. Suppose𝑦 is an isolated point of𝑋
1
. If𝑦 is not in𝑇(𝑋),

then since 𝑇(𝑋) is dense in𝑋
1
, there exists a sequence 𝑇(𝑥

𝑛
)

in 𝑇(𝑋) such that lim
𝑛→∞

𝑑(𝑇(𝑥
𝑛
), 𝑦) = 0.

By Lemma 2, it follows that 𝑦 is not an isolated point of
𝑋
1
, a contradiction so that 𝑦 = 𝑇(𝑋) for some 𝑥 ∈ 𝑋. Hence

𝑇𝑥 is an isolated point of𝑋
1
and hence that of 𝑇(𝑋). Since𝑋

and 𝑇(𝑋) are isometric, 𝑥 is an isolated point of𝑋.
Conversely, suppose 𝑥 is an isolated point of𝑋. If 𝑇(𝑋) is

not an isolated point of 𝑋
1
, then for each positive integer 𝑘,

there exists 𝑥
𝑘
in𝑋
1
such that 0 < 𝑑

1
(𝑥
𝑘
, 𝑇(𝑥)) ≤ 1/2𝑘. Since

𝑥
𝑘
∈ 𝑋
1
, either 𝑥

𝑘
∈ 𝑇(𝑋) or there exists 𝑦

𝑛
in𝑇(𝑋) such that

0 < 𝑑
1
((𝑦
𝑘
), 𝑥
𝑘
) < 𝑑
1
(𝑥
𝑘
, 𝑇(𝑥)).

Now

0 < 𝑑
1
(𝑦
𝑘
, 𝑇 (𝑥)) ≤ 𝑑

1
((𝑦
𝑘
) , 𝑥
𝑘
) + 𝑑
1
(𝑥
𝑘
, 𝑇 (𝑥))

≤
1

2𝑘
+

1

2𝑘
=

1

𝑘
.

(7)

Also 𝑦
𝑘

̸= 𝑥 since 𝑑
1
((𝑦
𝑘
), 𝑥
𝑘
) < 𝑑
1
(𝑥
𝑘
, 𝑇(𝑥)).

Hence 0 < 𝑑
1
(𝑦
𝑘
, 𝑇(𝑥)) < 1/𝑘 which, by Lemma 2,

contradicts the fact that𝑇(𝑥) is an isolated point of𝑇(𝑋).

Theorem 7. Let (𝑋, 𝑑) be a 𝑑-metric space, (𝑋
1
, 𝑑
1
) and

(𝑋
2
, 𝑑
2
) completion of (𝑋, 𝑑), and 𝑇

𝑖
: (𝑋, 𝑑) → (𝑋

𝑖
, 𝑑
𝑖
) (𝑖 =

1, 2) isometrics such that 𝑇
𝑖
(𝑥) is dense in𝑋

𝑖
. Then there exists

an isodistance 𝑇 : (𝑋
1
, 𝑑
1
)
𝑜𝑛 𝑡𝑜

→ (𝑋
2
, 𝑑
2
) such that following

diagram is commutative.

Proof. Consider the following:

(X, d)
T1

T2

(X1, d1)

T

(X2, d2)

(8)

Definition of 𝑇. If 𝑥 ∈ 𝑋
1
and 𝑥 is an isolated point of 𝑋

1
,

then 𝑇
−1

1
(𝑥) is an isolated point of 𝑋; hence 𝑇

2
(𝑇
−1

1
(𝑥)) is an

isolated point of𝑋
2
.

Define 𝑇(𝑥) = 𝑇
2
(𝑇
−1

1
(𝑥)). If 𝑥 ∈ 𝑋

1
and is not an

isolated point, there exists a sequence (𝑧
𝑛
) in 𝑋 such that

{𝑇
1
𝑧
𝑛
} converges to 𝑥 in (𝑋

1
, 𝑑
1
).

Since 𝑇
1
is an isodistance and {𝑇

1
𝑧
𝑛
} is convergent and

hence a Cauchy sequence, it follows that {𝑧
𝑛
} is a Cauchy

sequence in𝑋. Since 𝑇
2
is an isodistance and {𝑧

𝑛
} is a Cauchy
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sequence, it follows that {𝑇
2
𝑧
𝑛
} is a Cauchy sequence in

(𝑋
2
, 𝑑
2
). Since (𝑋

2
, 𝑑
2
) is complete, there exists 𝑧 ∈ 𝑋

2
such

that lim 𝑑
2
(𝑇
2
𝑧
𝑛
, 𝑧) = 0. Clearly this 𝑧 is independent of the

choice of the sequence {𝑧
𝑛
} in𝑋.

Define 𝑇(𝑥) = 𝑧. Clearly 𝑇𝑇
1
= 𝑇
2
and bijection.

𝑇 Is an Isodistance. If 𝑥, 𝑦 ∈ 𝑋, 𝑇(𝑇
1
(𝑥)) = 𝑇

2
(𝑥) and

𝑇(𝑇
1
(𝑦)) = 𝑇

2
(𝑦).

So 𝑑
2
(𝑇(𝑇
1
(𝑥)), 𝑇(𝑇

1
(𝑦))) = 𝑑

2
((𝑇
2
(𝑥)), 𝑇

2
(𝑦)) = 𝑑

2
(𝑥,

𝑦) = 𝑑
1
((𝑇
1
(𝑥)), 𝑇

1
(𝑦)).

If 𝑥, 𝑦 ∈ 𝑋
1
− 𝑋 and 𝑥 = lim𝑇

1
𝑥
𝑛
, 𝑦 = lim𝑇

1
𝑦
𝑛
where

𝑥
𝑛
, 𝑦
𝑛
∈ 𝑋, then

𝑑
2
(𝑇𝑥, 𝑇𝑦) = 𝑑

2
(lim𝑇

2
𝑥
𝑛
, lim𝑇

2
𝑦
𝑛
)

= lim 𝑑
2
(lim𝑇

2
𝑥
𝑛
, lim𝑇

2
𝑦
𝑛
)

= lim 𝑑 (𝑥
𝑛
, 𝑦
𝑛
)

= 𝑑
1
(lim𝑇

1
𝑥
𝑛
, lim𝑇

1
𝑦
𝑛
)

= 𝑑
1
(𝑥, 𝑦) .

(9)

The arguments for the cases when 𝑥 ∈ 𝑋
1
− 𝑋 and 𝑦 ∈ 𝑋 or

𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑋
1
− 𝑋 are similar. Hence 𝑇 is an isodistance.

Interchanging the places of𝑋
1
and𝑋

2
, we get in a similar way

an isodistance 𝑆 : 𝑋
2
→ 𝑋
1
such that 𝑆𝑇

2
= 𝑇
1
.

Since 𝑆𝑇
2
= 𝑇
1
and 𝑇𝑇

1
= 𝑇
2
, we have 𝑇𝑆𝑇

2
= 𝑇𝑇
1
and

𝑆𝑇𝑇
1
= 𝑆𝑇
2
= 𝑇
1
.

Since 𝑇(𝑋) is dense in 𝑋
1
and 𝑇

2
(𝑥) in 𝑋

2
, we get 𝑇𝑆 =

identity on𝑋
1
and 𝑆𝑇 is identity on𝑋

2
.

Hence 𝑆 and 𝑇 are bijections.

3. Completion of the Metric Associated with
a 𝑑-Metric

If 𝑑 is a 𝑑-metric on𝑋 then 𝑑
 is a metric on𝑋 if 𝑑 is defined

by 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) when 𝑥 ̸= 𝑦 and 𝑑

(𝑥, 𝑦) = 0 for all 𝑥, 𝑦

in𝑋.
Suppose (𝑋, 𝑑) is the completion of (𝑋, 𝑑); then 𝑑 gives

rise to a metric 𝑑


defined by 𝑑


(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈

𝑋 and 𝑑(𝑥, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝑋.
Also, the metric space (𝑋, 𝑑


) has a metric space (𝑋

0
, 𝑑
0
)

as its completion. In this section, we prove that the metric
spaces (𝑋, 𝑑



) and (𝑋
0
, 𝑑
0
) are isometric.

Definition 8. Let𝑋, 𝑑 be a 𝑑-metric space. Define 𝜌 on𝑋×𝑋

by

𝜌 (𝑥, 𝑦) = {
𝑑 (𝑥, 𝑦) , if 𝑥 ̸= 𝑦

0, if 𝑥 = 𝑦.
(10)

𝜌 is a metric on𝑋 and is called the metric associated with
𝑑.

Clearly 0 ≤ 𝜌(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) ∀𝑥, 𝑦 and 𝑑(𝑥, 𝑥) ≤

2𝜌(𝑥, 𝑦) whenever 𝑥 ̸= 𝑦. If 𝑠 ∈ {𝜌, 𝑑}, 𝑟 > 0 and 𝑥 ∈ 𝑋.
Write B𝑠

𝑟
(𝑥) = {𝑦/𝑠(𝑥, 𝑦) < 𝑟}. Then B𝜌

𝑟
(𝑥) = B𝑑

𝑟
(𝑥) ∪

{𝑥} andV𝑠
𝑟
(𝑥) = B𝑠

𝑟
(𝑥) ∪ {𝑥}.

The collection {V𝑑
𝑟
(𝑥)/𝑥 ∈ 𝑋, 𝑟 > 0} and V𝜌

𝑟
(𝑥) =

{V𝜌
𝑟
(𝑥)/𝑥 ∈ 𝑋, 𝑟 > 0} generate the same topology on 𝑋.

However, convergent sequences in 𝑋 are not necessarily the
same since constant sequences are convergent sequences with
respect to 𝜌, while this holds with respect to 𝑑 for 𝑥 with
𝑑(𝑥, 𝑥) = 0 only.

Existence of points with positive self-distance leads to
unpleasantness in the extension of the concept of continuity
in metric spaces as well. This is evident from the following.

Example 9. Let 𝑑 be a 𝑑-metric on a set 𝑋 which is not a
metric. So that the set𝐴 = {𝑥/𝑑(𝑥, 𝑥) ̸= 0} is nonempty. If 𝜌 is
a metric associated with 𝑑 then the identity map 𝑖 : (𝑋, 𝜌) →

(𝑋, 𝑑) is continuous in the usual sense. But if 𝑥 ∈ 𝐴, the
constant sequence (𝑥) converges in (𝑋, 𝜌) while it does not
converge in (𝑋, 𝑑).

If (𝑋, 𝑑), (𝑌, 𝜌) we call 𝑓 : 𝑋 → 𝑌 sequentially 𝑑-
continuous if lim 𝑑(𝑥

𝑛
, 𝑥) = 0 ⇒ lim 𝜌(𝑓(𝑥

𝑛
), 𝑓(𝑥)) = 0.

If 𝑠 ∈ {𝜌, 𝑑} and {𝑥
𝑛
} is a sequence in 𝑋, we say that 𝑋

is 𝑠-Cauchy sequence or simply 𝑠-Cauchy if {𝑥
𝑛
} is a Cauchy

sequence in (𝑋, 𝑠).

Proposition 10. lim 𝜌(𝑥
𝑛
, 𝑥) = 0 ⇔ either

(i) 𝑥
𝑛
= 𝑥 eventually or

(ii) (𝑥
𝑛
) can be split into subsequences (𝑦

𝑛
) and (𝑧

𝑛
) where

𝑦
𝑛
= 𝑥 for every 𝑛, 𝑧

𝑛
̸= 𝑥 for any 𝑛 and lim𝑑(𝑧

𝑛
, 𝑥) =

0.

Proof. Routine.

Proposition 11. If a sequence (𝑥
𝑛
) in 𝑋 is 𝑑-Cauchy then

(𝑥
𝑛
) is 𝜌-Cauchy. Conversely if (𝑥

𝑛
) is 𝜌-Cauchy and is not

eventually constant, then (𝑥
𝑛
) is 𝑑-Cauchy.

Proof. Since 0 ≤ 𝜌(𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝑑(𝑥

𝑛
, 𝑥
𝑚
), 𝑑-Cauchy ⇒ 𝜌-

Cauchy.
Conversely suppose that (𝑥

𝑛
) is 𝜌-Cauchy, given 𝜖 >

0 ∃ N(𝜖) such that 𝜌(𝑥
𝑛
, 𝑥
𝑚
) < 𝜖 if 𝑛 ≥ N(𝜖) and𝑚 ≥ N(𝜖).

So if𝑚 ≥ N(𝜖), 𝑛 ≥ N(𝜖), and 𝑥
𝑛

̸= 𝑥
𝑚
, then 𝑑(𝑥

𝑚
, 𝑥
𝑛
) < 𝜖.

Since (𝑥
𝑛
) is not eventually constant and 𝑛 ≥ N(𝜖), there

exists𝑚 ≥ N(𝜖) such that 𝑥
𝑚

̸= 𝑥
𝑛
. Then

𝑑 (𝑥
𝑛
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑚
) 𝑑 (𝑥
𝑚
, 𝑥
𝑛
)

= 2𝑑 (𝑥
𝑚
, 𝑥
𝑛
)

= 2𝑑 (𝑥
𝑛
, 𝑥
𝑛
)

< 2𝜖.

(11)

Thus if (𝑥
𝑛
) is not eventually constant then for all 𝑛 ≥ N(𝜖)

and𝑚 ≥ N(𝜖), 𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 2𝜖. Hence (𝑥

𝑛
) is 𝑑-Cauchy.

Example 12. Let𝑋 = (0,∞) and 𝑑(𝑥, 𝑦) = 𝑥 + 𝑦; then

𝜌 (𝑥, 𝑦) = {
𝑥 + 𝑦, if 𝑥 ̸= 𝑦

0, if 𝑥 = 𝑦.
(12)

If (𝑥
𝑛
) is any eventually nonconstant sequence in (0,∞),

then (𝑥
𝑛
) is 𝑑-Cauchy if and only if ∀𝜖 > 𝑜 there existsN(𝜖)

such that 𝑥
𝑛
+ 𝑥
𝑚

< 𝜖 for 𝑛 ≥ 𝑚 ≥ N(𝜖). This implies that
lim𝑥
𝑛
= 0.
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However, if lim𝑥
𝑛
= 0, then ∀𝜖 > 0 ∃ N(𝜖), such that

𝑥
𝑛
< 𝜖/2 for𝑚 ≥ N(𝜖), 𝑛 ≥ N(𝜖).
Hence 𝑥

𝑛
+ 𝑥
𝑚

< 𝜖 for 𝑚 ≥ N(𝜖), 𝑛 ≥ N(𝜖). However,
constant sequences are not 𝑑-Cauchy but 𝜌-Cauchy.

Theorem 13. Let (𝑋, 𝑑) be a metric space, 𝜌 the metric
associated with 𝑑 on𝑋, (𝑋∗, 𝑑∗) the completion of (𝑋, 𝑑), and
𝜌
∗ the metric associated with 𝑑

∗ on 𝑋
∗. Then (𝑋

∗
, 𝜌
∗
) is the

completion of (𝑋, 𝜌). In particular if (𝑋, 𝑑) is a complete metric
space then (𝑋, 𝜌) is a complete metric space. We prove that

(i) 𝑋 is dense in (𝑋
∗
, 𝜌
∗
);

(ii) every 𝜌∗-Cauchy sequence in𝑋
∗ is 𝜌∗-convergent.

Proof of (i). Let𝑥∗ ∈ 𝑋
∗
−𝑋.Then there exists a sequence (𝑥

𝑛
)

in 𝑋 such that lim 𝑑
∗
(𝑥
∗

𝑛
, 𝑥
∗
) = 0 since 𝑥

𝑛
∈ 𝑋, 𝑥

𝑛
̸= 𝑥
∗
∀𝑛.

So that lim 𝜌
∗
(𝑥
∗

𝑛
, 𝑥
∗
) = 0.

This implies that𝑋 is dense in (𝑋
∗
, 𝜌
∗
).

Proof of (ii). Let (𝑥∗
𝑛
) be𝜌∗-Cauchy in𝑋∗. If (𝑥∗

𝑛
) is eventually

constant, then there exist 𝑁 and 𝑥
∗
∈ 𝑋
∗ such that 𝑥∗

𝑛
= 𝑥
∗

for 𝑛 ≥ 𝑁.
In this case lim 𝜌

∗
(𝑥
∗

𝑛
, 𝑥
∗
) = 0 for 𝑛 ≥ 𝑁; hence (𝑥∗

𝑛
) is

𝜌
∗-convergent.
Suppose (𝑥

∗

𝑛
) is not eventually constant. Then (𝑥

∗

𝑛
) is a

𝑑
∗-Cauchy sequence. Since (𝑋∗, 𝑑∗) is complete, there exists

𝑥
∗
∈ 𝑋
∗ such that lim 𝑑

∗
(𝑥
∗

𝑛
, 𝑥
∗
) = 0. Since 0 ≤ 𝜌

∗
(𝑥
∗

𝑛
, 𝑥
∗
) ≤

𝑑
∗
(𝑥
∗

𝑛
, 𝑥
∗
) = 0, lim 𝜌

∗
(𝑥
∗

𝑛
, 𝑥
∗
) = 0.

Hence (𝑥
∗

𝑛
) is 𝜌
∗-convergent to 𝑥

∗. This completes the
proof of (ii).
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