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The definition of Caputo fractional derivative is given and some of its properties are discussed in detail. After then, the existence
of the solution and the dependency of the solution upon the initial value for Cauchy type problem with fractional Caputo nabla
derivative are studied. Also the explicit solutions to homogeneous equations and nonhomogeneous equations are derived by using
Laplace transform method.

1. Introduction

Fractional differential equation theory has gained consider-
able popularity and importance due to their numerous appli-
cations in many fields of science and engineering including
physics, population dynamics, chemical technology, biotech-
nology, aerodynamics, electrodynamics of complex medium,
polymer rheology, control of dynamical systems, and so on
(see, e.g., [1–4], and the references therein). On the other
hand, in real applications, it is not always continuous case,
but also discrete case. For example, in recent papers [5–8], in
order to deeply understand the background of the discrete
dynamics behaviors, some interesting results are obtained
by applying the discrete fractional calculus to discrete chaos
behaviors. In [9–12], the delta type discrete fractional calculus
is studied. In [13, 14], the nabla type discrete fractional
calculus is studied. In [15], the theory of fractional back-
ward difference equations (i.e., the nabla type fractional
difference equations) has been studied in detail. So how to
unify continuous fractional calculus and discrete fractional
calculus is a natural problem. In order to unify differential
equations and difference equations, Hilger [16] proposed
firstly the time scale and then some relevant basic theories are
studied by some authors (see [17–22]). Recently, some authors
studied fractional calculus on time scales (see [23–25]), where
Williams [24] gives a definition of fractional integral and
derivative on time scales to unify three cases of specific time

scales, which improved the results in [23]. Bastos gives defini-
tion of fractionalΔ-integral andΔ-derivative on time scales in
[25]. The delta fractional calculus and Laplace transform on
some specific discrete time scales are also discussed in [26–
28]. In the light of the above work, we further studied the
theory of fractional integral and derivative on general time
scales in [29], where∇-Laplace transform, fractional∇-power
function, ∇-Mittag-Leffler function, fractional ∇-integrals,
and fractional ∇-differential on time scales are defined. Some
of their properties are discussed in detail. After then, by using
Laplace transform method, the existence of the solution and
the dependency of the solution upon the initial value for
Cauchy type problem with Riemann-Liouville fractional ∇-
derivative are studied. Also the explicit solutions to homoge-
neous equations and nonhomogeneous equations are derived
by using Laplace transform method. But there is a short-
coming for Riemann-Liouville fractional ∇-derivative. That
is, Cauchy type problem with Riemann-Liouville fractional
order derivative and the Laplace transform of Riemann-
Liouville fractional order derivative require the initial condi-
tions in terms of non-integer derivatives, which are very dif-
ficult to be interpreted from the physical point of view. Thus
this paper’s focus on defining nabla type Caputo fractional
derivative on time scales proves some useful property about
Caputo fractional derivative and then studies some Caputo
fractional differential equations on time scales.
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The structure of this paper is as follows. In Section 2,
we give some preliminaries about time scales, generalized ∇-
power function, and Riemann-Liouville ∇-integral and ∇-
derivative. In Section 3, we present the definitions and the
properties of the Caputo nabla derivative on time scales in
detail. Then in Section 4, Cauchy type problem with Caputo
fractional derivative is discussed. For the Caputo fractional
differential initial value problem, we discuss the dependency
of the solution upon the initial value. In Section 5, by applying
the Laplace transform method, we study the fractional
order linear differential equations with Caputo fractional
derivative. We derive explicit solutions and fundamental
system of solutions to homogeneous equations with constant
coefficients and find particular solution and general solutions
of the corresponding nonhomogeneous equations.

2. Preliminaries

First, we present some preliminaries about time scales in [17].

Definition 1 (see [17]). A time scale T is a nonempty closed
subset of the real numbers.

Definition 2 (see [17]). For 𝑡 ∈ T one defines the forward
jump operator 𝜎 : T → T by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , (1)

while the backward jump operator 𝜌 : T → T is defined by

𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} . (2)

If 𝜎(𝑡) > 𝑡, we say that 𝑡 is right-scattered, while if 𝜌(𝑡) < 𝑡,
we say that 𝑡 is left-scattered. Points that are right-scattered
and left-scattered at the same time are called isolated. Also,
if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, then 𝑡 is called right-dense, and if
𝑡 > inf T and 𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense. Finally, the
graininess function ] : T → [0,∞) is defined by

] (𝑡) := 𝑡 − 𝜌 (𝑡) . (3)

Definition 3 (see [17]). If T has a right-scattered minimum
𝑚, then one defines T𝑘 = T − {𝑚}; otherwise T𝑘 = T . Assume
𝑓 : T → R is a function and let 𝑡 ∈ T𝑘. Then one defines
𝑓

∇
(𝑡) to be the number (provided it exists) with the property

that given any 𝜀 > 0, there is a neighborhood 𝑈 of 𝑡 (i.e.,
𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for some 𝛿 > 0) such that
󵄨󵄨󵄨󵄨󵄨
[𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠)] − 𝑓

∇
(𝑡) [𝜌 (𝑡) − 𝑠]

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄨󵄨󵄨󵄨𝜌 (𝑡) − 𝑠
󵄨󵄨󵄨󵄨

∀𝑠 ∈ 𝑈.

(4)

We call 𝑓∇
(𝑡) the nabla derivative of 𝑓 at 𝑡.

Definition 4 (see [17]). A function 𝑓 : T → R is called
regulated provided its right-sided limits exist (finite) at all
right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T . A function 𝑓 : T → R is called
ld-continuous provided it is continuous at left-dense points in
T and its right-sided limits exist (finite) at right-dense points
in T .

Definition 5 (see [17, page 100]). The generalized nabla type
polynomials are the functions ℎ̂𝑘 : T

2
:= T ×T → R, 𝑘 ∈ N0,

defined recursively as follows. The function ℎ̂0 is

ℎ̂0 (𝑡, 𝑠) = 1 ∀𝑠, 𝑡 ∈ T , (5)

and given ℎ̂𝑘 for 𝑘 ∈ N0, the function ℎ̂𝑘+1 is

ℎ̂𝑘+1 (𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ̂𝑘 (𝜏, 𝑠) ∇𝜏 ∀𝑠, 𝑡 ∈ T . (6)

Definition 6 (see [18, page 38]). The generalized delta type
polynomials are the functions ℎ𝑘 : T

2
:= T ×T → R, 𝑘 ∈ N0,

defined recursively as follows. The function ℎ0 is

ℎ0 (𝑡, 𝑠) = 1 ∀𝑠, 𝑡 ∈ T , (7)

and given ℎ𝑘 for 𝑘 ∈ N0, the function ℎ𝑘+1 is

ℎ𝑘+1 (𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ𝑘 (𝜏, 𝑠) Δ𝜏 ∀𝑠, 𝑡 ∈ T . (8)

It is similar to the discussion in the reference [17, (page
103)] for 𝑛 ∈ N0 and ld-continuous functions 𝑝𝑖 : T → R,
1 ≤ 𝑖 ≤ 𝑛, we consider the 𝑛th order linear dynamic equation

𝐿𝑦 = 0, where 𝐿𝑦 = 𝑦
∇
𝑛

+

𝑛

∑

𝑖=1

𝑝𝑖𝑦
∇
𝑛−𝑖

. (9)

Definition 7 (see [17]). One defines the Cauchy function 𝑦 :

T × T𝑘𝑛 → R for the linear dynamic equation (9) to be for
each fixed 𝑠 ∈ T𝑘𝑛 the solution of the initial value problem

𝐿𝑦 = 0, 𝑦
∇
𝑖

(𝜌 (𝑠) , 𝑠) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 2,

𝑦
∇
𝑛−1

(𝜌 (𝑠) , 𝑠) = 1.

(10)

Remark 8 (see [17]). Note that

𝑦 (𝑡, 𝑠) := ℎ̂𝑛−1 (𝑡, 𝜌 (𝑠)) (11)

is the Cauchy function for 𝑦∇
𝑛

.

Theorem9 (see [17] (variation of constants)). Let𝛼 ∈ T𝑘𝑛 and
𝑡 ∈ T . If 𝑓 ∈ 𝐶𝑙𝑑, then the solution of the initial value problem

𝐿𝑦 = 𝑓 (𝑡) ,

𝑦
∇
𝑖

(𝛼) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 1

(12)

is given by

𝑦 (𝑡) = ∫

𝑡

𝛼

𝑦 (𝑡, 𝜏) 𝑓 (𝜏) ∇𝜏, (13)

where 𝑦(𝑡, 𝜏) is the Cauchy function for (9).

Theorem 10 (see [17] (Taylor’s Formula)). Let 𝑛 ∈ N. Suppose
the function 𝑓 is such that 𝑓∇

𝑛+1

is ld-continuous on T𝑘𝑛+1 . Let
𝛼 ∈ T𝑘𝑛 , 𝑡 ∈ T . Then one has

𝑓 (𝑡) =

𝑛

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝛼) 𝑓
∇
𝑘

(𝛼) + ∫

𝑡

𝛼

ℎ̂𝑛 (𝑡, 𝜌 (𝜏)) 𝑓
∇
𝑛+1

(𝜏) ∇𝜏.

(14)
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Definition 11 (see [24]). A subset 𝐼 ⊂ T is called a time scale
interval, if it is of the form 𝐼 = 𝐴∩T for some real interval𝐴 ⊂

R. For a time scale interval 𝐼, a function 𝑓 : 𝐼 → R is said to
be left-dense absolutely continuous if for all 𝜀 > 0 there exist
𝛿 > 0 such that ∑𝑛

𝑘=1
|𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜀 whenever a disjoint

finite collection of subtime scale intervals (𝑎𝑘, 𝑏𝑘] ∩ T ⊂ 𝐼 for
1 ≤ 𝑘 ≤ 𝑛 satisfies ∑𝑛

𝑘=1
|𝑏𝑘 − 𝑎𝑘| < 𝛿. One denotes 𝑓 ∈ 𝐴𝐶∇.

If 𝑓∇
𝑚−1

∈ 𝐴𝐶, then one denotes 𝑓 ∈ 𝐴𝐶
𝑚

∇
.

Theorem 12 (see [4]). Let𝑋 be a normed linear space,C ⊂ 𝑋

a convex set, and 𝑈 open inC with 𝜃 ∈ 𝑈. Let 𝑇 : 𝑈 → C be
a continuous and compact mapping. Then either

(i) the mapping 𝑇 has a fixed point in 𝑈, or
(ii) there exists 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑇𝑢.

The following results can be found in our recent paper
[29].

Lemma 13 (see [29]). Let 𝐸 ⊂ T − {max T} be a measurable
set. If 𝑓 : T → R is integrable on 𝐸, then

∫
𝐸

𝑓
𝜎
(𝑠) Δ𝑠 = ∫

𝐸

𝑓 (𝑠) ∇𝑠. (15)

From now on, let T be a time scale such that sup T = ∞

and fix 𝑡0 ∈ T .

Definition 14 (see [29]). Assume that 𝑥 : T → R is regulated
and 𝑡0 ∈ T . Then the Laplace transform of 𝑥 is defined by

L∇,𝑡
0

{𝑥} (𝑧) = ∫

∞

𝑡
0

𝑥 (𝑡) 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡0) ∇𝑡. (16)

for 𝑧 ∈ D{𝑥}, where D{𝑥} consists of all complex numbers
𝑧 ∈ R] for which the improper integral exists.

Theorem 15 (see [29]). Assume that 𝑥 : T → C is such that
𝑥
∇
𝑘

is regulated. Then

L∇,𝑡
0

{𝑥
∇
𝑘

} (𝑧) = 𝑧
𝑘
L∇,𝑡

0

{𝑥} (𝑧) −

𝑘−1

∑

𝑖=0

𝑧
𝑘−𝑖−1

𝑥
∇
𝑖

(𝑡0) (17)

for those regressive 𝑧 ∈C satisfying lim𝑡→∞{𝑥
∇𝑖

(𝑡)𝑒⊖]𝑧
(𝑡, 𝑡0)}=

0, 𝑖 = 0, 1, . . . , 𝑘 − 1.

Definition 16 (see [29]). One defines fractional generalized
∇-power function on time scales

ℎ̂𝛼 (𝑡, 𝑡0) = L
−1

∇,𝑡
0

{
1

𝑧𝛼+1
} (𝑡) (𝛼 > −1) (18)

to those regressive 𝑧 ∈ C\{0}, 𝑡 ≥ 𝑡0; and for 𝑡 < 𝑡0, ℎ̂𝛼(𝑡, 𝑡0) =

0.

Here we introduce generalized ∇-derivative on time
scales:

∫𝑓
∇
𝑔∇𝑡 = −∫𝑓

𝜌
𝑔
∇
∇𝑡. (19)

Since ℎ̂𝛼(𝑡, 𝑡0) (𝛼 > −1) is integral, we can consider it as
a generalized function, and thus we can define ℎ̂𝛼(𝑡, 𝑡0) =

𝐷∇ℎ̂𝛼+1(𝑡, 𝑡0) for −2 < 𝛼 ≤ −1, where 𝐷∇ here means a
generalized derivative. In the sameway,we can define ℎ̂𝛼(𝑡, 𝑡0)

for 𝛼 ≤ −1.
For 𝛼 > 0, we have

ℎ̂𝛼 (𝑡0, 𝑡0) = 0. (20)

Definition 17 (see [29]). For a given 𝑓 : [𝑡0,∞)T → C, the
solution of the shifting problem

𝑢
∇
𝑡 (𝑡, 𝜌 (𝑠)) = −𝑢

∇
𝑠 (𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , 𝑡 ≥ 𝑠 ≥ 𝑡0,

𝑢 (𝑡, 𝑡0) = 𝑓 (𝑡) , 𝑡 ∈ T , 𝑡 ≥ 𝑡0,

(21)

is denoted by 𝑓 and is called the shift of 𝑓.

Definition 18 (see [29]). For given functions 𝑓, 𝑔 : T → R,
their convolution 𝑓 ∗ 𝑔 is defined by

(𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

𝑡
0

𝑓 (𝑡, 𝜌 (𝜏)) 𝑔 (𝜏) ∇𝜏, 𝑡 ∈ T , (22)

where𝑓 is the shift of𝑓, which is introduced in Definition 17.

Definition 19 (see [29]). Fractional generalized ∇-power
function ℎ̂𝛼(𝑡, 𝑠) on time scales is defined as the shift of
ℎ̂𝛼(𝑡, 𝑡0); that is,

ℎ̂𝛼 (𝑡, 𝑠) =
̃
ℎ̂𝛼 (⋅, 𝑡0) (𝑡, 𝑠) (𝑡 ≥ 𝑠 ≥ 𝑡0) .

(23)

In this paper, we always denote Ω := [𝑡0, 𝑡1]T a finite
interval on a time scale T (sup T = ∞).

Definition 20 (see [29]). Let 𝑡, 𝑡0 ∈ Ω.The Riemann-Liouville
fractional ∇-integral 𝐼𝛼

∇,𝑡
0

𝑓 of order 𝛼 > 0 is defined by

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) := ℎ̂𝛼−1 (𝑡, 𝑡0) ∗ 𝑓 (𝑡)

= ∫

𝑡

𝑡
0

̃
ℎ̂𝛼−1(⋅, 𝑡0) (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏

= ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏 (𝑡 > 𝑡0) .

(24)

Definition 21 (see [29]). Let 𝑡, 𝑡0 ∈ Ω. The Riemann-Liouville
fractional ∇-derivative𝐷𝛼

∇,𝑡
0

𝑓 of order 𝛼 ≥ 0 is defined by

𝐷
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡
0

𝑓 (𝑡) (𝑚 = [𝛼] + 1; 𝑡 > 𝑡0) . (25)

Throughout this paper, we denote 𝑓∇
𝑛

= 𝐷
𝑛

∇
𝑓 = 𝐷

𝑛

∇,𝑡
0

𝑓,
𝑛 ∈ N.

Property 1 (see [29]). Let𝛼 ≥ 0,𝑚 = [𝛼]+1, 𝛽 > 0, 𝑡, 𝑡0 ∈ Ω𝑘𝑚 .
Then

(1) 𝐼
𝛼

∇,𝑡
0

ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛼+𝛽−1 (𝑡, 𝑡0) , (𝛼 > 0) ;

(2)𝐷
𝛼

∇,𝑡
0

ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝛼−1 (𝑡, 𝑡0) , (𝛼 ≥ 0) .

(26)
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Property 2 (see [29]). If 𝛼 > 0 and 𝛽 > 0, then the equation

𝐼
𝛼

∇,𝑡
0

𝐼
𝛽

∇,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼+𝛽

∇,𝑡
0

𝑓 (𝑡) (27)

is satisfied at almost every point 𝑡 ∈ Ω for𝑓(𝑡) ∈ 𝐿∇,𝑝(Ω) (1 ≤

𝑝 ≤ ∞).

Property 3 (see [29]). If 𝛼 > 0 and 𝑓(𝑡) ∈ 𝐿∇,𝑝(Ω) (1 ≤ 𝑝 ≤

∞), then the following equality

𝐷
𝛼

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) (28)

holds almost everywhere onΩ.

Property 4 (see [29]). If 𝛼 > 𝛽 > 0, then, for 𝑓(𝑡) ∈

𝐿∇,𝑝(Ω) (1 ≤ 𝑝 ≤ ∞), the relation

𝐷
𝛽

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼−𝛽

∇,𝑡
0

𝑓 (𝑡) (29)

holds almost everywhere onΩ. In particular, when𝛽 = 𝑘 ∈ N

and 𝛼 > 𝑘, then

𝐷
𝑘

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼−𝑘

∇,𝑡
0

𝑓 (𝑡) . (30)

Property 5 (see [29]). Let 𝛼 > 0,𝑚 = [𝛼]+1 and let𝑓𝑚−𝛼(𝑡) =

𝐼
𝑚−𝛼

∇,𝑡
0

𝑓(𝑡).

(1) If 1 ≤ 𝑝 ≤ ∞ and 𝑓(𝑡) ∈ 𝐼𝛼
∇,𝑡
0

(𝐿∇,𝑝), then

𝐼
𝛼

∇,𝑡
0

𝐷
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) . (31)

(2) If 𝑓(𝑡) ∈ 𝐿∇,1(Ω) and 𝑓𝑚−𝛼(𝑡) ∈ 𝐴𝐶
𝑚

∇
(Ω), then the

equality

𝐼
𝛼

∇,𝑡
0

𝐷
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚

∑

𝑘=1

ℎ̂𝛼−𝑘 (𝑡, 𝑡0)𝐷
𝛼−𝑘

∇,𝑡
0

𝑓 (𝑡0) (32)

holds almost everywhere on Ω, where 𝐷𝛼−𝑚

∇,𝑡
0

𝑦(𝑡0) =

lim𝑡→ 𝑡
+

0

𝐼
𝑚−𝛼

∇,𝑡
0

𝑦(𝑡).

Lemma 22 (see [29]). Let 𝛼 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚 (𝑚 ∈ N)

and 𝑓 : Ω → R. For 𝑡0, 𝑡 ∈ Ω𝑘𝑚 with 𝑡0 < 𝑡. Then one has the
following.

(1) If 𝑓 ∈ 𝐿∇,𝑝(Ω), then

L∇,𝑡
0

{𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡)} (𝑧) =
1

𝑧𝛼
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧) . (33)

(2) If 𝑓 ∈ 𝐴𝐶
𝑚

∇
(Ω), then

L∇,𝑡
0

{𝐷
𝛼

∇,𝑡
0

𝑓 (𝑡)} (𝑧)

= 𝑧
𝛼
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧) −

𝑚

∑

𝑗=1

𝑧
𝑗−1

𝐷
𝛼−𝑗

∇,𝑡
0

𝑓 (𝑡0) ,

(34)

for those regressive 𝑧 ∈ C satisfying
lim𝑡→∞{𝐷

𝑗

∇
𝐼
𝑚−𝛼

∇,𝑡
0

𝑓(𝑡)𝑒⊖]𝑧
(𝑡, 𝑡0)} = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1.

Definition 23 (see [29]). ∇-Mittag-Leffler function is defined
as

∇𝐹𝛼,𝛽 (𝜆; 𝑡, 𝑡0) =

∞

∑

𝑗=0

𝜆
𝑗
ℎ̂𝛼𝑗+𝛽−1 (𝑡, 𝑡0) (35)

provided the right-hand series is convergent, where 𝛼, 𝛽 > 0,
𝜆 ∈ R.

Theorem 24 (see [29]). The Laplace transform of ∇-Mittag-
Leffler function is

L∇,𝑡
0

{
∇
𝐹𝛼,𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧) =

𝑧
𝛼−𝛽

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) . (36)

By differentiating 𝑘 times with respect to 𝜆 on both sides
of the formula in the theorem above, we get the following
result:

L∇,𝑡
0

{
𝜕
𝑘

𝜕𝜆𝑘
∇

𝐹𝛼,𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧) =
𝑘!𝑧

𝛼−𝛽

(𝑧
𝛼 − 𝜆)

𝑘+1
. (37)

3. Definition and Properties of Caputo
Fractional Derivative on Time Scales

Definition 25. Let 𝑡, 𝑡0 ∈ Ω. The Caputo fractional derivative
of order 𝛼 ≥ 0 is defined via Riemann-Liouville fractional
derivative by

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) := 𝐷
𝛼

∇,𝑡
0

[𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇
𝑘

(𝑡0)]

(𝑡 > 𝑡0) ,

(38)

where

𝑚 = [𝛼] + 1 for 𝛼 ∉ N; 𝑚 = 𝛼 for 𝛼 ∈ N. (39)

In particular, when 0 < 𝛼 < 1, the relation (38) takes the
following forms:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

∇,𝑡
0

[𝑓 (𝑡) − 𝑓 (𝑡0)] . (40)

If 𝛼 ∉ N, then the Caputo fractional derivative coincides
with the Riemann-Liouville fractional derivative in the fol-
lowing case:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

∇,𝑡
0

𝑓 (𝑡) , (41)

if 𝑓∇
𝑘

(𝑡0) = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1,𝑚 = [𝛼] + 1).
In particular, when 0 < 𝛼 < 1, we have

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

∇,𝑡
0

𝑓 (𝑡) , when 𝑓 (𝑡0) = 0. (42)

If 𝛼 = 𝑚 ∈ N and the usual nabla derivative 𝑓∇
𝑚

(𝑡) of
order𝑚 exists, then 𝐶

𝐷
𝑚

∇,𝑡
0

𝑓(𝑡) coincides with 𝑓∇
𝑚

(𝑡):

𝐶
𝐷

𝑚

∇,𝑡
0

𝑓 (𝑡) = 𝑓
∇
𝑚

(𝑡) (𝑚 ∈ N) . (43)
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The Caputo fractional derivative 𝐶
𝐷

𝛼

∇,𝑡
0

𝑓(𝑡) is defined for
functions 𝑓(𝑡) for which the Riemann-Liouville fractional
derivative of the right-hand sides of (38) exists. In particular,
they are defined for 𝑓(𝑡) belonging to the space 𝐴𝐶

𝑚

∇
(Ω)

of absolutely continuous functions defined in Definition 11.
Thus the following statement holds.

Property 6. Let 𝛼 ≥ 0 and let 𝑚 be given by (39). If 𝑓(𝑡) ∈
𝐴𝐶

𝑚

∇
(Ω), then the Caputo fractional derivative 𝐶

𝐷
𝛼

∇,𝑡
0

𝑓(𝑡)

exists almost everywhere onΩ𝑘𝑚 .

(a) If 𝛼 ∉ N, 𝐶𝐷𝛼

∇,𝑡
0

𝑓(𝑡) is represented by

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = ℎ̂𝑚−𝛼−1 (𝑡, 𝑡0) ∗ 𝑓
∇
𝑚

(𝑡) =: 𝐼
𝑚−𝛼

∇,𝑡
0

𝐷
𝑚

∇
𝑓 (𝑡) ,

(44)

where 𝑚 = [𝛼] + 1. Thus when 𝛼 ∉ N, 𝐶
𝐷

𝛼

∇,𝑡
0

𝑓(𝑡0) = 0,
where the notation 𝐶

𝐷
𝛼

∇,𝑡
0

𝑓(𝑡0) denote the limit of 𝐶
𝐷

𝛼

∇,𝑡
0

𝑓(𝑡)

as 𝑡 → 𝑡
+

0
.

In particular, when 0 < 𝛼 < 1 and 𝑓(𝑡) ∈ 𝐴𝐶∇(Ω),

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = ℎ̂−𝛼 (𝑡, 𝑡0) ∗ 𝑓
∇
(𝑡) =: 𝐼

1−𝛼

∇,𝑡
0

𝑓
∇
(𝑡) . (45)

(b) If 𝛼 = 𝑚 ∈ N, then 𝐶
𝐷

𝛼

∇,𝑡
0

𝑓(𝑡) is represented by (43).
In particular,

𝐶
𝐷

0

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) . (46)

Proof. (a) By Taylor’s formula on time scales

𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇
𝑘

(𝑡0) + ∫

𝑡

𝑡
0

ℎ̂𝑚−1 (𝑡, 𝜌 (𝜏)) 𝑓
∇
𝑚

(𝜏) ∇𝜏

=

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇
𝑘

(𝑡0) + 𝐼
𝑚

∇,𝑡
0

𝑓
∇
𝑚

(𝑡)

(47)

and using (29), we have

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

∇,𝑡
0

[𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇
𝑘

(𝑡0)]

= 𝐷
𝛼

∇,𝑡
0

𝐼
𝑚

∇,𝑡
0

𝑓
∇
𝑚

(𝑡)

= 𝐼
𝑚−𝛼

∇,𝑡
0

𝑓
∇
𝑚

(𝑡) .

(48)

(b) If 𝛼 = 𝑚 ∈ N, then (38) takes the form

𝐶
𝐷

𝑚

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝑚

∇,𝑡
0

[𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇
𝑘

(𝑡0)] , (49)

and, from Taylor’s formula and (28), we derive 𝐶
𝐷

𝑚

∇,𝑡
0

𝑓(𝑡) =

𝑓
∇
𝑚

(𝑡).

Property 7. Let 𝛼 > 0 and let 𝑚 be given by (39), 𝛽 > 0, 𝑡 ∈
Ω𝑘𝑚 . Then

𝐶
𝐷

𝛼

∇,𝑡
0

ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝛼−1 (𝑡, 𝑡0) (𝛽 > 𝑚) , (50)

𝐶
𝐷

𝛼

∇,𝑡
0

ℎ̂𝑘 (𝑡, 𝑡0) = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1) . (51)

In particular,
𝐶
𝐷

𝛼

∇,𝑡
0

1 = 0. (52)

Proof. FromProperty 6 and (26), it is obtained that for 𝛼 ∉ N,
𝐶
𝐷

𝛼

∇,𝑡
0

ℎ̂𝛽−1 (𝑡, 𝑡0) = 𝐼
𝑚−𝛼

∇,𝑡
0

𝐷
𝑚

∇
ℎ̂𝛽−1 (𝑡, 𝑡0)

= 𝐼
𝑚−𝛼

∇,𝑡
0

ℎ̂𝛽−𝑚−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝛼−1 (𝑡, 𝑡0) ,

𝐶
𝐷

𝛼

∇,𝑡
0

ℎ̂𝑘 (𝑡, 𝑡0) = 𝐼
𝑚−𝛼

∇,𝑡
0

𝐷
𝑚

∇
ℎ̂𝑘 (𝑡, 𝑡0) = 𝐼

𝑚−𝛼

∇,𝑡
0

0 = 0

(𝑘 = 0, 1, . . . , 𝑚 − 1, 𝑡 > 𝑡0) ,

(53)

while for 𝛼 = 𝑚 ∈ N,
𝐶
𝐷

𝑚

∇,𝑡
0

ℎ̂𝛽−1 (𝑡, 𝑡0) = 𝐷
𝑚

∇
ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝑚−1 (𝑡, 𝑡0) ,

𝐶
𝐷

𝑚

∇,𝑡
0

ℎ̂𝑘 (𝑡, 𝑡0) = 𝐷
𝑚

∇
ℎ̂𝑘 (𝑡, 𝑡0) = 0

(𝑘 = 0, 1, . . . , 𝑚 − 1, 𝑡 > 𝑡0) .

(54)

Property 8. Let 𝛼 > 0 and let 𝑓(𝑡) ∈ 𝐿∇,∞(Ω) or 𝑓(𝑡) ∈

𝐴𝐶∇(Ω). Then
𝐶
𝐷

𝛼

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) . (55)

Proof. Let 𝑓(𝑡) ∈ 𝐿∇,∞(Ω)(𝑓(𝑡) ∈ 𝐴𝐶∇(Ω)), and let 𝛼 > 0

and 𝑘 = 0, 1, . . . , 𝑚 − 1. Since 𝑓(𝑡) ∈ 𝐿∇,∞(Ω)(𝑓(𝑡) ∈

𝐴𝐶∇(Ω)), then for a.e. (for any) 𝑡 ∈ Ω𝑘𝑚 , we get

𝐼
𝛼−𝑘

∇,𝑡
0

𝑓 (𝑡) = ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏 ≤ 𝐾
2
ℎ̂1 (𝑡, 𝑡0)

(where max
𝑡,𝜏∈Ω

{
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
∇,∞

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐴𝐶
∇

,
󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨
} ≤ 𝐾)

(56)

for any 𝑘 = 0, 1, . . . , 𝑚 − 1 = [𝛼], and hence

𝐷
𝑘

∇
𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡0) = 𝐼
𝛼−𝑘

∇,𝑡
0

𝑓 (𝑡0) = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1) .

(57)

Thus using (41) for 𝛼 ∉ N with 𝑓(𝑡) replaced by 𝐼𝛼
∇,𝑡
0

𝑓(𝑡) and
(28), we derive

𝐶
𝐷

𝛼

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) . (58)

For 𝛼 = 𝑚 ∈ N,
𝐶
𝐷

𝛼

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝑚

∇,𝑡
0

𝐼
𝑚

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) . (59)
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Property 9. Let 𝛼 > 0 and let 𝑚 be given by (39). If 𝑓(𝑡) ∈
𝐴𝐶

𝑚

∇
(Ω), then

𝐼
𝛼

∇,𝑡
0

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0)𝐷
𝑘

∇,𝑡
0

𝑓 (𝑡0) . (60)

In particular, if 0 < 𝛼 ≤ 1 and 𝑓(𝑡) ∈ 𝐴𝐶∇(Ω), then

𝐼
𝛼

∇,𝑡
0

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑡0) . (61)

Proof. Let 𝛼 ∉ N. If 𝑓(𝑡) ∈ 𝐴𝐶
𝑚

∇
(Ω), then using Property 6,

(27) and (32), we have

𝐼
𝛼

∇,𝑡
0

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼

∇,𝑡
0

𝐼
𝑚−𝛼

∇,𝑡
0

𝐷
𝑚

∇
𝑓 (𝑡) = 𝐼

𝑚

∇,𝑡
0

𝐷
𝑚

∇
𝑓 (𝑡)

= 𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0)𝐷
𝑘

∇,𝑡
0

𝑓 (𝑡0) .

(62)

For 𝛼 = 𝑚 ∈ N, the result is obvious from Property 6 and
(32).

Property 10. Assume that 𝑓(𝑡) ∈ 𝐴𝐶
𝑚

∇
(Ω) and 𝑚 − 1 < 𝛽 <

𝛼 < 𝑚. Then, for all 𝑘 ∈ {1, . . . , 𝑚 − 1},
𝐶
𝐷

𝛼−𝑚+𝑘

∇,𝑡
0

𝐷
𝑚−𝑘

∇,𝑡
0

𝑓 (𝑡) =
𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) , (63)

𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

𝐶
𝐷

𝛽

∇,𝑡
0

𝑓 (𝑡) =
𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) (64)

for all 𝑡 ∈ Ω𝑘𝑚 .

Proof. For each 𝑘 ∈ {1, . . . , 𝑚 − 1}, by Property 6,
𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) = 𝐼
𝑚−𝛼

∇,𝑡
0

𝐷
𝑚

∇
𝑓 (𝑡)

= ∫

𝑡

𝑡
0

ℎ̂𝑚−𝛼−1 (𝑡, 𝜌 (𝑠))𝐷
𝑚

∇
𝑓 (𝑠) ∇𝑠

= ∫

𝑡

𝑡
0

ℎ̂𝑘−(𝛼−(𝑚−𝑘))−1 (𝑡, 𝜌 (𝑠))𝐷
𝑘

∇
𝐷

𝑚−𝑘

∇
𝑓 (𝑠) ∇𝑠.

(65)

Noting that𝛼−(𝑚−𝑘) ∈ (𝑘−1, 𝑘) and according to Property 6,
we have

∫

𝑡

𝑡
0

ℎ̂𝑘−(𝛼−(𝑚−𝑘))−1 (𝑡, 𝜌 (𝑠))𝐷
𝑘

∇
𝐷

𝑚−𝑘

∇
𝑓 (𝑠) ∇𝑠

=
𝐶
𝐷

𝛼−𝑚+𝑘

∇,𝑡
0

𝐷
𝑚−𝑘

∇,𝑡
0

𝑓 (𝑡) .

(66)

Thus (63) holds.
Now, for all 𝛼0, 𝛽0 ∈ (0, 1) with 𝛼0 + 𝛽0 < 1, we have
𝐶
𝐷

𝛼
0

∇,𝑡
0

𝐶
𝐷

𝛽
0

∇,𝑡
0

𝑓 (𝑡) =
𝐶
𝐷

𝛼
0
+𝛽
0

∇,𝑡
0

𝑓 (𝑡) =
𝐶
𝐷

𝛽
0

∇,𝑡
0

𝐶
𝐷

𝛼
0

∇,𝑡
0

𝑓 (𝑡) .

(67)

In fact, from Property 6, we can get 𝐶
𝐷

𝛽
0

∇,𝑡
0

𝑓(𝑡0) = 0. Since
𝛼0, 𝛽0 ∈ (0, 1), then by (41), (29), and Property 6

𝐶
𝐷

𝛼
0

∇,𝑡
0

𝐶
𝐷

𝛽
0

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼
0

∇,𝑡
0

𝐶
𝐷

𝛽
0

∇,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼
0

∇,𝑡
0

𝐼
1−𝛽
0

∇,𝑡
0

𝑓
∇
(𝑡)

= 𝐼
1−𝛽
0
−𝛼
0

∇,𝑡
0

𝑓
∇
(𝑡) =

𝐶
𝐷

𝛼
0
+𝛽
0

∇,𝑡
0

𝑓 (𝑡) .

(68)

Similarly, we have 𝐶
𝐷

𝛽
0

∇,𝑡
0

𝐶
𝐷

𝛼
0

∇,𝑡
0

𝑓(𝑡) =
𝐶
𝐷

𝛼
0
+𝛽
0

∇,𝑡
0

𝑓(𝑡).Thus (67)
holds. Then, by using (63) and (67), we have that

𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡) =
𝐶
𝐷

𝛼−𝑚+1

∇,𝑡
0

𝐷
𝑚−1

∇
𝑓 (𝑡)

=
𝐶
𝐷

(𝛼−𝛽)+(𝛽−𝑚+1)

∇,𝑡
0

𝐷
𝑚−1

∇
𝑓 (𝑡)

=
𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

𝐶
𝐷

𝛽−𝑚+1

∇,𝑡
0

𝐷
𝑚−1

∇
𝑓 (𝑡)

=
𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

𝐶
𝐷

𝛽

∇,𝑡
0

𝑓 (𝑡) .

(69)

That is, (64) holds. The results follow.

The next assertion yields the Laplace transform of the
Caputo fractional nabla derivative.

Property 11. Let 𝛼 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚 (𝑚 ∈ N) be such that
𝑓(𝑡) ∈ 𝐴𝐶

𝑚

∇
(Ω). Then

L∇,𝑡
0

{
𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡)} (𝑧)

= 𝑧
𝛼
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧) −

𝑚−1

∑

𝑘=0

𝑧
𝛼−𝑘−1

𝑓
∇
𝑘

(𝑡0)

(70)

for those regressive 𝑧 ∈ C satisfying lim𝑡→∞{𝑓
∇𝑘
(𝑡)𝑒⊖]𝑧

(𝑡,

𝑡0)} = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1).
In particular, if 0 < 𝛼 ≤ 1, then

L∇,𝑡
0

{
𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡)} (𝑧) = 𝑧
𝛼
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧) − 𝑧
𝛼−1

𝑓 (𝑡0)

(71)

for those regressive 𝑧 ∈ C satisfying lim𝑡→∞{𝑓(𝑡)𝑒⊖]𝑧
(𝑡,

𝑡0)} = 0.

Proof. By Property 6, (33), and (17), for 𝛼 ∉ N, we have

L∇,𝑡
0

{
𝐶
𝐷

𝛼

∇,𝑡
0

𝑓 (𝑡)} (𝑧)

= L∇,𝑡
0

{𝐼
𝑚−𝛼

∇,𝑡
0

𝐷
𝑚

∇
𝑓 (𝑡)} (𝑧)

=
1

𝑧𝑚−𝛼
L∇,𝑡

0

{𝐷
𝑚

∇
𝑓 (𝑡)} (𝑧)

=
1

𝑧𝑚−𝛼
[𝑧

𝑚
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧) −

𝑚−1

∑

𝑘=0

𝑧
𝑚−𝑘−1

𝑓
∇
𝑘

(𝑡0)]

= 𝑧
𝛼
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧) −

𝑚−1

∑

𝑘=0

𝑧
𝛼−𝑘−1

𝑓
∇
𝑘

(𝑡0) ,

(72)

and for 𝛼 = 𝑚 ∈ N, we have

L∇,𝑡
0

{
𝐶
𝐷

𝑚

∇,𝑡
0

𝑓 (𝑡)} (𝑧) = L∇,𝑡
0

{𝑓
∇
𝑚

(𝑡)} (𝑧)

= 𝑧
𝑚
L∇,𝑡

0

{𝑓 (𝑡)} (𝑧)

−

𝑚−1

∑

𝑘=0

𝑧
𝑚−𝑘−1

𝑓
∇
𝑘

(𝑡0) .

(73)

The result follows.
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Remark 26. (1) For Riemann-Liouville fractional derivative,

𝐷
𝛼

∇,𝑡
0

1 = ℎ̂−𝛼 (𝑡, 𝑡0) (0 < 𝛼 < 1) , (74)

while for the Caputo fractional derivative,
𝐶
𝐷

𝛼

∇,𝑡
0

1 = 0, (75)

which shows that the Caputo fractional derivative is more
near to the usual sense derivative than Riemann-Liouville
fractional derivative.

(2) Comparing (34) and (70), we know that the Laplace
transform of the Caputo fractional derivative involves only
initial value with integer order derivative, such as𝑓∇

𝑘

(𝑡0), 𝑘 =

0, 1, . . . , 𝑚 − 1, while the Laplace transform of the Riemann-
Liouville fractional derivative is related to initial value with
fractional order derivative which is difficult to understand
the physics background, such as 𝐷𝛼−𝑘

∇,𝑡
0

𝑓(𝑡0), 𝑘 = 1, . . . , 𝑚.
Thus, the Caputo fractional derivative is used more widely in
realistic applications.

4. The Cauchy Problem with Caputo
Fractional Derivative

4.1. Existence and Uniqueness of the Solution to the Cauchy
Type Problem. In this section we consider the nonlinear
differential equation of order 𝛼 > 0:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) (76)

involving the Caputo fractional derivative 𝐶
𝐷

𝛼

∇,𝑡
0

𝑦(𝑡), defined
in (38), with the initial conditions

𝐷
𝑘

∇
𝑦 (𝑡0) = 𝑏𝑘, 𝑏𝑘 ∈ R (𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑚 = − [−𝛼]) .

(77)

We give the conditions for a unique solution 𝑦(𝑡) to this
problem in the space 𝐴𝐶𝑚

∇
(Ω). Our investigations are based

on reducing the problem (76)-(77) to the integral equation

𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 + ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏.

(78)

First we establish an equivalence between the problem (76)-
(77) and the integral equation (78).

Theorem 27. Let 𝛼 > 0 and let𝑚 be given by (39). Let𝐺 be an
open set in R and let 𝑓 : Ω × 𝐺 → R be a function such that,
for any 𝑦 ∈ 𝐺, 𝑓(𝑡, 𝑦) ∈ 𝐴𝐶∇(Ω). If 𝑦(𝑡) ∈ 𝐴𝐶

𝑚

∇
(Ω), then

𝑦(𝑡) satisfies the relation (76)-(77) if and only if 𝑦(𝑡) satisfies
the Volterra integral equation (78).

Proof. First we prove the necessity. Let 𝑦(𝑡) be the solution to
the Cauchy problem (76)-(77). Applying the operator 𝐼𝛼

∇,𝑡
0

to
(76) and taking into account

𝐼
𝛼

∇,𝑡
0

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) = 𝑦 (𝑡) −

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0)𝐷
𝑗

∇,𝑡
0

𝑦 (𝑡0) (79)

and (77), we arrive at the integral equation (78) since 𝑦(𝑡) ∈
𝐴𝐶

𝑚

∇
(Ω).

Inversely, if 𝑦(𝑡) satisfies (78), for 𝑓(𝑡, 𝑦) ∈ 𝐴𝐶∇(Ω),
applying the operator 𝐶

𝐷
𝛼

∇,𝑡
0

to both sides of (78) and taking
into account (51) and (55), we have

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

𝐶
𝐷

𝛼

∇,𝑡
0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 +
𝐶
𝐷

𝛼

∇,𝑡
0

𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡))

= 𝑓 (𝑡, 𝑦 (𝑡)) .

(80)

In addition, by term-by-termdifferentiation of (78) and using
(51), we have

𝐷
𝑘

∇
𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

𝐷
𝑘

∇
ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 + 𝐷

𝑘

∇
𝐼
𝛼

∇,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑚−1

∑

𝑗=0

𝐷
𝑘

∇
ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏

=

𝑘−1

∑

𝑗=0

𝐷
𝑘

∇
ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 +

𝑚−1

∑

𝑗=𝑘

𝐷
𝑘

∇
ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏

=

𝑚−1

∑

𝑗=𝑘

ℎ̂𝑗−𝑘 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏

(81)

for 𝑘 = 0, 1, . . . , 𝑚 − 1. Thus we obtain relations in (77) by
letting 𝑡 = 𝑡0 in (81).

In the following, we bring into Lipschitzian-type condi-
tion:

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦1 (𝑡)) − 𝑓 (𝑡, 𝑦2 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦2 (𝑡)
󵄨󵄨󵄨󵄨 , (82)

where 𝐴 > 0 does not depend on 𝑡 ∈ Ω. We will derive a
unique solution to the Cauchy problem (76)-(77).

Theorem 28. Let 𝛼 > 0 and let 𝑚 be given by (39). Let
𝐺 be an open set in R and 𝑓 : Ω × 𝐺 → R a function
such that, for any 𝑦 ∈ 𝐺, 𝑓(𝑡, 𝑦) ∈ 𝐴𝐶∇(Ω), 𝑦(𝑡) ∈

𝐴𝐶
𝑚

∇
(Ω). Let 𝑓(𝑡, 𝑦) satisfies the Lipschitzian condition (82),

andmax𝑦∈𝐺,𝑡,𝑠∈Ω{|𝑓(𝑡, 𝑦)|, |ℎ̂𝛼−1(𝑡, 𝑠)|} ≤ 𝑀. Then there exists
a unique solution 𝑦(𝑡) to initial value problem (76)-(77).

Proof. Since the Cauchy type problem (76)-(77) and the
nonlinear Volterra integral equation (78) are equivalent, we
only need to prove there exists a unique solution to (78).
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We define function sequences:

𝑦𝑙 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦𝑙−1 (𝜏)) ∇𝜏

(𝑙 = 1, 2, . . .) ,

(83)

where

𝑦0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗. (84)

To simplify our proof, without loss of generality, we assume
that 𝐺 is large enough such that 𝑦𝑙(𝑡) ∈ 𝐺, ∀𝑡 ∈ Ω, ∀𝑙.

We obtain by inductive method that

󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦𝑙−1 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐴

𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0) . (85)

In fact, for 𝑙 = 1, since max𝑦∈𝐺,𝑡,𝑠∈Ω{|𝑓(𝑡, 𝑦)|, |ℎ̂𝛼−1(𝑡, 𝑠)|} ≤

𝑀, we have

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦0 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑦0 (𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝑀
2
∫

𝑡

𝑡
0

∇𝜏 = 𝑀
2
ℎ̂1 (𝑡, 𝑡0) .

(86)

If
󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝑡) − 𝑦𝑙−2 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐴
𝑙−2
𝑀

𝑙
ℎ̂𝑙−1 (𝑡, 𝑡0) , (87)

then
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦𝑙−1 (𝑡)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑦𝑙−1 (𝜏)) − 𝑓 (𝜏, 𝑦𝑙−2 (𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝜏) − 𝑦𝑙−2 (𝜏)
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡
0

𝐴
𝑙−2
𝑀

𝑙
ℎ̂𝑙−1 (𝜏, 𝑡0) ∇𝜏

= 𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0) .

(88)

According to
∞

∑

𝑙=1

󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦𝑙−1 (𝑡)
󵄨󵄨󵄨󵄨 ≤

∞

∑

𝑙=1

𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=1

(𝐴𝑀)
𝑙
ℎ𝑙 (𝜎 (𝑡) , 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=1

(𝐴𝑀)
𝑙 (𝜎 (𝑡) − 𝑡0)

𝑙

𝑙!

(89)

and byWeierstrass discriminance, we obtain 𝑦𝑙(𝑡) convergent
uniformly and the limit is the solution. Thus we prove the
existence of solution.

Next we will show the uniqueness. Assume 𝑧(𝑡) is another
solution to (78); that is,

𝑧 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑧 (𝜏)) ∇𝜏. (90)

Since

max
𝑦∈𝐺,𝑡,𝑠∈Ω

{
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝑠)

󵄨󵄨󵄨󵄨󵄨
} ≤ 𝑀, (91)

we have

󵄨󵄨󵄨󵄨𝑦0 (𝑡) − 𝑧 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧 (𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝑀
2
∫

𝑡

𝑡
0

∇𝜏 = 𝑀
2
ℎ̂1 (𝑡, 𝑡0) .

(92)

If
󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0) , (93)

then
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑦𝑙−1 (𝜏)) − 𝑓 (𝜏, 𝑧 (𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝜏) − 𝑧 (𝜏)
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡
0

𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝜏, 𝑡0) ∇𝜏

≤ 𝐴
𝑙
𝑀

𝑙+2
ℎ̂𝑙+1 (𝑡, 𝑡0) .

(94)

By mathematical induction, we have
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐴
𝑙
𝑀

𝑙+2
ℎ̂𝑙+1 (𝑡, 𝑡0) . (95)

and then we get that
∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)
󵄨󵄨󵄨󵄨 ≤

∞

∑

𝑙=0

𝐴
𝑙
𝑀

𝑙+2
ℎ̂𝑙+1 (𝑡, 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=0

(𝐴𝑀)
𝑙+1
ℎ𝑙+1 (𝜎 (𝑡) , 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=0

(𝐴𝑀)
𝑙+1 (𝜎(𝑡) − 𝑡0)

𝑙+1

(𝑙 + 1)!
.

(96)

Thus, lim𝑙→∞|𝑦𝑙(𝑡) − 𝑧(𝑡)| = 0, and then we have 𝑧(𝑡) = 𝑦(𝑡)

owing to the uniqueness of the limit. The result follows.

In the following, we consider generalized Cauchy type
problems:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) ,
𝐶
𝐷

𝛼
1

∇,𝑡
0

𝑦 (𝑡) , . . . ,
𝐶
𝐷

𝛼
𝑙

∇,𝑡
0

𝑦 (𝑡))

(0 = 𝛼0 ≤ 𝛼1 ≤ ⋅ ⋅ ⋅ ≤ 𝛼𝑙 ≤ 𝛼) ,

𝐷
𝑘

∇,𝑡
0

𝑦 (𝑡0) = 𝑏𝑘 (𝑘 = 1, . . . , 𝑚, 𝛼 = − [−𝛼]) .

(97)
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Theorem 29. Let 𝛼 > 0, 𝐺 be an open set and let 𝑓 : Ω ×

𝐺 → R be a function such that, for any (𝑦, 𝑦1, . . . , 𝑦𝑙) ∈ 𝐺,
𝑓(𝑡, 𝑦, 𝑦1, . . . , 𝑦𝑙) ∈ 𝐴𝐶∇(Ω). If 𝑦(𝑡) ∈ 𝐴𝐶

𝑚

∇
(Ω), then 𝑦(𝑡)

satisfies (97) if and only if 𝑦(𝑡) satisfies the integral equation

𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

× 𝑓 (𝜏, 𝑦 (𝜏) ,
𝐶
𝐷

𝛼
1

∇,𝑡
0

𝑦 (𝜏) , . . . ,
𝐶
𝐷

𝛼
𝑙

∇,𝑡
0

𝑦 (𝜏)) ∇𝜏.

(98)

Suppose that 𝑓 satisfies generalized Lipschitzian condi-
tion:

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦0, 𝑦1, . . . , 𝑦𝑙) − 𝑓 (𝑡, 𝑧0, 𝑧1, . . . , 𝑧𝑙)
󵄨󵄨󵄨󵄨

≤ 𝐴[

[

𝑙

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑦𝑗 − 𝑧𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

(𝐴 > 0) .

(99)

According to the theorem above and the proof of
Theorem 28, we have the following theorem.

Theorem 30. Let the condition of Theorem 29 be valid. If 𝑓
satisfies Lipschitzian condition (99) and max𝑦∈𝐺,𝑡,𝑠∈Ω{|𝑓(𝑡, 𝑦,

𝑦1, . . . , 𝑦𝑙)|, |ℎ̂𝛼−1(𝑡, 𝑠)|} ≤ 𝑀 holds, then there exists a unique
solution 𝑦(𝑡) to initial value problem (97).

4.2.TheDependency of the Solution upon the Initial Value. We
consider Caputo fractional differential initial value problem
again:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝑘

∇
𝑦 (𝑡0) = 𝑏𝑘 (𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑚 = − [−𝛼]) ,

(100)

where 𝛼 > 0.
UsingTheorem 27, we have

𝑦 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏, (101)

where

𝑦0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗. (102)

Suppose 𝑧(𝑡) is the solution to the initial value problem:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝑘

∇
𝑦 (𝑡0) = 𝑐𝑘 (𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑚 = − [−𝛼]) .

(103)

We denote ‖𝑦‖ := sup
𝑡∈Ω

𝑦(𝑡). We can derive the dependency
of the solution upon the initial value.

Theorem 31. Let 𝑦(𝑡), 𝑧(𝑡) be the solutions to (100) and (103),
respectively, and let 𝑡0, 𝑡, 𝑠 ∈ Ω, |ℎ̂𝛼−1(𝑡, 𝑠)| ≤ 𝑀. Suppose 𝑓
satisfies the Lipschitz condition; that is,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑧) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨 (𝐴 > 0) . (104)

Then we have

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

∞

∑

𝑗=0

(𝐴𝑀)
𝑗 (𝜎(𝑡) − 𝑡0)

𝑗

𝑗!
, ∀𝑡 ∈ Ω.

(105)

Proof. By the proof of Theorem 28, we know that 𝑦(𝑡) =

lim𝑚→∞𝑦𝑚(𝑡), 𝑧(𝑡) = lim𝑚→∞𝑧𝑚(𝑡), where

𝑦0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗,

𝑦𝑚 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦𝑚−1 (𝜏)) ∇𝜏,

𝑧0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑐𝑗,

𝑧𝑚 (𝑡) = 𝑧0 (𝑡) + ∫

𝑡

𝑡
0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑧𝑚−1 (𝜏)) ∇𝜏.

(106)

Using the Lipschitz condition, we have

󵄨󵄨󵄨󵄨𝑧1 (𝑡) − 𝑦1 (𝑡)
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

+ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧0 (𝜏)) − 𝑓 (𝜏, 𝑦0 (𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 +𝑀∫

𝑡

𝑡
0

𝐴
󵄨󵄨󵄨󵄨𝑧0 (𝜏) − 𝑦0 (𝜏)

󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 𝐴𝑀∫

𝑡

𝑡
0

∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 𝐴𝑀ℎ̂1 (𝑡, 𝑡0)

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 [1 + 𝐴𝑀ℎ̂1 (𝑡, 𝑡0)] .

(107)

Suppose

󵄨󵄨󵄨󵄨𝑧𝑚−1 (𝑡) − 𝑦𝑚−1 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝑡, 𝑡0) ,

(108)
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then
󵄨󵄨󵄨󵄨𝑧𝑚 (𝑡) − 𝑦𝑚 (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

+ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧𝑚−1 (𝜏)) − 𝑓 (𝜏, 𝑦𝑚−1 (𝜏))

󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

+𝑀∫

𝑡

𝑡
0

𝐴
󵄨󵄨󵄨󵄨𝑧𝑚−1 (𝜏) − 𝑦𝑚−1 (𝜏)

󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

+𝑀∫

𝑡

𝑡
0

𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝜏, 𝑡0) ∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗+1

∫

𝑡

𝑡
0

ℎ̂𝑗 (𝜏, 𝑡0) ∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗+1

ℎ̂𝑗+1 (𝑡, 𝑡0)

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝑡, 𝑡0) .

(109)

According to mathematical induction, we have

󵄨󵄨󵄨󵄨𝑧𝑚 (𝑡) − 𝑦𝑚 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝑡, 𝑡0)

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ𝑗 (𝜎 (𝑡) , 𝑡0)

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗 (𝜎(𝑡) − 𝑡0)

𝑗

𝑗!
.

(110)

Taking the limit𝑚 → ∞, we obtain that

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑧0 − 𝑦0

󵄩󵄩󵄩󵄩

∞

∑

𝑗=0

(𝐴𝑀)
𝑗 (𝜎(𝑡) − 𝑡0)

𝑗

𝑗!
, (111)

and the proof is completed.

4.3. Initial Value Problems for Nonlinear Term Containing
Fractional Derivative. In this section, we are interested in the
nonlinear differential equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡)) (𝑡 ∈ Ω, 𝑡 > 𝑡0) , (112)

of fractional order 𝛼 ∈ (𝑚−1,𝑚), where 𝛽 ∈ (𝑛−1, 𝑛),𝑚, 𝑛 ∈
N, and 𝛼 > 𝛽, with the initial conditions

𝐷
𝑘

∇,𝑡
0

𝑢 (𝑡0) = 𝜂𝑘, 𝑘 = 0, . . . , 𝑚 − 1. (113)

We obtain the existence of at least one solution for integral
equations using the Leray-Schauder Nonlinear Alternative
for several types of initial value problems and establish
sufficient conditions for unique solutions using the Banach
contraction principle.

Our objective is to find solutions to the initial value
problem (112) and (113) in the space 𝐴𝐶𝑚

∇
(Ω). There are two

cases to investigate: 𝑛 − 1 < 𝛽 < 𝑛 ≤ 𝑚 − 1 < 𝛼 < 𝑚 and
𝑛 − 1 < 𝛽 < 𝛼 < 𝑛.

Throughout this section, we suppose that the following
are satisfied:

(𝐻1) 𝑓 : Ω × R → R is a ld-continuously and nabla
differentiable function;

(𝐻2) there exist nonnegative functions 𝑎1, 𝑎2 ∈ 𝐴𝐶∇(Ω)

such that |𝑓(𝑡, 𝑧)| ≤ 𝑎1(𝑡) + 𝑎2(𝑡)|𝑧|;

(𝐻3) 𝑓(𝑡0, 0) = 0 and 𝑓(𝑡, 0) ̸= 0 on a compact subinterval
ofΩ \ {𝑡0}.

The following shows that the solvability of the initial value
problem (112) and (113) is equivalent to that of the Volterra-
type integral equation (115) in the space 𝐴𝐶∇(Ω).

Lemma 32. Let 𝑛 − 1 < 𝛽 < 𝑛 ≤ 𝑚 − 1 < 𝛼 < 𝑚 and
assume that (𝐻1) and (𝐻3) hold. A function 𝑢(𝑡) ∈ 𝐴𝐶

𝑚

∇
(Ω)

is a solution of the initial value problem (112) and (113) if and
only if

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡
0

ℎ̂𝑛−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠, 𝑡 ∈ Ω,

(114)

where V ∈ 𝐴𝐶∇(Ω) is a solution of the integral equation

V (𝑡) =
𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠.

(115)

Proof. By (63), we have

𝐶
𝐷

𝛼−𝑛

∇,𝑡
0

𝐷
𝑛

∇
𝑢 (𝑡) =

𝐶
𝐷

𝛼

∇,𝑡
0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡)) . (116)
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By using Property 6, 𝐶𝐷𝛽

∇,𝑡
0

𝑢(𝑡) = 𝐼
𝑛−𝛽

∇,𝑡
0

𝐷
𝑛

∇
𝑢(𝑡), thus we have

𝐶
𝐷

𝛼−𝑛

∇,𝑡
0

𝐷
𝑛

∇
𝑢 (𝑡) = 𝑓(𝑡, ∫

𝑡

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑡, 𝜌 (𝜏))𝐷
𝑛

∇
𝑢 (𝜏) ∇𝜏) .

(117)

Let V(𝑡) = 𝐷
𝑛

∇
𝑢(𝑡), by usingTheorem 27, we obtain

V (𝑡) =
𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0)𝐷
𝑖

∇
V (𝑡0)

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠.

(118)

As 𝐷𝑖

∇
V(𝑡) = 𝐷

𝑛+𝑖

∇
𝑢(𝑡) and by (113), the above equation

transforms into (115). An application of Definition 7 and
Theorem 9 yields (114) in view of V(𝑡) = 𝐷

𝑛

∇
𝑢(𝑡) and (113).

To prove the converse, let V ∈ 𝐴𝐶∇(Ω) be a solution of
(115). Since V ∈ 𝐴𝐶∇(Ω), the function

𝑠 󳨀→ ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏 (119)

is ld-continuous on Ω \ {𝑡0} and so is

𝑠 󳨀→ 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏) . (120)

We have

𝐷
𝑛

∇
𝑢 (𝑡) = V (𝑡)

=

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))𝐷
𝑛

∇
𝑢 (𝜏) ∇𝜏)∇𝑠

=

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖 + 𝐼
𝛼−𝑛

∇,𝑡
0

𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡)) .

(121)

Since 𝛼 − 𝑛 ∈ (𝑚 − 𝑛 − 1,𝑚 − 𝑛), by

𝐶
𝐷

𝛼

∇,𝑡
0

𝑢 (𝑡) =
𝐶
𝐷

𝛼−𝑛

∇,𝑡
0

𝐷
𝑛

∇
𝑢 (𝑡)

=
𝐶
𝐷

𝛼−𝑛

∇,𝑡
0

(

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖)

+
𝐶
𝐷

𝛼−𝑛

∇,𝑡
0

𝐼
𝛼−𝑛

∇,𝑡
0

𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡))

= 𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡)) ,

(122)

so 𝑢 is a solution of (112) in view of (𝐻1). By absolute
continuity of the integral, differentiating (115), we obtain

𝐷
𝑘

∇
V (𝑡) =

𝑚−𝑛−1

∑

𝑖=0

𝐷
𝑘

∇
ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ 𝐷
𝑘

∇
𝐼
𝛼−𝑛

∇,𝑡
0

𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡))

=

𝑘−1

∑

𝑖=0

𝐷
𝑘

∇
ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖 +

𝑚−𝑛−1

∑

𝑖=𝑘

𝐷
𝑘

∇
ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ 𝐷
𝑘

∇
𝐼
𝛼−𝑛

∇,𝑡
0

𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡))

= 0 +

𝑚−𝑛−1

∑

𝑖=𝑘

ℎ̂𝑖−𝑘 (𝑡, 𝑡0) 𝜂𝑛+𝑖 + 𝐼
𝛼−𝑛−𝑘

∇,𝑡
0

𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡))

(123)

for each 𝑘 = 0, . . . , 𝑚 − 𝑛 − 1. Thus, 𝐷𝑛+𝑘

∇
𝑢(𝑡0) = 𝐷

𝑘

∇
V(𝑡0) =

𝜂𝑛+𝑘, 𝑘 = 0, . . . , 𝑚−𝑛−1; that is,𝐷𝑖

∇
𝑢(𝑡0) = 𝜂𝑖, 𝑖 = 𝑛, . . . , 𝑚−1.

On the other hand, from (114),

𝐷
𝑖

∇
𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐷

𝑖

∇
𝐼
𝑛

∇,𝑡
0

V (𝑡)

=

𝑖−1

∑

𝑘=0

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 +

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐼

𝑛−𝑖

∇,𝑡
0

V (𝑡)

=

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐼

𝑛−𝑖

∇,𝑡
0

V (𝑡)

(124)

and thus 𝐷𝑖

∇
𝑢(𝑡0) = 𝜂𝑖 (𝑖 = 0, . . . , 𝑛 − 1). Also it is easy to see

that𝐷𝑚−𝑛

∇
V(𝑡) = 𝐷

𝑚

∇
𝑢(𝑡) ∈ 𝐴𝐶∇(Ω).

For the sake of brevity, by 𝜙, we denote the first term in
the right-hand side of (115).

Theorem 33. Suppose that (𝐻1)–(𝐻3) hold. Then the integral
equation (115) has a solution in 𝐴𝐶∇(Ω) provided

𝐴 = sup
𝑡∈Ω

∫

𝑡

𝑡
0

(
󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

× ∫

𝑠

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨
∇𝜏) 𝑎2 (𝑠) ∇𝑠 < 1,

0 < 𝐵 = sup
𝑡∈Ω

(
󵄨󵄨󵄨󵄨𝜙 (𝑡)

󵄨󵄨󵄨󵄨 + ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑎1 (𝑠) ∇𝑠) < ∞.

(125)

Proof. In the normed space (𝐴𝐶∇(Ω), ‖ ⋅ ‖0) with the sup-
norm ‖ ⋅ ‖0, we define the mapping 𝑇 by

(𝑇V) (𝑡) = 𝜙 (𝑡)



12 Abstract and Applied Analysis

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

(126)

for all 𝑡 ∈ Ω. Indeed, one can easily verify that the mapping
𝑇 is well defined and 𝑇 : 𝐴𝐶∇(Ω) → 𝐴𝐶∇(Ω).

Let

𝑈 = {V ∈ 𝐴𝐶∇ (Ω) : ‖V‖0 < 𝑅} (127)

with

𝑅 =
𝐵

1 − 𝐴
> 0. (128)

LetC ⊂ 𝐴𝐶∇(Ω) be defined byC = 𝑈.
Let V ∈ 𝑈; that is, ‖V‖0 ≤ 𝑅. Then

‖𝑇V‖0

= sup
𝑡∈Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜙 (𝑡)

+ ∫

𝑡

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑡∈Ω

(
󵄨󵄨󵄨󵄨𝜙 (𝑡)

󵄨󵄨󵄨󵄨

+ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑠)

≤ sup
𝑡∈Ω

(
󵄨󵄨󵄨󵄨𝜙 (𝑡)

󵄨󵄨󵄨󵄨

+ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

× (𝑎1 (𝑠) + 𝑎2 (𝑠)

×∫

𝑠

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨
|V (𝜏)| ∇𝜏)∇𝑠)

≤ sup
𝑡∈Ω

(
󵄨󵄨󵄨󵄨𝜙 (𝑡)

󵄨󵄨󵄨󵄨 + ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑎1 (𝑠) ∇𝑠)

+ sup
𝑡∈Ω

∫

𝑡

𝑡
0

(
󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

× ∫

𝑠

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨
∇𝜏) 𝑎2 (𝑠) ∇𝑠‖V‖0

= 𝐵 + 𝐴‖V‖0

≤ 𝐵 + 𝐴𝑅

= 𝑅,

(129)

which shows that 𝑇V ∈ C.
In addition,

󵄨󵄨󵄨󵄨(𝑇V) (𝑡1) − (𝑇V) (𝑡2)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡1, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡
2

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡2, 𝜌 (𝑠))

×𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡1, 𝑡0) 𝜂𝑛+𝑖 −

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡2, 𝑡0) 𝜂𝑛+𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑡
0

∫

𝑡
1

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡
2

𝑡
0

∫

𝑡
2

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

×𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−𝑛−1

∑

𝑖=0

∫

𝑡
1

𝑡
0

ℎ̂𝑖−1 (𝜏, 𝑡0) ∇𝜏𝜂𝑛+𝑖

−

𝑚−𝑛−1

∑

𝑖=0

∫

𝑡
2

𝑡
0

ℎ̂𝑖−1 (𝜏, 𝑡0) ∇𝜏𝜂𝑛+𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑡
0

∫

𝑡
1

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃
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× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡
1

𝑡
0

∫

𝑡
2

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑡
0

∫

𝑡
2

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡
2

𝑡
0

∫

𝑡
2

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑚−𝑛−1

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑡
2

ℎ̂𝑖−1 (𝜏, 𝑡0) ∇𝜏𝜂𝑛+𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∫

𝑡
1

𝑡
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑡
2

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑠

+ ∫

𝑡
1

𝑡
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

𝜌(𝑠)

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑠

≤ 𝑀

𝑚−𝑛−1

∑

𝑖=0

󵄨󵄨󵄨󵄨𝜂𝑛+𝑖
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨 + 𝑀
2 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨 + 𝑀
󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨

= (𝑀

𝑚−𝑛−1

∑

𝑖=0

󵄨󵄨󵄨󵄨𝜂𝑛+𝑖
󵄨󵄨󵄨󵄨 + 𝑀

2
+𝑀)

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨 ,

(130)

where max𝜏,𝜃,𝑠,𝑡
1
,𝑡
2
∈Ω{ℎ̂𝑖−1(𝜏, 𝑡0) (𝑖 = 0, . . . , 𝑚 − 𝑛 − 1),

ℎ̂𝛼−𝑛−2(𝜃, 𝜌(𝑠)),∫
𝑡
1

𝑡
0

|𝑓(𝑠, ∫
𝑠

𝑡
0

ℎ̂𝑛−𝛽−1(𝑠, 𝜌(𝜏))V(𝜏)∇𝜏)|∇𝑠,∫
𝑡
1

𝑡
2

|𝑓(𝑠,

∫
𝑠

𝑡
0

ℎ̂𝑛−𝛽−1(𝑠, 𝜌(𝜏))V(𝜏)∇𝜏)|∇𝑠} ≤ 𝑀.
Thus, 𝑇V is equicontinuous on Ω. This shows that 𝑇 is a

compact mapping.
Consider the eigenvalue problem

V = 𝜆𝑇V, 𝜆 ∈ (0, 1) . (131)

Under the assumption that V is a solution of (131) for a 𝜆 ∈

(0, 1), one obtains

‖V‖0

= sup
𝑡∈Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝜙 (𝑡)

+ 𝜆∫

𝑡

𝑡
0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

×𝑓(𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< sup
𝑡∈Ω

(
󵄨󵄨󵄨󵄨𝜙 (𝑡)

󵄨󵄨󵄨󵄨

+ ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑠, ∫

𝑠

𝑡
0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∇𝑠)

≤ 𝐵 + 𝐴‖V‖0 ≤ 𝑅,

(132)

which shows that V ∉ 𝜕𝑈. ByTheorem 12, 𝑇 has a fixed point
in 𝑈, which we denote by V0, such that ‖V0‖0 ≤ 𝑅.

It follows from Lemma 32 that

𝑢0 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡
0

ℎ̂𝑛−1 (𝑡, 𝜌 (𝑠)) V0 (𝑠) ∇𝑠, 𝑡 ∈ Ω,

(133)

is a solution of (112) and (113).
In the following, we will discuss another case: 𝑛−1 < 𝛽 <

𝛼 < 𝑛.

Lemma 34. Let 𝑛 − 1 < 𝛽 < 𝛼 < 𝑛 and suppose that (𝐻1) and
(𝐻3) hold. A function 𝑢 ∈ 𝐴𝐶

𝑛

∇
(Ω) is a solution of the initial

value problem (112) and (113) if and only if

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡
0

ℎ̂𝛽−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠, 𝑡 ∈ Ω,

(134)

where V ∈ 𝐴𝐶∇(Ω) is a solution of

V (𝑡) = ∫

𝑡

𝑡
0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠. (135)

Proof. Let 𝑢 ∈ 𝐴𝐶𝑛

∇
(Ω) be a solution of the

𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡) =
𝐶
𝐷

𝛼

∇,𝑡
0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡)) , (136)

which, after the substitution V(𝑡) = 𝐶
𝐷

𝛽

∇,𝑡
0

𝑢(𝑡), becomes

𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

V (𝑡) = 𝑓 (𝑡, V (𝑡)) . (137)
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Next, by Property 9 and (113)

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡
0

ℎ̂𝛽−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠,

V (𝑡) = V (𝑡0) + ∫
𝑡

𝑡
0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠.

(138)

By Property 6, we have that V(𝑡0) =
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢(𝑡0) = 0, and thus
the above equation becomes (135).

Conversely, let V ∈ 𝐴𝐶∇(Ω) be a solution of the integral
equation (135); that is,

V (𝑡) = ∫

𝑡

𝑡
0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠, (139)

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡
0

ℎ̂𝛽−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠. (140)

Then, by (𝐻1),

𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

V (𝑡) = 𝑓 (𝑡, V (𝑡)) , 𝑡 ∈ Ω, 𝑡 > 𝑡0, (141)

and 𝐶
𝐷

𝛽

∇,𝑡
0

𝑢(𝑡) = V(𝑡). Hence

𝐶
𝐷

𝛼−𝛽

∇,𝑡
0

𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽

∇,𝑡
0

𝑢 (𝑡)) (𝑡 ∈ Ω, 𝑡 > 𝑡0) ,

(142)

and we obtain (112). Also, it follows from (140) that 𝑢 ∈

𝐴𝐶
𝑛

∇
(Ω) and (113) are satisfied since, for 𝑖 = 0, . . . , 𝑛 − 1,

𝐷
𝑖

∇
𝑢 (𝑡)

=

𝑛−1

∑

𝑘=0

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐷

𝑖

∇
𝐼
𝛽

∇,𝑡
0

V (𝑡)

=

𝑖−1

∑

𝑘=0

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 +

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐷

𝑖

∇
𝐼
𝛽

∇,𝑡
0

V (𝑡)

=

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖

∇
ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐼

𝛽−𝑖

∇,𝑡
0

V (𝑡) .

(143)

Our next existence result corresponds to the case 𝑛 − 1 <
𝛽 < 𝛼 < 𝑛.

Theorem 35. Suppose that (𝐻1)–(𝐻3) are satisfied. Then the
integral equation (135) has a solution in 𝐴𝐶∇(Ω) provided

𝐴 = sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑎2 (𝑠) ∇𝑠 < 1,

0 < 𝐵 = sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑎1 (𝑠) ∇𝑠 < ∞.

(144)

Proof. We endow 𝐴𝐶∇(Ω) with the sup-norm and define, for
V ∈ 𝐴𝐶∇(Ω), the mapping 𝑇 by

𝑇V (𝑡) = ∫

𝑡

𝑡
0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠. (145)

The mapping 𝑇 is well defined and 𝑇 : 𝐴𝐶∇(Ω) → 𝐴𝐶∇(Ω).
Let

𝑈 = {V ∈ 𝐴𝐶∇ (Ω) : ‖V‖0 < 𝑅} (146)
with

𝑅 =
𝐵

1 − 𝐴
> 0. (147)

LetC ⊂ 𝐴𝐶∇(Ω) be defined byC = 𝑈.
If V ∈ 𝑈, then

‖𝑇V‖0 = sup
𝑡∈Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡
0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
(𝑎1 (𝑠) + 𝑎2 (𝑠) |V (𝑠)|) ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑎1 (𝑠) ∇𝑠

+ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑎2 (𝑠) ∇𝑠‖V‖0

= 𝐵 + 𝐴‖V‖0

≤ 𝑅;

(148)

that is, 𝑇 : 𝑈 → C. Certainly, 𝑇 : 𝑈 → C is continuous and
compact. Consider

V = 𝜆𝑇V, 𝜆 ∈ (0, 1) . (149)
The rest of the proof is the same as the corresponding part of
the proof of Theorem 30.

The uniqueness results are based on applications of the
Banach contraction principle.

The main assumption in the existence theorems below is
that

(𝐻4) for each 𝑅 > 0, there exists a nonnegative
function 𝛾 such that |𝑓(𝑡, 𝑧1(𝑡)) − 𝑓(𝑡, 𝑧2(𝑡))| ≤

𝛾(𝑡)|𝑧1 − 𝑧2|, 𝑡 ∈ Ω, 𝑧1, 𝑧2 ∈ R.
Thefirst uniqueness result is for the case 𝑛−1 < 𝛽 < 𝛼 < 𝑛.

Theorem36. Suppose that (𝐻1), (𝐻3), and (𝐻4) hold. Assume
that

𝜁 = sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝛾 (𝑠) ∇𝑠 < 1,

0 < sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 ∇𝑠 < ∞.

(150)

Then the integral equation (135) has a unique solution.
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Proof. In the Banach spaceB = (𝐴𝐶∇(Ω), ‖ ⋅ ‖0)we defineC
by

C = {V ∈ B : ‖V‖0 ≤ 𝑅} , (151)

where

𝑅 =
1

1 − 𝜁
sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 ∇𝑠. (152)

We define the mapping 𝑇 : 𝐴𝐶∇(Ω) → 𝐴𝐶∇(Ω) as in the
proof of Theorem 31.

If V ∈ C, then

‖𝑇V‖0 ≤ ‖𝑇V − 𝑇𝜃‖0 + ‖𝑇𝜃‖0

≤ 𝜁‖V‖0 + sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 ∇𝑠

= 𝜁‖V‖0 + (1 − 𝜁) 𝑅

≤ 𝑅;

(153)

that is, 𝑇 : C → C.
Let V1, V2 ∈ C. Then

󵄩󵄩󵄩󵄩𝑇V1 − 𝑇V2
󵄩󵄩󵄩󵄩0

= sup
𝑡∈Ω

󵄨󵄨󵄨󵄨𝑇V1 − 𝑇V2
󵄨󵄨󵄨󵄨

≤ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑠, V1 (𝑠)) − 𝑓 (𝑠, V2 (𝑠))
󵄨󵄨󵄨󵄨 ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝛾 (𝑠)

󵄨󵄨󵄨󵄨V1 (𝑠) − V2 (𝑠)
󵄨󵄨󵄨󵄨 ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝛾 (𝑠) ∇𝑠

󵄩󵄩󵄩󵄩V1 − V2
󵄩󵄩󵄩󵄩0

≤ 𝜁
󵄩󵄩󵄩󵄩V1 − V2

󵄩󵄩󵄩󵄩0
;

(154)

that is, 𝑇 is a contraction since 𝜁 < 1.
By the Banach contraction principle, 𝑇 has a unique fixed

point, which is a solution of the integral equation (135).

For the case 𝑛 − 1 < 𝛽 < 𝑛 ≤ 𝑚 − 1 < 𝛼 < 𝑚, the
uniqueness result is given without proof.

Theorem 37. Suppose that (𝐻1), (𝐻3), and (𝐻4) hold and
assume that

𝜁 = sup
𝑡∈Ω

∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝛾 (𝑠)

× (∫

𝑠

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))

󵄨󵄨󵄨󵄨󵄨
∇𝜏)∇𝑠 < 1.

(155)

Assume further that

0 < sup
𝑡∈Ω

(
󵄨󵄨󵄨󵄨𝜙 (𝑡)

󵄨󵄨󵄨󵄨 + ∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨󵄨
ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 ∇𝑠) < ∞.

(156)

Then the integral equation (115) has a unique solution.

5. Laplace Transform Method for
Solving Ordinary Differential Equations
with Caputo Fractional Derivatives

5.1. Homogeneous Equations with Constant Coefficients. In
this section we apply the Laplace transformmethod to derive
explicit solutions to homogeneous equations of the form

𝑚

∑

𝑘=1

𝐴𝑘 [
𝐶
𝐷

𝛼
𝑘

∇,𝑡
0

𝑦 (𝑡)] + 𝐴0𝑦 (𝑡) = 0

(𝑚 ∈ N; 0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚;

𝑙 − 1 < 𝛼𝑚 < 𝑙, 𝑙 ∈ N, 𝑡0, 𝑡 ∈ Ω𝑘𝑙 , 𝑡 > 𝑡0)

(157)

involving the Caputo fractional derivatives 𝐶
𝐷

𝛼
𝑘

∇,𝑡
0

𝑦 (𝑘 =

1, . . . , 𝑚), with real constants 𝐴𝑘 ∈ R (𝑘 = 0, . . . , 𝑚 − 1) and
𝐴𝑚 = 1.

The Laplace transform method is based on the formula:

L∇,𝑡
0

{
𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡)} (𝑧)

= 𝑧
𝛼
L∇,𝑡

0

{𝑦 (𝑡)} (𝑧)

−

𝑙−1

∑

𝑗=0

𝑑𝑗𝑧
𝛼−𝑗−1

(𝑙 − 1 < 𝛼 ≤ 𝑙 ∈ N) ,

(158)

𝑑𝑗 = 𝐷
𝑗

∇
𝑦 (𝑡0) (𝑗 = 0, . . . , 𝑙 − 1) . (159)

First, we derive explicit solutions to (157) with𝑚 = 1:

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 𝜆 ∈ R) .
(160)

In order to prove our result, we also need the following
definition and lemma.

Definition 38. The function𝑊(𝑡) is defined by

𝑊(𝑡) = det ((𝐷𝑘

∇
𝑦𝑗) (𝑡))

𝑛

𝑘,𝑗=1
(𝑡 ∈ Ω𝑘𝑛) . (161)

Lemma 39. The solutions 𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are linearly
independent if and only if𝑊(𝑡

∗
) ̸= 0 at some point 𝑡∗ ∈ Ω.

Proof. Wefirst prove sufficiency. If, to the contrary, 𝑦𝑗(𝑡) (𝑗 =

1, 2, . . . , 𝑛) are linearly dependent in Ω, then there exist 𝑛
constants {𝑐𝑗}

𝑛

𝑗=1
, not all zero, such that

((𝐷
𝑘

∇,𝑡
0

𝑦𝑗) (𝑡))
𝑛

𝑘,𝑗=1
(

𝑐1

𝑐2
.
.
.

𝑐𝑛

) ≡ 0 (162)

holds, and thus, 𝑊(𝑡) ≡ 0 which leads to a contradiction.
Therefore, if 𝑊(𝑡

∗
) ̸= 0 at some point 𝑡∗ ∈ Ω, then

𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are linearly independent. Nowwe prove
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the necessity. Suppose, to the contrary, for any 𝑡 ∈ Ω,𝑊(𝑡) =

0. Consider the equations

((𝐷
𝑘

∇,𝑡
0

𝑦𝑗) (𝑡
∗
))

𝑛

𝑘,𝑗=1
𝐶 = 0, (163)

where 𝑡∗ ∈ Ω, 𝐶 = (

𝑐
1

𝑐
2

.

.

.
𝑐
𝑛

). As𝑊(𝑡
∗
) = 0, the equations have

nontrivial solution 𝑐𝑗 (𝑗 = 1, 2, . . . , 𝑛). Now we construct a
function using these constants:

𝑦 (𝑡) =

𝑛

∑

𝑗=1

𝑐𝑗𝑦𝑗 (𝑡) , (164)

and we get 𝑦(𝑡) as a solution. From (163), we obtain that 𝑦(𝑡)
satisfies initial value condition

𝐷
𝑘

∇,𝑡
0

𝑦 (𝑡
∗
) = 0, 𝑘 = 1, . . . , 𝑛. (165)

However, 𝑦(𝑡) = 0 is also a solution to equation satisfying the
initial value condition. By the uniqueness of solution, we have

𝑛

∑

𝑗=1

𝑐𝑗𝑦𝑗 (𝑡) = 0, (166)

and thus, 𝑦𝑗(𝑡) (𝑗 = 1, 2, . . . , 𝑛) are linearly dependant
which leads to a contradiction. Thus, if the solutions
𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are linearly independent, then𝑊(𝑡

∗
) ̸=

0 at some point 𝑡∗ ∈ Ω. The result follows.

The following statements hold.

Theorem 40. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N) and 𝜆 ∈ R. Then the
functions

𝑦𝑗 (𝑡) = ∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) (𝑗 = 0, . . . , 𝑙 − 1) (167)

yield the fundamental system of solutions to (160).

Proof. Applying the Laplace transform to (160) and taking
(158) into account, we have

L∇,𝑡
0

{𝑦 (𝑡)} (𝑧) =

𝑙−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆
, (168)

where 𝑑𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are given by (159).
Formula (36) with 𝛽 = 𝑗 + 1 yields

L∇,𝑡
0

{
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)} (𝑧) =

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) . (169)

Thus, from (168), we derive the following solution to (160):

𝑦 (𝑡) =

𝑙−1

∑

𝑗=0

𝑑𝑗𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡) =∇ 𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) . (170)

It is easily verified that the functions 𝑦𝑗(𝑡) are solutions to
(160):

𝐶
𝐷

𝛼

∇,𝑡
0

[
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)] = 𝜆∇𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)

(𝑗 = 0, . . . , 𝑙 − 1) .

(171)

In fact,

𝐶
𝐷

𝛼

∇,𝑡
0

[
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)]

=
𝐶
𝐷

𝛼

∇,𝑡
0

[

∞

∑

𝑘=0

𝜆
𝑘
ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)]

=
𝐶
𝐷

𝛼

∇,𝑡
0

𝜆
0
ℎ̂𝑗 (𝑡, 𝑡0) +

𝐶
𝐷

𝛼

∇,𝑡
0

∞

∑

𝑘=1

𝜆
𝑘
ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)

= 0 +

∞

∑

𝑘=1

𝜆
𝑘
ℎ̂(𝑘−1)𝛼+𝑗 (𝑡, 𝑡0)

=

∞

∑

𝑘=0

𝜆
𝑘+1

ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)

= 𝜆

∞

∑

𝑘=0

𝜆
𝑘
ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)

= 𝜆
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) .

(172)

Moreover,

𝐷
𝑘

∇
𝑦𝑗 (𝑡) = 𝐷

𝑘

∇∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)

= 𝐷
𝑘

∇
[

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗 (𝑡, 𝑡0)] =

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗−𝑘 (𝑡, 𝑡0) .

(173)

It follows from (173) and (20) that

𝐷
𝑘

∇
𝑦𝑗 (𝑡0) = 0 (𝑘, 𝑗 = 0, . . . , 𝑙 − 1; 𝑗 > 𝑘) ,

𝐷
𝑘

∇
𝑦𝑘 (𝑡0) = 1 (𝑘 = 0, . . . , 𝑙 − 1) .

(174)

If 𝑗 < 𝑘, then

𝐷
𝑘

∇
𝑦𝑗 (𝑡0) = 𝐷

𝑘

∇
ℎ̂𝑗 (𝑡, 𝑡0) + 𝐷

𝑘

∇

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗 (𝑡, 𝑡0)

= 0 +

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗−𝑘 (𝑡, 𝑡0)

=

∞

∑

𝑠=0

𝜆
𝑠+1
ℎ̂𝑠𝛼+𝛼+𝑗−𝑘 (𝑡, 𝑡0) ,

(175)

and, since 𝛼 + 𝑗 − 𝑘 ≥ 𝛼 + 1 − 𝑙 > 0 for any 𝑘, 𝑗 = 0, . . . , 𝑙 − 1,
the following relations hold:

𝐷
𝑘

∇
𝑦𝑗 (𝑡0) = 0 (𝑘, 𝑗 = 0, . . . , 𝑙 − 1; 𝑗 < 𝑘) . (176)

By (174) and (176), the Wronskian function

𝑊(𝑡) = det (𝐷𝑘

∇
𝑦𝑗 (𝑡))

𝑙−1

𝑘,𝑗=0
(177)

at 𝑡0 is equal to 1:𝑊(𝑡0) = 1.Then 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙−1) yield
the fundamental system of solutions to (160).
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Corollary 41. The equation
𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡0; 0 < 𝛼 ≤ 1; 𝜆 ∈ R)

(178)

has its solution given by

𝑦 (𝑡) =
∇
𝐹𝛼,1 (𝜆; 𝑡, 𝑡0) , (179)

while the equation
𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡0; 1 < 𝛼 ≤ 2; 𝜆 ∈ R)

(180)

has the fundamental system of solutions given by

𝑦0 (𝑡) = ∇
𝐹𝛼,1 (𝜆; 𝑡, 𝑡0) , 𝑦1 (𝑡) = ∇

𝐹𝛼,2 (𝜆; 𝑡, 𝑡0) . (181)

Next we derive the explicit solutions to (157) with𝑚 = 2:
𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(182)

with 𝜆, 𝜇 ∈ R.

Theorem 42. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 0 < 𝛽 < 𝛼, and
𝜆, 𝜇 ∈ R. Then the functions

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0) ,

𝑗 = 0, . . . , 𝑚 − 1;

(183)

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0) ,

𝑗 = 𝑚, . . . , 𝑙 − 1

(184)

yield the fundamental system of solutions to (182), provided
that the series in (183) and (184) are convergent.

Proof. Let 𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑚 ≤ 𝑙; 𝑚 ∈ N). Applying the
Laplace transform to (182) and using (158), we obtain

L∇,𝑡
0

{𝑦 (𝑡)} (𝑧) =

𝑙−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇

− 𝜆

𝑚−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛽−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
,

(185)

where 𝑑𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are given by (159).
For 𝑧 ∈ C and |𝜇𝑧−𝛽/(𝑧𝛼−𝛽

− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
=

𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

1 − (𝜇𝑧−𝛽/ (𝑧𝛼−𝛽 − 𝜆))

=

∞

∑

𝑛=0

𝜇
𝑛 𝑧

−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

.

(186)

In addition, for 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
𝛼−𝑗−1−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛽𝑛+𝑗+1)

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0)} (𝑧) ,

𝑧
𝛽−𝑗−1−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛽𝑛+𝑗+1+𝛼−𝛽)

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧) .

(187)

From (185) and (187), we derive the solution to (182):

𝑦 (𝑡) =

𝑙−1

∑

𝑗=0

𝑑𝑗𝑦𝑗 (𝑡) , (188)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (183) for 𝑗 =

0, . . . , 𝑚−1 and by (184) for 𝑗 = 𝑚, . . . , 𝑙−1. For 𝑘 = 0, . . . , 𝑙−1,
the direct evaluation yields

𝐷
𝑘

∇
𝑦𝑗 (𝑡)

= 𝐷
𝑘

∇
[

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0)

−𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝑗+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0)]

=

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
𝐷

𝑘

∇
[

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗 (𝑡, 𝑡0)]

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
𝐷

𝑘

∇
[

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗+𝛼−𝛽 (𝑡, 𝑡0)]

=

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗−𝑘 (𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗+𝛼−𝛽−𝑘 (𝑡, 𝑡0)

(𝑗 = 0, . . . , 𝑚 − 1) ,

𝐷
𝑘

∇
𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗−𝑘 (𝑡, 𝑡0)

(𝑗 = 𝑚, . . . , 𝑙 − 1) .

(189)

For 𝑗 > 𝑘,𝐷
𝑘

∇
𝑦𝑗(𝑡0) = 0, and for 𝑗 = 𝑘,𝐷

𝑘

∇
𝑦𝑗(𝑡0) = 1. Thus

we have𝑊(𝑡0) = 1. Thus the functions 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1)
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in (183) and (184) are linearly independent solutions to (182).
The result follows.

Corollary 43. The equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(190)

has its fundamental system of solutions given by

𝑦𝑗 (𝑡) =∇ 𝐹𝛼−𝛽,𝑗+1 (𝜆; 𝑡, 𝑡0) − 𝜆∇𝐹𝛼−𝛽,𝛼−𝛽+𝑗+1

(𝑗 = 0, . . . , 𝑚 − 1) ,

𝑦𝑗 (𝑡) =∇ 𝐹𝛼−𝛽,𝑗+1 (𝜆; 𝑡, 𝑡0) (𝑗 = 𝑚, . . . , 𝑙 − 1) .

(191)

Corollary 44. The equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 0 < 𝛽 < 𝛼 ≤ 1; 𝜆, 𝜇 ∈ R)

(192)

has its solution by

𝑦0 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+1 (𝜆; 𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0) .

(193)

In particular,

𝑦0 (𝑡) =∇ 𝐹𝛼−𝛽,1 (𝜆; 𝑡, 𝑡0) − 𝜆∇𝐹𝛼−𝛽,𝛼−𝛽+1 (𝜆; 𝑡, 𝑡0) (194)

is a solution to the equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 0 < 𝛽 < 𝛼 ≤ 1; 𝜆 ∈ R) .

(195)

Corollary 45. The equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0, (196)

where 𝑡 > 𝑡0; 1 < 𝛼 ≤ 2, 0 < 𝛽 < 𝛼; 𝜆, 𝜇 ∈ R, has one solution
𝑦0(𝑡), given by (193), and a second solution 𝑦1(𝑡) given by

𝑦1 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+2 (𝜆; 𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+𝛼−𝛽+2 (𝜆; 𝑡, 𝑡0)

(197)

for 1 < 𝛽 < 𝛼, while, for 0 < 𝛽 ≤ 1, by

𝑦1 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛽𝑛+2 (𝜆; 𝑡, 𝑡0) . (198)

In particular, the equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 1 < 𝛼 ≤ 2, 0 < 𝛽 < 𝛼; 𝜆 ∈ R)

(199)

has one solution 𝑦0(𝑡) given by (194), and a second 𝑦1(𝑡) given
by

𝑦1 (𝑡) =∇ 𝐹𝛼−𝛽,2 (𝜆; 𝑡, 𝑡0) − 𝜆∇𝐹𝛼−𝛽,𝛼−𝛽+2 (𝜆; 𝑡, 𝑡0) (200)

for 1 < 𝛽 < 𝛼, while for 0 < 𝛽 ≤ 1, by

𝑦1 (𝑡) =∇ 𝐹𝛼−𝛽,2 (𝜆; 𝑡, 𝑡0) . (201)

Finally, we find explicit solutions to (157) with any 𝑚 ∈

N \ {1, 2}. It is convenient to rewrite (157) in the form (202)

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=0

𝐴𝑘

𝐶
𝐷

𝛼
𝑘

∇,𝑡
0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑚 ∈ N \ {1, 2} ; 0 = 𝛼0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚−2 < 𝛽 < 𝛼;

𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R) .

(202)

Theorem 46. Let 𝛼, 𝛽, 𝛼𝑚−2, . . . , 𝛼0 and 𝑙, 𝑙𝑚−1, . . . , 𝑙0 ∈

N0 (𝑚 ∈ N \ {1, 2}) be such that

0 = 𝛼0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚−2 < 𝛽 < 𝛼,

0 = 𝑙0 ≤ 𝑙1 ≤ ⋅ ⋅ ⋅ ≤ 𝑙𝑚−1 ≤ 𝑙,

𝑙 − 1 < 𝛼 ≤ 𝑙,

𝑙𝑚−1 − 1 < 𝛽 ≤ 𝑙𝑚−1,

𝑙𝑘 − 1 < 𝛼𝑘 ≤ 𝑙𝑘

(𝑘 = 0, . . . , 𝑚 − 2) ,

(203)

and let 𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R. Then the fundamental system of
solutions to (202) is given by the formulas

𝑦𝑗 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹
𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

− 𝜆
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹
𝛼−𝛽,𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹
𝛼−𝛽,𝛼−𝛼

𝑘
+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)}

(204)
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for 𝑗 = 0, . . . , 𝑙𝑚−2 − 1; by

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹
𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

−𝜆
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹
𝛼−𝛽,𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)}

(205)

for 𝑗 = 𝑙𝑚−2, . . . , 𝑙𝑚−1 − 1; and by

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹
𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

(206)

for 𝑗 = 𝑙𝑚−1, . . . , 𝑙 − 1.

Proof. Applying the Laplace transform to (202) and using
(158), we obtain

L∇,𝑡
0

{𝑦 (𝑡)} (𝑧) =

𝑙−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘

− 𝜆

𝑙
𝑚−1

−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛽−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝑙
𝑘
−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼
𝑘
−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘

,

(207)

where 𝑑𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are given by (159).
For 𝑧 ∈ C and | ∑𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘
−𝛽
/(𝑧

𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘

=
𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

(1 − (∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘
−𝛽/ (𝑧𝛼−𝛽 − 𝜆)))

=

∞

∑

𝑛=0

𝑧
−𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(

𝑚−2

∑

𝑘=0

𝐴𝑘𝑧
𝛼
𝑘
−𝛽
)

𝑛

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]
𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

,

(208)

if we also take into account the following relation:

(𝑥0 + ⋅ ⋅ ⋅ + 𝑥𝑚−2)
𝑛
= ( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

𝑚−2

∏

]=0
𝑥
𝑘]
] ,

(209)

where the summation is taken over all 𝑘0, . . . , 𝑘𝑚−2 ∈ N0 such
that 𝑘0 + ⋅ ⋅ ⋅ + 𝑘𝑚−2 = 𝑛.

In addition, for 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
𝛼−𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹
𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) ,

(210)

𝑧
𝛽−𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹
𝛼−𝛽,𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) ,

(211)

𝑧
𝛼
𝑘
−𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛼−𝛼

𝑘
+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹
𝛼−𝛽,𝛼−𝛼

𝑘
+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) .

(212)

From (210) to (212), we derive the solution to (202):

𝑦 (𝑡) =

𝑙−1

∑

𝑗=0

𝑑𝑗𝑦𝑗 (𝑡) , (213)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (204) for 𝑗 =

0, . . . , 𝑙𝑚−2−1, by (205) for 𝑗 = 𝑙𝑚−2, . . . , 𝑙𝑚−1−1, and by (206)
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for 𝑗 = 𝑙𝑚−1, . . . , 𝑙−1. For 𝑘 = 0, . . . , 𝑙−1, the direct evaluation
yields

𝐷
𝑘

∇
𝑦𝑗 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ 𝐷
𝑘

∇
{
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗
(𝑡, 𝑡0)

− 𝜆
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗+𝛼−𝛽
(𝑡, 𝑡0)

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝜕
𝑛

𝜕𝜆𝑛

×

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗+𝛼−𝛼𝑘
(𝑡, 𝑡0)}

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘
(𝑡, 𝑡0)

− 𝜆
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘+𝛼−𝛽
(𝑡, 𝑡0)

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝜕
𝑛

𝜕𝜆𝑛

×

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘+𝛼−𝛼𝑘
(𝑡, 𝑡0)}

(214)

for 𝑗 = 0, . . . , 𝑙𝑚−2 − 1,

𝐷
𝑘

∇
𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘
(𝑡, 𝑡0) − 𝜆

𝜕
𝑛

𝜕𝜆𝑛

×

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘+𝛼−𝛽
(𝑡, 𝑡0)}

(215)

for 𝑗 = 𝑙𝑚−2, . . . , 𝑙𝑚−1 − 1, and

𝐷
𝑘

∇
𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘
(𝑡, 𝑡0)

(216)

for 𝑗 = 𝑙𝑚−1, . . . , 𝑙 − 1. For 𝑗 > 𝑘,𝐷
𝑘

∇
𝑦𝑗(𝑡0) = 0, and for 𝑗 =

𝑘,𝐷
𝑘

∇
𝑦𝑗(𝑡0) = 1. Thus we have𝑊(𝑡0) = 1. Thus the functions

𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙−1) in (204)–(206) are linearly independent
solutions to (202). The result follows.

5.2. Nonhomogeneous Equations with Constant Coefficients.
In this section, we still use Laplace transform method to find
general solutions to the corresponding nonhomogeneous
equations

𝑚

∑

𝑘=1

𝐴𝑘 [
𝐶
𝐷

𝛼
𝑘

∇,𝑡
0

𝑦 (𝑡)] + 𝐴0𝑦 (𝑡) = 𝑓 (𝑡)

(𝑚 ∈ N; 0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚;

𝑙 − 1 < 𝛼𝑚 < 𝑙, 𝑙 ∈ N, 𝑡0, 𝑡 ∈ Ω𝑘𝑙 , 𝑡 > 𝑡0)

(217)

with real coefficients 𝐴𝑘 ∈ R (𝑘 = 0, . . . , 𝑚) and a given
function 𝑓(𝑡). The general solution to (217) is a sum of
its particular solution and of the general solution to the
corresponding homogeneous equation (157). It is sufficient to
construct a particular solution to (217).

By (158) and (159), for suitable functions 𝑦, the Laplace
transform of 𝐶

𝐷
𝛼

∇,𝑡
0

𝑦 is given by

L∇,𝑡
0

{
𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡)} (𝑧) = 𝑧
𝛼
L∇,𝑡

0

{𝑦 (𝑡)} (𝑧) . (218)

Applying the Laplace transform to (217) and taking (218) into
account, we have

[𝐴0 +

𝑚

∑

𝑘=1

𝐴𝑘𝑧
𝛼
𝑘]L∇,𝑡

0

{𝑦 (𝑡)} (𝑧) = L∇,𝑡
0

{𝑓 (𝑡)} (𝑧) .

(219)

Using the inverse Laplace transformL−1

∇
fromherewe obtain

a particular solution to (217) in the form

𝑦 (𝑡) = L
−1

∇,𝑡
0

[

L∇,𝑡
0

{𝑓 (𝑡)} (𝑧)

𝐴0 + ∑
𝑚

𝑘=1
𝐴𝑘𝑧

𝛼
𝑘

] (𝑡) . (220)

Using the Laplace convolution formula

L∇,𝑡
0

{𝑓 ∗ 𝑔} (𝑧) = L∇,𝑡
0

{𝑓} (𝑧)L∇,𝑡
0

{𝑔} (𝑧) , (221)

we can introduce the Laplace fractional analog of the Green
function as follows:

𝐺𝛼
1
,...,𝛼
𝑚

(𝑡) = L
−1

∇,𝑡
0

{
1

𝑃𝛼
1
,...,𝛼
𝑚

(𝑧)
} (𝑡) ,

𝑃𝛼
1
,...,𝛼
𝑚

(𝑧) = 𝐴0 +

𝑚

∑

𝑘=1

𝐴𝑘𝑧
𝛼
𝑘 ,

(222)

and express a particular solution of (217) in the form of the
Laplace convolution 𝐺𝛼

1
,...,𝛼
𝑚

(𝑡) and 𝑓(𝑡)

𝑦 (𝑡) = 𝐺𝛼
1
,...,𝛼
𝑚

(𝑡) ∗ 𝑓 (𝑡) . (223)
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Theorem 47. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 𝜆 ∈ R, and 𝑓(𝑡) be a
given function. Then the equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) (224)

is solvable, and its general solution is given by

𝑦 (𝑡) =∇ 𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡) +

𝑙−1

∑

𝑗=0

𝑐𝑗 ∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) , (225)

where 𝑐𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are arbitrary real constants.
In particular, the general solutions to (224) with 0 < 𝛼 ≤ 1

and 1 < 𝛼 ≤ 2 have the forms

𝑦 (𝑡) =
∇
𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡) + 𝑐0∇𝐹𝛼,1 (𝜆; 𝑡, 𝑡0) , (226)

𝑦 (𝑡) =
∇
𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡) + 𝑐0∇𝐹𝛼,1 (𝜆, 𝑡, 𝑡0)

+𝑐1∇𝐹𝛼,2 (𝜆; 𝑡, 𝑡0) ,

(227)

respectively, where 𝑐0 and 𝑐1 are arbitrary real constants.

Proof. Equation (224) is (217) with 𝑚 = 1, 𝛼1 = 𝛼, 𝐴1 = 1,
𝐴0 = −𝜆 and (222) takes the form

𝐺𝛼 (𝑡) = L
−1

∇,𝑡
0

{
1

𝑧𝛼 − 𝜆
} (𝑡) =∇ 𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) . (228)

Thus (223), with 𝐺𝛼
1
,...,𝛼
𝑚

(𝑡) = 𝐺𝛼(𝑡), and Theorem 40 yield
(225). Theorem is proved.

Theorem 48. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 0 < 𝛽 < 𝛼, 𝜆, 𝜇 ∈ R,
and let 𝑓(𝑥) be a given function. Then the equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 𝑓 (𝑡) (229)

is solvable, and its general solution has the form

𝑦 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇

𝐹𝛼−𝛽,𝛼+𝑛𝛽 (𝜆, 𝑡, 𝑡0) ∗ 𝑓 (𝑡) +

𝑙−1

∑

𝑗=0

𝑐𝑗𝑦𝑗 (𝑡) ,

(230)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (183) and (184) and
𝑐𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are arbitrary real constants.

Proof. Equation (229) is the same as (217) with𝑚 = 2, 𝛼2 = 𝛼,
𝛼1 = 𝛽, 𝐴2 = 1, 𝐴1 = −𝜆, 𝐴0 = −𝜇, and (222) is given by

𝐺𝛼,𝛽;𝜆,𝜇 (𝑡) = L
−1

∇,𝑡
0

{
1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
} (𝑡) . (231)

For 𝑧 ∈ C and |𝜇𝑧−𝛽/(𝑧𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
=

𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

1 − (𝜇𝑧−𝛽/ (𝑧𝛼−𝛽 − 𝜆))

=

∞

∑

𝑛=0

𝜇
𝑛
𝑧
−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(232)

and then we get

𝐺𝛼,𝛽;𝜆,𝜇 (𝑡) = L
−1

∇,𝑡
0

{

∞

∑

𝑛=0

𝜇
𝑛 𝑧

−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

} (𝑡) . (233)

In addition, for 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼+𝑛𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧)

(234)

and hence (233) takes the following form:

𝐺𝛼,𝛽;𝜆,𝜇 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼+𝑛𝛽 (𝜆; 𝑡, 𝑡0) . (235)

Thus the result in (230) follows from (223) with 𝐺𝛼
1
,...,𝛼
𝑚

(𝑡) =

𝐺𝛼,𝛽;𝜆,𝜇(𝑡) andTheorem 42.

Theorem 49. Let 𝑚 ∈ N \ {1, 2}, 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N),
𝛽, 𝛼1, . . . , 𝛼𝑚−2 be such that 𝛼 > 𝛽 > 𝛼𝑚−2 > ⋅ ⋅ ⋅ > 𝛼1 >

𝛼0 = 0, and let 𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R, and let 𝑓(𝑡) be a given
function. The equation

𝐶
𝐷

𝛼

∇,𝑡
0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽

∇,𝑡
0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=0

𝐴𝑘

𝐶
𝐷

𝛼
𝑘

∇,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡)

(𝑚 ∈ N \ {1, 2} ; 𝛼 > 𝛽 > 𝛼𝑚−2 > ⋅ ⋅ ⋅ > 𝛼1 > 𝛼0 = 0;

𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R)

(236)

is solvable, and its general solution is given by

𝑦 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹
𝛼−𝛽,𝛼+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡)

+

𝑙−1

∑

𝑗=0

𝑐𝑗𝑦𝑗 (𝑡) ,

(237)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (204)–(206) and
𝑐𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are arbitrary real constants.

Proof. Equation (236) is the same equation as (217) with 𝛼𝑚 =

𝛼, 𝛼𝑚−1 = 𝛽, 𝐴𝑚 = 1, 𝐴𝑚−1 = −𝜆, and with −𝐴𝑘 instead of
𝐴𝑘 for 𝑘 = 0, . . . , 𝑚 − 2. Since 𝛼0 = 0, (222) takes the form

𝐺𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆 (𝑡) = L
−1

∇,𝑡
0

{
1

𝑧𝛼 − 𝜆𝛼𝛽 − ∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘

} (𝑡) .

(238)
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For 𝑧 ∈ C and | ∑𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘
−𝛽
/(𝑧

𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘

=
𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

(1 − (∑
𝑚−2

𝑘=0
𝐴𝑘𝑧

𝛼
𝑘
−𝛽/ (𝑧𝛼−𝛽 − 𝜆)))

=

∞

∑

𝑛=0

𝑧
−𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(

𝑚−2

∑

𝑘=0

𝐴𝑘𝑧
𝛼
𝑘
−𝛽
)

𝑛

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]
𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

,

(239)

if we also take into account the following relation:

(𝑥0 + ⋅ ⋅ ⋅ + 𝑥𝑚−2)
𝑛
= ( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

𝑚−2

∏

]=0
𝑥
𝑘]
] ,

(240)

where the summation is taken over all 𝑘0, . . . , 𝑘𝑚−2 ∈ N0 such
that 𝑘0 + ⋅ ⋅ ⋅ + 𝑘𝑚−2 = 𝑛, and then we get

𝐺𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆 (𝑡)

= L
−1

∇,𝑡
0

{

{

{

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]
𝑧
−𝛽−∑

𝑚−2

𝜐=0
(𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

} (𝑡) .

(241)

For 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡

0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹
𝛼−𝛽,𝛼+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) .

(242)

Thus the result in (237) follows from (223) with 𝐺𝛼
1
,...,𝛼
𝑚

(𝑡) =

𝐺𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆(𝑡) andTheorem 46.
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